用户名: 密码: 验证码:
猪骨骼肌发育相关新基因家族BTG/TOB的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高猪生产性状一直以来都是育种学家们追求的目标之一。猪瘦肉产量和质量主要取决于胚胎发育期肌纤维数量的增生和生后期肌纤维体积的膨大。猪肌肉生长速度与胚胎期形成的肌纤维数目呈正相关,同时也受肌纤维中蛋白质的合成和降解速度差异的影响,但胚胎肌发生时期形成的肌纤维数量是动物产肉量的重要决定因素。另一方面,肌纤维的肥大又与肌肉应激或肉质下降等问题有关。因此,如何最有效地平衡肌肉生长速度与肌肉品质需要我们对肌纤维的发育有一个全面深入的了解。
     本实验室在以通城和长白猪胚胎发育不同时期的骨骼肌构建的LongSAGE文库中发现了一大批差异表达基因,本研究在此基础上,选取对早期肌纤维增殖有显著影响的BTG/TOB基因家族,开展了5个新基因的克隆、定位及其功能研究工作,得到如下结果:
     1.以LongSAGE文库中差异表达标签(tags)为基础,结合生物信息学与实验验证克隆获得了猪BTG1、BTG2和BTG3基因包含完整CDS的cDNA序列以及BTG4基因的部分DNA序列和TOB2基因的靠近3’端部分cDNA序列。
     2.推导了猪BTG1、BTG2和BTG3基因的氨基酸序列,并利用生物信息学方法预测了它们的结构和功能,发现它们除具有BTG/TOB基因家族所共有的boxA和boxB保守结构域外,还含有几个蛋白激酶的磷酸化位点。结合氨基酸同源性,我们构建了该三个基因的系统进化树,结果表明,三个基因分别聚为三个明显的分支,其中BTG1和BTG2进化关系更近一些。
     3.利用RH克隆板对上述5个基因进行了染色体定位,分别将BTG1、BTG2、BTG3、BTG4及TOB2基因定位在SSC5q24-25,9p11-q11,13q47,9p21和5p15区域。
     4.运用RT-PCR方法检测了BTG1,BTG2和BTG3三个基因在成年长白和通城猪心脏、胃、脾脏、肺、肾、肌肉中的表达情况。检测结果表明,BTG1和BTG3基因在表达模式上类似,都在长白猪心脏和骨骼肌中低表达,而在通城猪高表达,在两个品种的胃、脾脏、肺和肾中表达都较高;BTG2基因在长白和通城猪的心脏中高表达,骨骼肌中表达稍低。
     5.运用实时定量PCR方法,我们利用与半定量PCR相同的反转录引物在通城和长白猪胚胎发育33天、65天和90天的背最长肌cDNA中对三个基因的表达情况作了检测。检测结果表明,BTG1基因和BTG3基因在两个品种三个时期的表达模式完全一样,它们在通城猪三个胚胎时期的表达量都远大于在长白猪中的表达量(p<0.01),通城猪中的表达趋势是先下调再上调(p<0.05),在长白猪三个胚胎时期的表达差异不显著;BTG2基因则在通城猪胚胎三个时期的表达是先上调再下调(p<0.05),在长白猪中的表达是先上调(p<0.05),在65天和90天的表达差异不显著(p>0.05)。并且BTG2基因在33天和90天的表达都是长白猪大于通城猪(p<0.05),65天时则在两个品种的表达没显著差异。
     6.运用实时定量PCR方法,检测了鼠源BTG1,BTG2,BTG3和Myogenin基因在C2C12细胞分化不同时期的表达,Myogenin基因用作成肌细胞分化的信号分子。结果显示BTG1和BTG3基因与Myogenin的表达趋势完全一致(p<0.05),而BTG2基因则在五个时期呈现波浪式表达(p<0.05)。
     7.发现了猪BTG1、BTG2和BTG3基因可用PCR—RFLP方法检测的4个SNP位点,其中位于BTG1基因3’UTR区的两个SNP位点和位于BTG2基因第一外显子的一个SNP位点都没有改变氨基酸,BTG3基因的SNP位于第五外显子,该位点碱基C到T的改变造成氨基酸由脯氨酸变为丝氨酸。
     8.对上述四个SNP位点在大白、长白、杜洛克、通城、二花脸、清平和江西玉山猪中进行群体遗传学分析,分析结果表明四个SNP位点在中外猪品种中的分布存在显著差异。
     9.在我室与通城县畜牧局合作组建的试验猪群体中,对四个SNP与生产性状进行了初步关联分析。结果显示,BTG1基因3’UTR区PsuI-RFLP位点的基因型与肩部膘厚、6—7肋间膘厚、屠宰率以及肉色存在显著关联,该区Bsh1236I-RFLP位点的基因型与肉色及肌内脂肪含量存在显著关联;BTG2基因第一外显子MvaI-RFLP多态性位点的基因型与肩部膘厚、肉色及肌肉剪切力存在显著关联;BTG3基因第五外显子MvaI-RFLP多态性位点的基因型与肌肉剪切力存在显著关联。
     10.成功克隆了猪BTG1基因上游约1.6 kb的启动子序列,并构建了4个pGL3报告基因载体并用生物信息学方法对它的结构和转录因子结合位点进行了预测。发现了许多影响细胞周期和肌纤维发育的转录因子,如Forehead基因家族,AP—1样因子,SP1样因子,Myod,PAX家族等。对启动子的预测结果表明,猪的BTG1基因可能是对肌肉早期发育有重要影响的基因。
     本研究初步结果表明,BTG基因家族对骨骼肌早期发育有较明显的影响,作为猪骨骼肌发育相关的候选基因对其功能进行深入研究,必将有助于丰富猪分子育种材料并给猪肉生产带来实质性的帮助。
Improving production traits of pig is one of the objectives breeders pursuiting.The lean yield and quality is mainly decided by increasing numbers of fibroblast infetal development and postnatal hypertrophy of muscle fibres. Postnatal growth rate ispositively correlated with muscle fiber number forming in fetal and influenced by thebalance between protein synthesis and degradation of muscle proteins. However, themuscle fiber numbers forming in embryo myogenesis are the important key factors foranimal meat production. On the other side, the hypertrophy of muscle fibre relatedwith muscle stress and meat quality decreasing, etc. Therefore, understanding themuscle fiber development is important to efficiently balancing muscle growth rate andmeat quality.
     Many differentially expressed genes were detected from LongSAGE musclecDNA library constructed with three fetal stages of two swine breeds (Landrace andChinese Tongcheng) in our previous study. We chose BTG/TOB gene family whichsignificantly influenced early muscle fiber proliferation to do cloning, physicalmapping and functional study. The main results are as follows:
     1. Based on differentially expressed tags of LongSAGE muscle cDNA library,combining bioinformatics and experimental methods, full-length cDNA of the porcineBTG1, BTG2 and BTG3 gene, partial DNA sequence of BTG4 gene and partialcDNA near 3'-end of TOB2 gene were isolated and identified.
     2. The amino acids of porcine BTG1, BTG2 and BTG3 gene were deduced andthe motifs were predicted with bioinformatics tools. Besides boxA and boxBconserved motifs, several protein kinase phosphorylation sites were also found. Thephylogenetic tree was constructed as well as homology alignment. The results showedthat BTG1, BTG2 and BTG3 obviously clustered three different clades and BTG1 andBTG2 had closer relationship.
     3. Using RH panel, we assigned BTG1, BTG2, BTG3, BTG4 and TOB2 genes toporcine 5q24-q25, 9p11-q11, 13q47, 9p21 and 5p15 respectively, which are inagreement with comparative mapping results. There are several putative quantitativetrait loci (QTL) for pig backfat thickness, muscle color, muscle pH value, diameter ofmuscle fiber, average daily gain, market weight, percentage of fat, dressing percent,etc on the chromosome regions where these genes mapped.
     4. The expression level of BTG1, BTG2 and BTG3 genes in heart, stomach, spleen, lung, kidney and muscle of adult Landrace female were detected with RT-PCR.BTG1 and BTG3 genes were found similar in expression profile and expressed low inheart and muscle in Landrace while high in Tongcheng pigs. However, BTG2 geneexpressed high in heart and muscle in both breeds.
     5. The BTG1, BTG2 and BTG3 gene expression in the fetal skeletal muscle from33dpc (day postconception), 65dpc and 90dpc of Landrace and Tongcheng pig wasdetected with real-time RT-PCR method. The expression trend of BTG1 and BTG3gene were found the same and expressed higher in Tongcheng pig than Landraceamong three fetal stages. Their expression peaked at 33 dpc and significantlydecreased at 65 dpc and at 90 dpc (p<0.01) in Chinese Tongcheng and no significantdifference in the three stage in Landrace. Porcine BTG2 was expressed at 33 dpc witha relatively low level then increased to a peak at 65 dpc, and was down-regulatedthereafter in Tongcheng pig (p<0.01). The same expression trend was found from 33dpc to 65dpc, but no significant expression differences in Landrace between 65 dpcand 90 dpc were observed. The relative expression level of BTG2 at 33 and 90 dpcare both significantly higher (p<0.05) in Landrace than Tongcheng pigs but showedno significant difference at 65 dpc between the two breeds.
     6. To investigate the role of BTG1, BTG2 and BTG3 in myoblasts differentiation,we assayed the mRNA expression level of these two genes in proliferated and fivedifferent differential stage murine C2C12 cells with real-time RT-PCR method.Myogenin was used as molecular marker to confirme the cells underwentdifferentiation. The result showed that the expression trends of BTG1 and BTG3genes were completely coincide with myogenin while BTG2 gene expressiondisplayed wave trend.
     7. Identification for mutations in the amplified fragments of BTG1, BTG2 andBTG3 genes were performed and the 4 SNPs were detected by PCR-RFLP. Two SNPslocated in 3'-UTR of BTG1 gene, one synonymous SNP located in the first exon ofBTG2 gene. The SNP located in the fifth exon of BTG3 gene which mutating from Cto T caused amino acid change.
     8. Allele frequencies of 4 SNPs that can be detected by PCR-RFLP wereanalyzed among different pig populations and the results showed that the genotypefrequencies of all the loci were significantly different among the different populations.
     9. The PsuI-RFLP and Bsh1236I-RFLP of BTG1 gene, MvaI-RFLP of BTG2and BTG3 gene were genotyped in a population which constructed by our lab. The analysis of least-square variance was used to employ association between these SNPsand some production traits. The results showed that the PsuI-RFLP genotypes ofBTG1 gene have significant difference on the shoulder backfat, the 6th and 7th ribsbackfat, dressing percent and muscle color. The Bsh1236I-RFLP genotypes of BTG1gene have the effects on the muscle color and intramuscular fat at different extent(P<0.05). The different genotypes of MvaI-RFLP for BTG2 gene showed significantdifference on the shoulder backfat, muscle color and muscle shear force (P<0.05) andthe different genotypes of MvaI-RFLP for BTG3 have the significant difference onthe muscle shear force (P<0.05).
     10. The promoter sequence region upstream of porcine BTG1 gene wassuccessfully cloned and four recombinant pGL3 vectors were constructed. Wepredicted the structure and probable transcriptional factor sites (TFS) of the promotersequence. The TFS influence cell cycle or myoblast development such as Foreheadfamily, AP-1, SP1, Myod, Pax family were found, which indicated porcine BTG1gene acting important role in muscle fiber development.
     Results in this study suggest that BTG gene family influence significantly onearly skeletal muscle development. Further study on the mechanism of thesecandidate genes associated with skeletal muscle development will contribute toporcine molecular breeding and make help to important meat production.
引文
1.郭榕.抑癌基因Rb-蛋白的功能及其活性研究进展.华北煤炭医学院学报,2006,8(2):177-179
    2.姜运良,李宁,吴常信.“双肌臀”大白猪myostatin基因3’编码区的克隆分析.第10次全国动物遗传育种学术会议论文集.北京:中国农业出版社,1999,161-164
    3.李竹红,刘德培,梁植权.改进的反向PCR技术克隆转移基因的旁侧序列[J].生物化学与生物物理进展,1999,26.600~602.
    4.李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22.57-60
    5.梁彬,邹向阳.细胞周期蛋白依赖性激酶及抑制因子与肿瘤.中国实验诊断学,2006,10:1378-1380.
    6.黄君健,李杰之,林坚,蒋晓山 高朝晖黄翠芬.人端粒酶催化亚基hTERT基因启动子的克隆[J].生物技术通讯,1999,10:167—170.
    7.胡静静,滕丽萍,袁庆新,袁栎,周锦勇,仲燕,刘莉洁,德伟.BTG2基因在大鼠胚胎胰腺不同发育阶段的表达.中国生物工程杂志,2005,25:71-75
    8.叶春,孟荣责,胡先责.BTG-2基因在人胰腺癌中的表达及其与胰腺癌细胞增殖和凋亡的关系.胰腺病学,2005,5:162-165
    9.彭中镇,赵书红,李奎,龚炎长,杨兴柱.猪的数量性状基因及其标记研究进展.国外畜牧科技,1999,26:28-32
    10.邹仲敏,程天民,罗成基,粟永萍,高京生.Advance in myogenesis and its genetic regulation.中国科学基金,2000,3:137—142.
    11. Abramovich C, Yakobson B, Chebath J, Revel M. A protein arginine methyltransferase binds to the intracytoplasimc domain of the IFNAR1 chain in the type 1 interferon receptor. EMBO J, 1997, 16: 260-266.
    12. Adzhubei A A, Adzhubei I A, Krasheninnikov I A, Neidle S. Non-random usage of 'degenerate' codons is related to protein three-dimensional structure. FEBS Lett, 1996, 399: 78-82
    13. Alwine, Kemp, Stark. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA, 1977, 74: 5350-5354
    14. Benezra R, Davis R L, Lassar A, Tapscott S, Thayer M, Lockshon D, Weintraub, H. Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci, 1990, 599: 1-11.
    15. Benton W D, Davis P W. Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science, 1977, 196:180-182
    16. Berk A J, Sharp P A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of SI endonuclease-digested hybrids. Cell, 1977,12: 721-732.
    
    17. Borycki A G, Li J, Jin F, Emerson C P, Epstein J A. Pax3 functions in cell survival and in pax7 regulation. Development, 1999,126: 1665-1674
    
    18. Bradbury A, Possenti R, Shooter E M, Tirone F. Molecular cloning of PC3, a putatively secreted protein whose mRNA is induced by nerve growth factor and depolarization. Proc. Natl Acad Sci USA. 1991, 88: 3353-3357.
    
    19. Braun T, Rudnicki M A, Arnold H H, Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell, 1992, 71:369-382
    
    20. Braun T, Arnold H H. Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle lineages. EMBO J, 1996,15: 310-318
    
    21. Brookes A J. The essence of SNPs. Gene, 1999,234:177-18622. Brunetti A, Goldfine I D. Differential effects of fibroblast growth factor on insulin receptor and muscle specific protein gene expression in BC3H-1 myocytes. Mol Endocrinol, 1990a, 4: 880-885
    
    23. Brunetti A, Goldfine I D. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem, 1990b, 265: 5960-5963
    
    24. Buanne P, Corrent G, Micheli L, Palena A, Lavia P, Spadafora C, Lakshmana M K, Rinaldi A, Banfi S, Quarto M, Bulfone A, Tirone F. Cloning of PC3B, a novel member of the PC3/BTG/TOB family of growth inhibitory genes, highly expressed in the olfactory epithelium. Genomics, 2000, 68: 253-263
    
    25. Busson M, Carazo A, Seyer P, Grandemange S, Casas F, Pessemesse L, Rouault J P, Wrutniak-Cabello C, Cabello G Coactivation of nuclear receptors and myogenic factors induces the major BTG1 influence on muscle differentiation. Oncogene, 2005, 24: 1698-1710.
    
    26. Capone M C, Gorman D M, Ching E P, Zlotnik A. Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J Immunol, 1996,157: 969-973
    
    27. Catala M, Teillet M A, Le Douarin, N M. Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev, 1995, 51: 51-65
    
    28. Catala M, Teillet M A, de Robertis E M, Le Douarin N M. A spinal cord fate map in the avian embryo: while regressing Henson's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Dev. 1996, 122: 2599-2610
    
    29. Casas-Carrillo E, Prill-Adams A, Price S G, Clutter A C, Kirkpatrick B W. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim Genet, 1997, 28: 88-93.
    
    30. Chen C Y, Shyu A B. AU-rich elements: characterization and importance in mRNA degradation. TIBS, 1995,20: 465-470.
    
    31. Christ B, Jacob H J, Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol, 1977,150:171-186
    
    32. Christ B, Jacob M, Jacob H J. On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat Embryol, 1983,166: 87-101
    
    33. Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M. Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics, 2001,159:1151-1162.
    
    34. Cortazzo P, Cervenansky C, Marin M, Reiss C, Ehrlich R, Deana A. Silent mutations affect in vivo protein folding in Escherichia coli. Biochem Biophys Res Commun, 2002, 293: 537-541
    
    35. Cossu G, Kelly R, Tajbakhsh S, Di Donna S, Vivarelli E, Buckingham M. Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development, 1996,122: 429-437
    
    36. Cripps R M, Zhao B, Olson E N. Transcription of the myogenic regulatory gene Mef2 in cardiac, somatic, and visceral muscle cell lineages is regulated by a Tinman-dependent core enhancer. Dev Biol, 1999,215:420-430
    
    37. Davoli R, Fontanesi L, Zambonelli P, Bigi D, Gellin J, Yerle M, Braglia S, Cenci V, Cagnazzo M, Russo V. Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim Genet, 2002, 33: 3-18
    
    38. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadan F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Scerdlov E D, Siebert P D. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996,93: 6025-6030
    
    39. Dwyer C M, Fletcher J M, Stickland N C. Muscle cellularity and postnatal growth in the pig. J Anim Sci, 1993, 71: 3339-3343
    
    40. Eftimie R, Brenner H R, Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA, 1991, 88: 1349-1353.
    
    41. Ewton D Z, Coolican S A, Mohan S, Chernausek S D, Florini J R. Modulation of insulin-like growth factor actions in L6A1 myoblasts by insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5: a dual role for IGFBP-5. J Cell Physiol, 1998, 177: 47-57
    
    42. Fahrenkrug S C, Rohrer G A, Freking B A. A porcine BAC library with tenfold genome coverage: a resource for physical and genetic map integration. Mamm Genome, 2001, 12: 472-474
    
    43. Feldman J L, Stockdale F E. Temporal appearance of satellite cells during myogenesis. Dev Biol, 1992,153: 217-226.
    
    44. Felice T. The Gene PC3T1S21/BTG2, Prototype Member of the PC3/BTG/TOB Family: Regulator in Control of Cell Growth, Differentiation, and DNA Repair? Journal of cellular physiology, 2001,187:155-165.
    
    45. Fiedler I, Rehfeldt C, Ender K, Henning M. Histophysiological features of skeletal muscle and adrenal glands in wild-type and domestic pigs during growth. Arch Anim Breed, 1998,41: 489-496
    
    46. Firulli A B, Olson E N. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet, 1997,13: 364-369
    
    47. Fletcher B S, Lim R W, Varnum B C, Kujubu D A, Koski R A, Hershman H R. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J Biol Chem, 1991,266:14511-14518.
    
    48. Fowler S P, Campion D R, Marks H L, Reagan J O. An analysis of skeletal muscle response to selection for rapid growth in Japanese quail (Coturnix coturnix Japonica). Growth, 1980,44: 235-52
    
    49. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien P J, MacLennan D H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 1991, 253: 448-451
    
    50. Gerard G F, Fox D K, Nathan M, D'Alessio J M. Reverse transcriptase. The use of cloned Moloney murine leukemia virus reverse transcriptase to synthesize DNA from RNA. Mol Biotechnol, 1997,8: 61-77
    
    51. Goidin D, Mamessier A, Staquet M.J, Schmitt D, Berthier-Vergnes O. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem, 2001, 295: 17-21
    
    52. Gossett L A, Kelvin D J, Sternberg E A, Olson E N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol, 1989, 9: 5022-5033.
    
    53. Guchenneux F, Duret L, Callanan M B, Bouhas R, Hayette S, Berthet C, Samarut C, Rimokh R, Birot A M, Wang Q, Magaud J P, Rouault J P. Cloning of the mouse BTG3 gene and definition of a new gene family (the BTG family) involved in the negative control of the cell cycle. Leukemia, 1997, 11: 370-375.
    
    54. Gupta S K, Majumdar S, Bhattacharya T K, Ghosh T C. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochem Biophys Res Commun, 2000, 269: 692-696
    
    55. Halevy O, Novitch B G, Spicer D B, Skapek S X, Rhee J, Hannon G J, Beach D, Lassar A B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science, 1995,267:1018-1021.
    
    56. Hamalainen N, Pette D. Patterns of myosin isoforms in mammalian skeletal muscle fibers. Microsc. Res Tech, 1995, 30: 381-389.
    
    57. Hamilton D N, Ellis M, Miller K D, McKeith F K, Parrett D F. The effect of the Halothane and Rendement Napole genes on carcass and meat quality characteristics of pigs. J Anim Sci, 2000,78: 2862-2867
    
    58. Harbitz I, Kristensen T, Bosnes M, Kran S, Davies W. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615—Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian landrace pigs. Anim Genet, 1992,23: 395-402
    
    59. Hasty P, Bradley A, Morris J H, Edmondson D G, Venuti J M, Olson E N, Klein W H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993,364: 501-506.
    
    60. Holland N D, Zhang S C, Clark M, Panopoulou G, Lehrach H, Holland L Z. Sequence and developmental expression of AmphiTob, an amphioxus homolog of vertebrate Tob in the PC3/BTG1/Tob family of tumor suppressor genes. Dev Dyn, 1997, 210:11-18
    
    61. Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J, Ohsugi M, Onda M, Hirai M, Fujimoto J, Yamamoto T. Tob2, a novel anti-proliferative Tob/BTG1 family member, associates with a component of the CCR4 transcriptional regulatory complex capable of binding cyclin-dependent kinases. Oncogene, 1999,18: 7432-7441.
    
    62. Iwai K, Hirata K, Ishida T, Takeuchi S, Hirase T, Rikitake Y, Kojima Y, Inoue N, Kawashima S, Yokoyama M. An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochemical and Biophysical Research Communications, 2004,316: 628-635.
    
    63. Iwanage k, Sueoka N, Sato A, Sakuragib T, Sakaob Y, Tominagac M. Alteration of expression or phosphorylation status of tob, a novel tumor suppressor gene product is an early event in lung cancer [J ]. Cancer lett, 2003, 202 :71~79
    
    64. Johansson Moller M, Chaudhary R, Hellmen B, Hoyheim B, Chowdhary B, Andersson L. Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast stem cell growth factor receptor. Mammlian Genome, 1996, 7: 822-823
    
    65. Kang D C, LaFrance R, Z Z Su. Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc Natl Acad Sci USA, 1998,95:13788-13793
    
    66. Kenji Iwai, Ken-ichi Hirata, Tatsuro Ishida, Shigeto Takeuchi, Tetsuaki Hirase, Yoshiyuki Rikitake, Yoko Kojima, Nobutaka Inoue, Seinosuke Kawashima, Mitsuhiro Yokoyama. An anti-proliferative gene BTG1 regulates angiogenesis in vitro, Biochemical and Biophysical Research Communications, 2004, 316: 628-635.
    67. Kim C W, Hong Y H, Yun S I, Lee S R, Kim Y H, Kim M S, Chung K H, Jung W Y, Kwon E J, Hwang S S, Park D H, Cho K K, Lee J G, Kim B W, Kim J W, Kang Y S, Yeo J S, Chang K T. Use of microsatellite markers to detect quantitative trait loci in Yorkshire pigs. J Reprod Dev, 2006,52: 229-237.
    
    68. Kimchi-Sarfaty C, Oh J M, Kim I W, Sauna Z E, Calcagno A M, Ambudkar S V, Gottesman M M. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science, 2007,315: 525-528
    
    69. Knott S A, Marklund L, Haley C S, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics, 1998,149:1069-1080.
    
    70. Komar A A, Lesnik T, Reiss C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett, 1999,462: 387-391
    
    71. Lassar A B, Buskin J N, Lockshon D, Davis R L, Apone S, Hauschka S D, Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell, 1989,58: 823-831.
    
    72. Lassar A B, Davis R L, Wright W E, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell, 1991, 66: 305-315.
    
    73. Lassar A, Munsterberg A. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr Opin Cell Biol, 1994,6: 432-442.
    
    74. Lattanzi L, Salvatori G, Coletta M, Sonnino C, Cusella De Angelis M G, Gioglio L, Murry C E, Kelly R, Ferrari G, Molinaro M, Crescenzi M, Mavilio F, Cossu G High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J Clin Invest, 1998, 101: 2119-2128.
    
    75. Lee Y M, Park T, Schulz R A, Kim Y. Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem, 1997, 272: 17531-17541.
    
    76. Lefaucheur L, Edom F, Ecolan P, Butler- Browne G S. Pattern of muscle fiber type formation in the pig. Dev. Dyn, 1995, 203: 27-41.
    
    77. Lemercier C, To R Q, Carrasco R A, Konieczny S F. The basic helix-loop-helix transcription factor Mistl functions as a transcriptional repressor of myoD. Embo J, 1998, 17:1412-1422.
    
    78. Le Roy P, Naveau J, Elsen J M, Sellier P. Evidence for a new major gene influencing meat quality in pigs. Genet Res, 1990, 55: 33-40
    
    79. Liang P, Pardee A B. Diferential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971
    80. Lin M H, Nguyen H T, Dybala C, Storti R V. Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression. Proc Natl Acad Sci USA, 1996,93: 4623-4628.
    
    81. Lin Q, Schwarz J, Bucana C, Olson E N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science, 1997, 276:1404-1407.
    
    82. Lin W J, Gary J D, Yang M C, Clarke S, Herschman H R. The mammalian immediateearly TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J Biol Chem, 1996,271:15034-15044
    
    83. Lisitsyn N, Wigler M. Cloning the difference between two complex genomes. Science, 1993, 259:946-951
    
    84. Lu J, Webb R, Richardson J A, Olson E N. MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci USA, 1999, 96:552-557.
    
    85. Lyons G E, Buckingham M E. Developmental regulation of myogenesis in the mouse. Semin Dev Biol, 1992,3: 243-253
    
    86. Lyons G E, Moore R, Yahara O, Buckingham M E, Walsh F S. Expression of NCAM isoforms during skeletal myogenesis in the mouse embryo. Dev Dyn, 1992,194: 94-104.
    
    87. Marchal S, Cassar-Malek I, Magaud J P, Rouault J P, Wrutniak C, Cabello G, Stimulation of avian myoblast differentiation by triiodothyronine: possible involvement of the cAMP pathway. Exp Cell Res, 1995,220:1-10.
    
    88. Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, Onda M, Yoshida Y, Nishiyama A, Yama- moto T. Tob, a novel protein that interacts with pl85erbB2, is associated with anti-proliferative activity. Oncogene, 1996,12: 705-713.
    
    89. Matsuda S, Rouault J, Magaud J, Berthet C. In search of a function for the Tis21/PC3/BTG1/TOB family. FEBS Lett, 2001,497: 67-72.
    
    90. McLennan I S. Neurogenic and myogenic regulation of skeletal muscle formation: A critical re-evaluation. Prog Neurobiol, 1994, 44:119-140.
    
    91. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J. IMpRH server: an RH mapping server available on the web. Bioinformatics, 2000, 16: 558-559.
    
    92. Milan D, Bidanel J P, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol, 2002, 34: 705-728.
    
    93. Milan D, Jeon J T, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom, K.Reinsch N, Gellin J, Kalm E, Roy P L, Chardon P, Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 2000, 5469, 288: 1248-1251
    
    94. Montagnoli A, Guardavaccaro D, Starace G, Tirone F. Overexpression of the nerve growth factor-inducing PC3 immediate early gene is associated with growth inhibition. Cell Growth Differ, 1996,7:1327-1336
    
    95. Murre C, McCaw P S, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989, 56: 777-783.
    
    96. Murre C, McCaw P S, Vaessin H. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence, Cell, 1989,58: 537-544
    
    97. Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 1993, 364:532-535.
    
    98. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell, 1978,15: 855-864.99. Nei M. Molecular Evolutionary Genetics. New York : Columbia University Press, 1987, 168-178
    
    100. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet, 1999,21: 155-156.
    
    101. Nissen P M, Jorgensen, P F, Oksbjerg N. Within-litter variation in muscle fiber characteristics, pig performance, and meat quality traits. J Anim Sci, 2004, 82: 414-421
    
    102. Nofziger D, Miyamoto A, Lyons K M, Weinmaster G Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development, 1999, 126: 1689-1702.
    
    103. O'Farrell P. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250: 4007-4021
    
    104. Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor IGF system. Domest Anim Endocrinol, 2004,27: 219-40.
    
    105. O'Neill M J, Sinclair A H. Isolation of Rare transcriptions by representational difference analysis. Nucleic Acids Research, 1997, 2513: 2681-2682
    
    106. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell, 1997, 91: 639-648.
    
    107. Panepinto L M, Phillips R W. The Yucatan miniature pig: characterization and utilization in biomedical research. Lab Anim Sci, 1986, 364: 344-347
    
    108. Picard B, Lefaucheur L, Berri C, Duclos M J. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev, 2002, 42: 415-431.
    
    109. Ponsuksili S, Wimmers K, Schellander K. Application of differential display RT-PCR to identify porcine liver ESTs. Gene, 2001,280: 75-85.
    
    110. Ponsuksili S, Chomdej S, Murani E, Blaser U, Schreinemachers H J, Schellander K, Wimmers K. SNP detection and genetic mapping of porcine genes encoding enzymes in hepatic metabolic pathways and evaluation of linkage with carcass traits. Anim Genet, 2005,36: 477-483.
    
    111. Pownall M E, Emerson C P. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol, 1992,151: 67-79
    
    112. Quintanilla R, Milan D, Bidanel J P. A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations. Genet Sel Evol, 2002,34:193-210.
    
    113. Raburn D J, Hamil K G, Tsuruta J K O'Brien, D A. Hall, S H. Stage-specific expression of B cell translocation gene 1 in rat testis. Endocrinology, 1996, 136: 5769-5777
    
    114. Rachael L N, Robert W W, Raymond L R. Eukaryotic DNA fragments which act as promoters for a plasmid gene. Nature, 1979,277: 324-325.
    
    115. Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, 2000,66:177-188
    
    116. Reiner G. Heinricy L, Muller E, Geldermann H, Dzapo V. Indications of associations of the porcine FOS proto-oncogene with skeletal muscle fibre traits. Anim Genet, 2002, 331:49-55
    
    117. Rodier A, Marchal-Victorion S, Rochard P, Casas F, Cassar-Malek I, Rouault J P, Magaud J P, Mason D Y, Wrutniak C, Cabello G BTG1: A Triiodothyronine Target Involved in the Myogenic Influence of the Hormone. Exp Cell Res, 1999, 249: 337-348.
    
    118. Rodier A, Rochard C, Berthet J P, Rouault F, Casas L, Daury M, Busson J P, Magaud C, Wrutniak-Cabello, Cabello G. Identification of functional domains involved in BTG1 cell localization. Oncogene, 2001, 20: 2691-27.
    
    119. Rohrer G A, Alexander L J, Keele J W, Smith T P, Beattie C W. A microsatellite linkage map of the porcine gemone. Genetics, 1994,135:231-245.
    
    120. Rohrer G A, Ford J J, Wise T H, Vallet J L. Christenson RK.Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J Anim Sci, 1999, 77: 1385-1391.
    
    121. Rothschild B M. Quality of care of musculoskeletal conditions, Rheumatology Oxford, 2003, 42: 703-704.
    
    122. Rouault J P, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, Garoccio M, Germain D, Samarut J, Magaud J P. BTG1, a member of a new family of antiproliferative genes. EMBO J, 1992, 11: 1663-1670.
    
    123. Rouault J P, Falette N, Guehenneux F Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud J P, Ozturk M, Samarut C, Puisieux A. Identification of BTG2, an antiprolifcrativc p53-dependent component of the DNA damage cellular response pathwayl. Nat Genct, 1996, 14: 482-486
    
    124. Rudnicki M A, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays, 1995,17: 203-209.
    
    125. Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D,Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P Y, Mardis E R, Yeh R T, et al. A map of human genome sequence variation containing 1.42 million SNP. Nature, 2001,409: 928-933
    
    126. Sachs D H. The pig as a potential xenograft donor. Vet Immunol Immunopathol, 1994, 43:185-191
    
    127. Schmittgen T D, Zakrajsek B A. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods, 2000,46: 69-81
    
    128. Schoenwolf G C, Garcia-Martinez V, Dias M S. Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn, 1992,193: 235-248.
    
    129. Schutkowski M, Drewello M, Wollner S, Jakob M, Reimer U, Scherer G, Schierhorn A, Fischer G Extended binding sites of cyclophilin as revealed by the interaction with HIV-1 Gag polyprotein derived oligopeptides. FEBS Lett, 1996,394: 289-294
    
    130. Selleck M A, Stern C D. Fate mapping and cell lineage analysis of Henson's node in the chick embryo. Dev, 1991,112: 615-626.
    
    131. Seo M S, Lee M S, Lim I K. Expression of rat BTG3 gene, Rbtg3, is regulated by redox changes. Gene, 1999,240:165-173.
    
    132. Shaw G, Kamen R. A conserved AU sequence from the 3'-untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell, 1986, 46: 659-667.
    
    133. Siemion I Z, Siemion P J. The informational context of the third base in amino acid codons. Biosystems, 1994,33: 139-148
    
    134. Snider L, Thirlwell H, Miller J R, Moon R T, Groudine M, Tapscott S J. Inhibition of Tcf3 binding by I-mfa domain proteins. Mol Cell Biol, 2001, 21, 1866-1873.
    
    135. Spicer D B, Rhee J, Cheung W L, Lassar A B. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science, 1996, 272: 1476-1480.
    
    136. Stal P, Eriksson P O, Schiaffino S, Butler- Browne G S, Thornell L E. Differences in myosin composition between human oro-facial, masticatory and limb muscles: enzyme, immunohisto and biochemical studies. J Muscle Res Cell Motil, 1994, 15: 517-534.
    
    137. Stockdale F E, Nikovits W, Christ B. Molecular and cellular biology of avian somite development. Dev Dyn, 2000, 219: 304-321.
    
    138. Swatland H J. Muscle growth in the fetal and nSoussi-Yanicostas, N, L'ontogenese musculaire, 1991. de l'induction mesodermique a la formation du sarcomere. Bull. Inst. Pasteur. 89,255-295.
    
    139. Syvanen AC. Accessing genetic variation: genotyping single nucieotide poiymorphisms. Nat Rev Genet, 2001,2: 930-942
    
    140. Taillon-Miller P, Z Gu, Q Li, Hillier L, Kwok P Y. Overlapping genomic sequences: A treasure trove of single nucieotide polymorphisms. Genome Res, 1998, 8: 748-754
    
    141. Tam P P Tan S S. The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development, 1992,115: 703-715.
    
    142. Tam P P, Trainor P A. Specification and segmentation of the paraxial mesoderm. Anat Embryol Berl, 1994,189: 275-305.
    
    143. Tepas M F, Soumillion A, Harders F L, Verburg F J, Vandenbosch T J, Galesloot P, Meuwissen T H. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J Anim Sci, 1999,77: 2352-2356
    
    144. Tepas M F, Verburg F J, Gerritsen C L, Degreef K H. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J Anim Sci, 2000,7: 69-77
    
    145. Thayer M J, Tapscott S J, Davis R L, Wright W E, Lassar A B. Weintraub H. Positive autoregulation of the myogenic determination gene MyoD1. Cell, 1989, 58: 241-248
    
    146. Velculescu V E, Zhang L, Vogelstein B, Kinzler K W. Serial analysis of gene expression. Science, 1995,270:484-487
    
    147. Venuti J M, Morris J H, Vivian J L, Olson E N, Klein W H. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol, 1995, 128:563-576.
    
    148. Walbert J. Bakker, Montserrat Blazquez-Domingo, Andrea Kolbus, Janey Besooyen, Peter Steinlein, Hartmut Beug, Paul J. Coffer, Bob Lowenberg.Marieke von Lindern and Tharnar B. van Dijk. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1, The Journal of Cell Biology, 2004, 164: 175-184.
    
    149. Walsh K, Perlman H. Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev, 1997, 7: 597-602.
    
    150. Walters E H, Stickland N C, Loughna P T. The expression of the myogenic regulatory factors in denervated and normal muscles of different phenotypes. J Muscle Res Cell Motil, 2000, 21: 647-653.
    
    151. Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N, Kilburn D, et al. Large-scale identification, mapping and genotyping of single nucieotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082
    152. Wasinger V C, Cordwell S J, Cerpa-poljak A, et al. Progress with gene product mapping of the Mollicutes: Mycoplasoma genitalium. Electrophoresis, 1995,16:1090-1094
    
    153. Wasserman W W, Fickett J W. Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol, 1998, 278: 167-181.
    
    154. Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein H J, Ender K. Growth- and breed-related changes of muscle fiber characteristics in cattle. J Anim Sci, 2000, 78: 1485-1496.
    
    155. Yamamoto M, Wakatsuki T, Hada A. Use of serial analysis of gene expression SAGE technology. J Immunol Methods, 2001, 250: 45-60
    
    156. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet, 1998, 82: 182-188.
    
    157. Yoshida Y, Matsuda S, Ikematsu N, Kawamura-Tsuzuku J, Inazawa J, Umemori H, Yamamoto T. ANA, a novel member of Tob/BTGl family, is expressed in the ventricular zone of the developing central nervous system. Oncogene, 1998,16: 2687-2693
    
    158. Yu T P, Tuggle C K, Schmitz C B, Rothschild M F. Association of PITl polymorphisms with growth and carcass traits in pigs. J Anim Sci, 1995,73: 1282-1288.
    
    159. Yue G, Russo R, Davoli I, Sternstein C, Brunsch D, Schroffelova A, Stratil G, Moser H, Bartenschlager G, Reiner H. Linkage and QTL mapping for Sus scrofa chromosome 13. J Anim Breed Genet, 2003,120:103-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700