Apocynin及促红细胞生成素对小鼠胰岛素抵抗的治疗及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,糖尿病(diabetes)正成为全球范围流行的疾病。2型糖尿病(type2diabetes)是糖尿病中最主要的类型,多由于机体产生胰岛素相对不足或由于机体细胞对胰岛素反应性下降,且2型糖尿病常见于肥胖(obesity)个体。近年来,肥胖的发生率越来越高,而肥胖的一个重要特征是胰岛素抵抗(insulin resistance),后者恰是2型糖尿病的主要发生机理。胰岛素抵抗是指机体需要较之正常状态更多的胰岛素才能产生与正常状态同等生物学效应的一种病理状态。
     越来越多来自动物以及临床研究的证据表明,炎症(inflammation)反应与胰岛素抵抗有着密切联系。在啮齿类动物的肥胖模型中已经证明,肿瘤坏死因子(tumor necrosis factor, TNF)-α这一前炎症因子在肥胖导致的胰岛素抵抗中起着极其重要的作用。现在的观点认为,脂肪是产生炎症相关细胞因子及其他生物活性物质的场所。除TNF-a之外,这些细胞因子还包括白介素(interleukin, IL)-6,瘦素(leptin),血清淀粉样蛋白A (serum amyloid A, SAA),抵抗素(resistin),单核细胞趋化蛋白(monocyte chemoattractant protein, MCP)-1,血浆纤溶酶原激活物抑制剂(plasminogen activator inhibitor)-1,血管紧张肽原(angiotensinogen),内脂素(visfatin),视黄醇结合蛋白(retinol-binding protein)-4等等。此外,随着细胞内炎症信号通路方面的研究,对于胰岛素抵抗产生机制的认识也越来越清楚。现有的研究表明,c-JNK的N末端激酶(c-JUN N-terminal kinase, JNK)以及核因子-κ B (nuclear factor-κ B, NF-κ B)信号通路在胰岛素抵抗发生中起着极其重要的作用。
     除了炎症,活性氧自由基(reactive oxygen species, ROS)水平的上升是胰岛素抵抗发生诸多因素中的重要因素之一,主要的实验证据有:1)在体外培养的3T3-L1脂肪细胞中,高剂量的过氧化氢或者其他可导致ROS产生的物质处理后可引起胰岛素抵抗;2)在肥胖个体或实验动物研究中发现氧化应激(oxidative stress)的指标均明显升高。研究还发现,在高脂饮食(high-fat diet, HFD)喂养的小鼠中,ROS产生相关的基因在胰岛素抵抗或者肥胖出现之前就已经开始上调。此外,多项临床研究还发现胰岛素抵抗或糖尿病患者经抗氧化剂治疗后,机体的胰岛素敏感性增加。
     Apocynin (4-hydroxy-3-methoxy-acetophenone)是药用植物Himalayan herb Picrorhiza kurrooa Royle提取物的组成成分,具有烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)氧化酶的特异性抑制作用,因而作为一种抗氧化剂被广泛用于多项研究之中。除了抗氧化作用之外,apocynin还被发现具有抗炎的作用,它可抑制自发性高血压大鼠中NF-κB的激活,下调TNF-α在冠状动脉中的表达,在静脉内皮细胞中降低TNF-α所致的血管细胞间粘附分子(vascular cell adhesion molecule, VCAM)-1的表达,抑制多形核粒细胞(polymorphonuclear granulocyte)的趋化,减少小鼠气管内过氧亚硝基阴离子,减轻人关节软骨中的炎症介导的软骨破坏,并且降低人单核细胞中环加氧酶(cyclooxygenase, COX)-2的表达。但是,apocynin在胰岛素抵抗中的治疗作用及其机制还没有被系统的研究。本研究主要目的之一是观察apocynin对高脂诱导胰岛素抵抗小鼠的治疗效果,并探讨其与炎症抑制和氧化损伤拮抗相关的治疗机制。
     促红细胞生成素(Erythropoietin, EPO)是肾脏产生的一种造血生长因子,上世纪被用于临床疾病的治疗。后续的临床应用研究发现,EPO除了具有促进机体造血功能之外,还呈现抗炎、抗氧化、抗凋亡等作用。临床上发现,在伴有或不伴有糖尿病终末期肾衰(end-stage renal disease, ESRD)的透析治疗患者,采用EPO治疗后胰岛素抵抗有所减轻,但相关机制尚未阐明。本研究在观察分析Apocynin、EPO胰岛素抵抗治疗作用的同时,将深入探讨这两种药物针对胰岛素抵抗的治疗机制。
     第一部分Apocynin的抗氧化作用对高脂小鼠胰岛素抵抗的影响
     这部分主要研究apocynin对高脂饮食导致的胰岛素抵抗小鼠的氧化应激和抗氧化酶的影响。C57BL/6J小鼠经12周高脂饮食喂养后,呈现明显的胰岛素抵抗特征。再此基础上给予apocynin (2.4g/L,饮水中)治疗5周。结果显示apocynin治疗可明显改善高脂小鼠的高血糖、高胰岛素血症以及高脂血症。同时腹腔注射糖耐量实验(intraperitoneal glucose tolerance test, IPGTT)以及胰岛素抵抗的动态模型评估(homeostasis model assessment of insulin resistance, HOMA-IR)均显示高脂小鼠经apocynin治疗后其胰岛素敏感性增高。与未治疗组相比,apocynin治疗组的血清丙二醛(malondialdehyde, MDA)明显降低而血清过氧化物歧化酶(superoxide dismutase, SOD)明显增高,提示apocynin可抑制系统的氧化应激。同样,在肝脏中MDA的水平也在apocynin治疗后明显降低,而与抗氧化系统(antioxidative defense system)相关的SOD、谷胱甘肽过氧化物酶(glutathione-peroxidase, GSHpx)均升高。与此对应,肝脏内谷胱甘肽(glutathione, GSH)含量则减少。此外,我们还意外的发现肝脏过氧化氢酶(catalase, CAT)在apocynin治疗后明显降低,这可能是apocynin治疗后肝脏内过氧化氢以及氧化应激减少的佐证。这些结果揭示了apocynin可以在高脂小鼠中通过减轻机体细胞的氧化应激来缓解胰岛素抵抗。
     第二部分Apocynin在高脂小鼠中通过抑制炎症而改善胰岛素抵抗
     这一部分主要研究apocynin对高脂小鼠导致的胰岛素抵抗模型中炎症方面的影响。经12周高脂饮食喂养后,有明显胰岛素抵抗表征的C57BL/6J小鼠进行apocynin治疗实验(2.4g/L,加入饮用水中,持续治疗5周)。结果显示空腹血糖、胰岛素耐量以及糖耐量实验均显示了高脂小鼠胰岛素敏感性的改善。血清内炎症因子TNF-α、IL-6以及Leptin的水平在apocynin治疗组均明显降低。肝脏TNF-α、IL-6、MCP-1以及脂肪组织内TNF-α、IL-6、MCP-1和瘦素的基因表达在apocynin治疗后也明显降低。更重要的是,肝脏内转录因子NF-κB的活性在apocymn治疗后被明显抑制。上述结果表明,apocynin在高脂小鼠导致的胰岛素抵抗模型中可减少循环血液、肝脏以及脂肪组织内的炎症因子,可能与apocynin减轻高脂小鼠胰岛素抵抗的机制有关。
     第三部分EPO的抗炎和抗氧化作用对高脂小鼠胰岛素抵抗的影响
     越来越多的研究发现EPO除了具有促进红细胞生成的作用之外,还有其他多种生物学功能。最近研究发现EPO可以减轻胰岛素抵抗,但是其确切机制尚未阐明。在本部分研究中,高脂导致的胰岛素抵抗小鼠根据不同的EPO治疗剂量以及时程分为4个大组。结果发现,EPO减轻胰岛素抵抗的作用可在2周、5周、以及7周治疗组中体现。在对其治疗机制的研究中,我们分析了EPO对胰岛素抵抗小鼠的胰岛素通路、脂质代谢、氧化应激以及炎症等方面的影响。结果发现:1)EPO可明显升高肝脏AKT的活性,而AKT是胰岛素通路中的关键因子;2)EPO可降低肝脏固醇调节元件结合蛋白-1c (sterol regulatory element binding protein isoform, SREBP1-c)、脂肪酸合酶(fatty acid synthase, FAS)的表达,降低脂肪组织内SREBP1-c的表达,增加脂肪组织脂蛋白酶(lipoprotein lipase, LPL)的表达;3)EPO可明显增高肝脏SOD. Cu-Zn SOD. GSH. GPx的水平,降低MDA;4) EPO可降低肝脏以及脂肪组织内炎症相关基因的表达,同时降低血清TNF-α、IL-6以及leptin的水平。EPO还抑制了肝脏内JNK1/2以及NF-κB的活性。我们的工作还发现,低剂量、长程的EPO治疗并不引起血红细胞的升高。总之,本研究在动物模型中证明了EPO可以通过改善胰岛素通路、脂质代谢、氧化应激,降低炎症水平等生物学效应,从而改善胰岛素抵抗。因此,EPO是胰岛素抵抗乃至糖尿病治疗有潜在应用前景的药物之一。
The prevalence of diabetes is reaching epidemic expansion worldwide. Type2diabetes is the most common form of diabetes. In type2diabetes, either the body does not produce enough insulin or the cells ignore the insulin. Obesity is commonly associated with type2diabetes. The prevalence of obesity has increased dramatically in recent years. Insulin resistance is a key feature of obesity and is a main mechanism of type2diabetes. Insulin resistance is defined as a state that requires more insulin to obtain the biological effects achieved by a lower amount of insulin in the normal state.
     Increasing evidence from human studies and animal researches has established correlative as well as causative links between inflammation and insulin resistance. The proinflammatory cytokine tumor necrosisi factor (TNF)-a has been demonstrated to mediate insulin resistance as a result of obesity in many rodent obesity models. The concept of fat as a site for the production of cytokines and other bioactive substances quickly extended beyond TNF-a to include IL (interleukin)-6, leptin, serum amyloid A (SAA), resistin, monocyte chemoattractant protein-1(MCP-1), plasminogen activator inhibitor-1(PAI-1), angiotensinogen, visfatin, retinol-binding protein-4, and others. The investigations that focused on intracellular pathways activated by inflammation, instead of individual cytokines, have helped to restructure the framework for thinking about insulin resistance. It has been demonstrated that c-JUN N-terminal kinase (JNK) and nuclear factor-KB (NF-κB) pathway play the crucial roles in the insulin resistance.
     Besides inflammation, reactive oxygen species (ROS) production is one of many factors that have been suggested to play a role in the development of insulin resistance, based on the following evidence:(1) high doses of hydrogen peroxide and reagents that accumulate ROS can induce insulin resistance in3T3-L1adipocytes, and (2) increased markers of oxidative stress were observed in obese humans and rodents. It has been also demonstrated that the up-regulation of genes responsible for ROS production occurs in both the liver and adipose tissue before the onset of insulin resistance and obesity in mice fed with high-fat diet (HFD). Otherwise, several clinical trials have demonstrated improvement of insulin sensitivity in insulin-resistant and diabetic patients treated with antioxidants.
     Apocynin (4-hydroxy-3-methoxy-acetophenone) is a constituent of the Himalayan herb Picrorhiza kurrooa Royle (Scrophulariaceae) which is regarded as an inhibitor of nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) and was widely used as an antioxidant in research. In addition, apocynin also exhibits anti-inflammatory effects in many previous studies. Apocynin has been demonstrated to suppress NF-κB activation in spontaneously hypertensive rats, down-regulate TNF-a protein expression in coronary arteries, decrease vascular cell adhesion molecule-1(VCAM-1) induction by TNF-a in vein endothelial cells, reduce polymorphonuclear granulocyte chemotaxis, inhibited peroxynitrite in airway lumen in mice, attenuated inflammation-mediated cartilage destructionm activity in human articular cartilage, and reduced cyclooxygenase (COX)-2expression in human monocytes. The therapeutic effect of apocynin on insulin resistance has not been explored. Hence, one main goal of this study is to determine that if apocynin could ameliate insulin resistance in HFD mice through its effects on the oxidative stress and inflammation.
     Erythropoietin (EPO), a kind of hematopoietic growth factor from kidney, was first used for clinic treatment in last century. In the latter utility and research, EPO was found to have many other effects like inhibiting inflammation and oxidative stress, anti-apoptosis. Interestingly, it was found that EPO could attenuate insulin resistance in diabetic or non-diabetic end-stage renal disease (ESRD) patients who were taking haemodialysis therapy, while the underlying mechanisms are still unclear. The third part of this thesis is aimed to explore the effects of EPO treatment on insulin resistance in mice.
     Part Ⅰ Anti-oxidative effect of apocynin on insulin resistance in HFD mice
     This part examined the effects of apocynin on oxidative stress and antioxidant enzymes in HFD induced obese mice. After12weeks on HFD, the C57BL/6J mice that clearly exhibited insulin resistance received apocynin (2.4g/L) in their drinking water for5weeks. The results show that apocynin treatment significantly ameliorated hyperglycemia, hyperinsulemia and dyslipidemia in HFD mice. Also, the intraperitoneal glucose tolerance test (IPGTT) and homeostasis model assessment of insulin resistance (HOMA-IR) indicate significant improvement of insulin sensitivity in HFD fed mice after apocynin treatment. Compared to the HFD control mice, serum malondialdehyde (MDA) was significantly lower and serum superoxide dismutase (SOD) was significantly higher in apocynin treated HFD mice, which revealed apocynin suppressed systemic oxidative stress. In the liver, apocynin was found to significantly reduce the level of MDA. Accordingly, apocynin treatment strengthened the antioxidative defense system with an increased activity of SOD, glutathione-peroxidase (GSHpx) and content of reduced glutathione (GSH). We also found that hepatic catalase (CAT).activity significantly decreased after apocynin treatment which may reflect apocynin significantly reduced hydrogen peroxide and oxidative stress in the liver. These results suggest that apocynin may ameliorate insulin resistance through reducing systemic and hepatic oxidative stress in HFD fed mice.
     Part Ⅱ Apocynin improves insulin resistance through suppressing inflammation in HFD induced obese mice
     In this part, we investigated the effects of apocynin on inflammation in HFD induced insulin resistance mice model. After12weeks of HFD fed, the C57BL/6J mice that exhibited insulin resistance then received5weeks of apocynin (2.4g/L, in water). Following apocynin treatment, fasting glucose, insulin and glucose tolerance test showed a significant improvement in insulin sensitivity in HFD fed mice. We demonstrated that serum levels of TNF-α, IL-6and leptin were remarkably reduced with apocynin treatment. We also found that mRNA expression of TNF-α, IL-6, MCP-1in the liver and mRNA expression of TNF-a, IL-6, MCP-1, leptin in adipose tissue were suppressed by apocynin. Furthermore, the activity of transcription factor NF-κB in the liver was significantly suppressed with apocynin treatment. These results suggest that apocynin may reduce inflammatory factors in the blood, liver and adipose tissue, resulting in amelioration of insulin resistance in HFD fed mice.
     Part III EPO attenuates insulin resistance through multiple protective functions in HFD fed mice
     Increasing data indicated that erythropoietin (EPO) has multiple biological functions besides erythropoiesis. A few studies recently showed that EPO could ameliorate insulin resistance, but the related mechanisms are still obscure which were explored in the present study. The high-fat diet (HFD)-induced insulin resistance mice were divided into groups with different EPO dosages and treatment durations. The results showed that EPO exhibited its protective effects on insulin resistance in2-,5-and7-week EPO treatment groups. To demonstrating the undergoing mechanisms, the status of insulin signaling, lipid metabolism, oxidative stress and inflammation in the HFD mice with or without EPO treatment were assessed. Our data showed that:1) EPO could increase activity of AKT in the liver which is critical in insulin signaling;2) In the liver, EPO reduced the expression of sterol regulatory element binding protein isoform (SREBP)-1c and fatty acid synthase (FAS), which both related to the lipid metabolism. At also, EPO decreased SREBP-1c and increased lipoprotein lipase (LPL) expression levels in the adipose tissue;3) with regard to the effects of EPO on oxidative stress, increased superoxide dismutase (SOD), Cu-Zn SOD, glutathione (GSH), glutathione peroxidase(GPx), and decreased malondialdehyde (MDA) were detected in the liver;4) EPO decreased serum tumor necrosis factor(TNF)-a, interleukin(IL)-6and leptin. The gene expressions of inflammatory factors in the liver and adipose tissue were also reduced after EPO treatment. Moreover, EPO suppressed the activations of hepatic JNK1/2and nuclear factor-KB (NF-κB). In addition, our results demonstrated that EPO treatment with low-dose and long-term did not cause the side-effect of high hematocrit. In conclusion, our results found that EPO could ameliorate insulin resistance through its protective functions on effecting insulin signaling, lipid metabolism, oxidative stress and inflammation. Thus, EPO could be a promising treatment for insulin resistance, and even for type2diabetes.
引文
[1]. Lusis AJ. Atherosclerosis. Nature 2000;407:233-241.
    [2].Ridker PM, Hennekens CH, Buring JE and Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836-843.
    [3].Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M and Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-1761.
    [4].Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, Kerksiek A, van Kruchten R, Maeda N, Staels B, van Bilsen M, Shiri-Sverdlov R and Hofker MH. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008;48:474-486.
    [5].Stewart LK, Soileau JL, Ribnicky D, Wang ZQ, Raskin I, Poulev A, Majewski M, Cefalu WT and Gettys TW. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 2008;57:S39-46.
    [6].Shih CC, Lin CH and Lin WL. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 2008;81:134-143.
    [7].Shertzer HG, Schneider SN, Kendig EL, Clegg DJ, D'Alessio DA and Genter MB. Acetaminophen normalizes glucose homeostasis in mouse models for diabetes. Biochem Pharmacol 2008;75:1402-1410.
    [8].Lee YM, Choi JS, Kim MH, Jung MH, Lee YS and Song J. Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets. Nutrition 2006;22:956-964.
    [9].Hamelet J, Demuth K, Paul JL, Delabar JM and Janel N. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol 2007;46:151-159.
    [10].Yang RL, Li W, Shi YH and Le GW. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress:a microarray analysis. Nutrition 2008;24:582-588.
    [11].Raval J, Lyman S, Nitta T, Mohuczy D, Lemasters JJ, Kim JS and Behrns KE. Basal reactive oxygen species determine the susceptibility to apoptosis in cirrhotic hepatocytes. Free Radic Biol Med 2006;41:1645-1654.
    [12].Kohen R and Nyska A. Oxidation of biological systems:oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002;30:620-650.
    [13].Goldstein BJ, Mahadev K and Wu X. Redox paradox:insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 2005; 54:311-321.
    [14].Liu PG, He SQ, Zhang YH and Wu J. Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice. World J Gastroenterol 2008; 14:2832-2837.
    [15].Lu LS, Wu CC, Hung LM, Chiang MT, Lin CT, Lin CW and Su MJ. Apocynin alleviated hepatic oxidative burden and reduced liver injury in hypercholesterolaemia. Liver Int 2007; 27:529-537.
    [16].Abdelrahman M, Mazzon E, Bauer M, Bauer I, Delbosc S, Cristol JP, Patel NS, Cuzzocrea S and Thiemermann C. Inhibitors of NADPH oxidase reduce the organ injury in hemorrhagic shock. Shock 2005; 23:107-114.
    [17].Zhou R, Hu DY, Liu LM and Zhou XW. Protective effects of apocynin on "two-hit" injury induced by hemorrhagic shock and lipopolysaccharide. Acta Pharmacol Sin 2002;23:1023-1028.
    [18].Lomnitski L, Foley JE, Grossman S, Shaul VB, Maronpot RR, Moomaw CR, Carbonatto M and Nyska A. Effects of apocynin and natural antioxidant from spinach on inducible nitric oxide synthase and cyclooxygenase-2 induction in lipopolysaccharide-induced hepatic injury in rat. Pharmacol Toxicol 2000;87:18-25.
    [19].Becker S, Reinehr R, Graf D, vom Dahl S and Haussinger D. Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem 2007;19:89-98.
    [20].Hosker JP, Matthews DR, Rudenski AS, Burnett MA, Darling P, Bown EG and Turner RC. Continuous infusion of glucose with model assessment:measurement of insulin resistance and beta-cell function in man. Diabetologia 1985;28:401-411.
    [21].Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Achagiotis C, Tome D, Jais JP and Junien C. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity (Silver Spring) 2007; 15:1996-2005.
    [22].Yokota T, Kinugawa S, Hirabayashi K, Matsushima S, Inoue N, Ohta Y, Hamaguchi S, Sobirin MA, Ono T, Suga T, Kuroda S, Tanaka S, Terasaki F, Okita K and Tsutsui H. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2009;297:H1069-1077.
    [23].Du J and Li JM. Apocynin treatment reduces high-fat diet-induced obesity and hypertension but has no significant effect on hyperglycemia. Heart 2010; 96:e19
    [24].Fridlyand LE and Philipson LH. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 2006;8:136-145.
    [25].Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM, Clark SE, Morris EM, Szary N, Manrique C and Stump CS. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 2006;281:35137-35146.
    [26].Poli G and Schaur RJ.4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000;50:315-321.
    [27].Mateos R, Lecumberri E, Ramos S, Goya L and Bravo L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Analyt Technol Biomed Life Sci 2005;827:76-82.
    [28].Kim JA, Wei Y and Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008;102:401-414.
    [29].Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R and Watada H. Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-lalpha in hepatic insulin resistance. Diabetes 2008;57:2083-2091.
    [30].Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E and Scalbert A. A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 2008;7:2388-2398.
    [31].Hui-guo L, Kui L, Yan-ning Z and Yong-jian X. Apocynin attenuate spatial learning deficits and oxidative responses to intermittent hypoxia. Sleep Med 11:205-212.
    [32].Costa CA, Amaral TA, Carvalho LC, Ognibene DT, da Silva AF, Moss MB, Valenca SS, de Moura RS and Resende AC. Antioxidant treatment with tempol and apocynin prevents endothelial dysfunction and development of renovascular hypertension. Am J Hypertens 2009;22:1242-1249.
    [33].Nam SM, Lee MY, Koh JH, Park JH, Shin JY, Shin YG, Koh SB, Lee EY and Chung CH. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats:the role of reducing oxidative stress in its protective property. Diabetes Res Clin Pract 2009;83:176-182.
    [34].Jun J, Savransky V, Nanayakkara A, Bevans S, Li J, Smith PL and Polotsky VY. Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol 2008;295:R1274-1281.
    [35].Liu YH, You Y, Song T, Wu SJ and Liu LY. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril. J Cardiovasc Pharmacol 2007;50:155-161.
    [36].Saiki R, Okazaki M, Iwai S, Kumai T, Kobayashi S and Oguchi K. Effects of pioglitazone on increases in visceral fat accumulation and oxidative stress in spontaneously hypertensive hyperlipidemic rats fed a high-fat diet and sucrose solution. J Pharmacol Sci 2007;105:157-167.
    [37].Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A and Vaziri ND. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 2006;55:928-934.
    [38].Hong L, Xun M and Wutong W. Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 2007;59:575-582.
    [39].Ackerman Z, Oron-Herman M, Rosenthal T, Pappo O, Link G, Sela BA and Grozovski M. Effects of amlodipine, captopril, and bezafibrate on oxidative milieu in rats with fatty liver. Dig Dis Sci 2008;53:777-784.
    [40].Pan M, Song YL, Xu JM and Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res 2006;41:79-84.
    [41].Cederbaum AI, Wu D, Mari M and Bai J. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic Biol Med 2001;31:1539-1543.
    [1]. P. T. James, N. Rigby and R. Leach.The obesity epidemic, metabolic syndrome and future prevention strategies, European Journal of Cardiovascular Prevention & Rehabilitation.2004.11(1):3-8.
    [2]. S. E. Shoelson, J. Lee and A. B. Goldfine, Inflammation and insulin resistance. Journal of Clinical Investigation.2006.116(7):1793-1801.
    [3]. H. Tilg and A. R. Moschen, Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends in Endocrinology & Metabolism,2008,19(10):371-379.
    [4]. H. Xu, G T. Barnes, Q. Yang, et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation,2003,112(12):1821-1830.
    [5]. J. H. Kang, T. Goto, I. S. Han, et al., Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring),2010,18(4):780-787.
    [6]. H. Tilg and A. R. Moschen, Inflammatory mechanisms in the regulation of insulin resistance. Molecular Medicine,2008,14(3-4):222-231.
    [7]. I. A. Leclercq, G C. Farrell, C. Sempoux, A. dela Pena and Y. Horsmans, Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. Journal of Hepatology,2004,41(6):926-934.
    [8]. D. Cai, M. Yuan, D. F. Frantz, et al., "Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB," Nature Medicine, 2005,11(2):183-190.
    [9]. M. C. Arkan, A. L. Hevener, F. R. Greten, et al., IKK-beta links inflammation to obesity-induced insulin resistance. Nature Medicine,2005,11(2):191-198.
    [10]. G. S. Hotamisligil, N. S. Shargill and B. M. Spiegelman, Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science,1993,259(5091):87-91.
    [11]. N. Kamei, K. Tobe, R. Suzuki, et al., Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. Journal of Biological Chemistry,2006,281(36):26602-26614.
    [12]. J. P. Bastard, M. Maachi, J. T. Van Nhieu, et al., Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. Journal of Clinical Endocrinology and Metabolism,2002,87(5): 2084-2089.
    [13]. S. N. Murthy, C. V. Desouza, N. W. Bost, et al., Effects of salsalate therapy on recovery from vascular injury in female zucker Fatty rats. Diabetes,59(12): 3240-3246.
    [14]. E. Hopps, D. Noto, G. Caimi and M. R. Averna, A novel component of the metabolic syndrome:the oxidative stress. Nutrition, Metabolism & Cardiovascular Diseases.2010,20(1):72-77.
    [15]. E. Ho and T. M. Bray, Antioxidants, NFkappaB activation, and diabetogenesis. Proceedings of the Society for Experimental Biology and Medicine,1999, 222(3):205-213.
    [16]. G M. Campo, A. Avenoso, S. Campo, et al., The antioxidant activity of chondroitin-4-sulphate, in carbon tetrachloride-induced acute hepatitis in mice, involves NF-kappaB and caspase activation. British Journal of Pharmacology, 2008,155(6):945-956.
    [17]. H. Shapiro, M. Ashkenazi, N. Weizman, et al., Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. Journal of Gastroenterology and Hepatology,2006,21(2):358-366.
    [18]. R. Bruck, H. Aeed, Y. Avni, et al., Melatonin inhibits nuclear factor kappa B activation and oxidative stress and protects against thioacetamide induced liver damage in rats. Journal of Hepatology,2004,40(1):86-93.
    [19]. M. Kamigaki, S. Sakaue, I. Tsujino, et al., Oxidative stress provokes atherogenic changes in adipokine gene expression in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications,2006,339(2):624-632.
    [20]. Y. Uchida, K. Ohba, T. Yoshioka, et al. Cellular carbonyl stress enhances the expression of plasminogen activator inhibitor-1 in rat white adipocytes via reactive oxygen species-dependent pathway. Journal of Biological Chemistry, 2004,279(6):4075-4083.
    [21]. T. Sakurai, K. Kitadate, H. Nishioka, et al., Oligomerized grape seed polyphenols attenuate inflammatory changes due to antioxidative properties in coculture of adipocytes and macrophages. Journal of Nutritional Biochemistry, 2010,21(1):47-54.
    [22]. T. Sakurai, H. Nishioka, H. Fujii, et al., Antioxidative effects of a new lychee fruit-derived polyphenol mixture, oligonol, converted into a low-molecular form in adipocytes. Bioscience, Biotechnology, and Biochemistry,2008,72(2): 463-476.
    [23]. S. Hougee, A. Hartog, A. Sanders, et al., Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. European Journal of Pharmacology,2006,531(1-3),264-269.
    [24]. D. Viackova, M. Pekarova, T. Crhak, et al., Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin, Immunobiology, [Epub ahead of print]
    [25]. O. Pechanova, L. Jendekova and S. Vrankova, Effect of chronic apocynin treatment on nitric oxide and reactive oxygen species production in borderline and spontaneous hypertension, pharmacological reports,2009,61(1):116-122.
    [26]. A. Picchi, X. Gao, S. Belmadani, et al.,Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circulation Research,2006,99(1):69-77.
    [27]. C. Weber, W. Erl, A. Pietsch, et al., Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arteriosclerosis and Thrombosis,1994,14(10):1665-1673.
    [28]. A. A. Muller, S. A. Reiter, K. G Heider and H. Wagner, Plant-derived acetophenones with antiasthmatic and anti-inflammatory properties:inhibitory effects on chemotaxis, right angle light scatter and actin polymerization of polymorphonuclear granulocytes. Planta Medica,1999,65(7),590-594.
    [29]. R. B. Muijsers, I. van Ark, G Folkerts, et al., Apocynin and 1400 W prevents airway hyperresponsiveness during allergic reactions in mice. British Journal of Pharmacology,2001,134(2),434-440.
    [30]. F. P. Lafeber, C. J. Beukelman, E. van den Worm, et al., Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology,1999,38(11),1088-1093.
    [31]. S. S. Barbieri, V. Cavalca, S. Eligini, et al., Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biology and Medicine,2004, 37(2):156-165.
    [32]. K. Winiarska, M. Grabowski and M. K. Rogacki, Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin. Chemico-Biological Interactions, [Epub ahead of print].
    [33]. S. Furukawa, T. Fujita, M. Shimabukuro, et al., Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation, 2004,114(12):1752-1761.
    [34]. V. Thallas-Bonke, S. R. Thorpe, M. T. Coughlan, et al., Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes, 2008,57(2):460-469.
    [35]. J. Edlund, A. Fasching, P. Liss, P. Hansell and F. Palm, The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney. Diabetes/Metabolism Research and Reviews, 2010,26(5):349-356.
    [36]. M. Olukman, C. E. Orhan, F. G. Celenk and S. Ulker, Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. Journal of Diabetes and Its Complications,2010,24(6):415-423.
    [37]. T. Hayashi, P. A. Juliet, H. Kano-Hayashi, et al., NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and-independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction. Diabetes, Obesity and Metabolism,2005,7(4):334-343.
    [38]. T. Yokota, S. Kinugawa, K. Hirabayashi, et al., Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. American Journal of Physiology-Heart and Circulatory Physiology, 2009,297(3), H1069-1077.
    [39]. S. Schenk, M. Saberi and J. M. Olefsky, Insulin sensitivity:modulation by nutrients and inflammation. Journal of Clinical Investigation,2008,118(9): 2992-3002.
    [40]. K. E. Wellen and G. S. Hotamisligil, Inflammation, stress, and diabetes. Journal of Clinical Investigation,2005,115(5):1111-1119.
    [41]. H. P. Kopp, C. W. Kopp, A. Festa, et al., Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arteriosclerosis, Thrombosis, and Vascular Biology,2003,23(6): 1042-1047.
    [42]. R. V. Considine, M. K. Sinha, M. L. Heiman, et al., Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine,1996,334(5),292-295.
    [43]. H. Tilg and A. R. Moschen, Adipocytokines:mediators linking adipose tissue, inflammation and immunity. Nature reviews immunology,2006,6(10),772-783.
    [44]. B. Antuna-Puente, B. Feve, S. Fellahi and J. P. Bastard, Adipokines:the missing link between insulin resistance and obesity. Diabetes and Metabolism, 2008,34(1):2-11.
    [45]. N. Luo, J. Liu, B. H. Chung, et al., Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes,2010,59(4):791-799.
    [46]. S. Akira, T. Taga and T. Kishimoto, Interleukin-6 in biology and medicine, Advances in Immunology,1993,54:1-78.
    [47]. B. A. Hart and J. M. Simons, Metabolic activation of phenols by stimulated neutrophils:a concept for a selective type of anti-inflammatory drug. Biotechnology Therapeutics,1992,3(3-4):119-135.
    [48]. A. Pandey, K. Kour, S. Bani, et al., Amelioration of adjuvant induced arthritis by apocynin. Phytotherapy Research,2009,23(10):1462-1468.
    [49]. A. K. Roy, Transcription factors and aging. Molecular Medicine, 1997,3(8),:496-504.
    [50]. R. Schreck, P. Rieber and P. A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO Journal,1991,10(8),2247-2258.
    [51]. R. A. Clark and A. J. Valente, Nuclear factor kappa B activation by NADPH oxidases. Mechanisms of Ageing and Development,2004,125(10-11):799-810.
    [52]. S. S. Brar, T. P. Kennedy, A. B. Sturrock, et al., NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. American journal of physiology-Lung Cellular and Molecular Physiology,2002, 282(4):L782-795.
    [1]. James, P.T., N. Rigby, and R. Leach, The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil,2004.11(1):3-8.
    [2]. Morino, K., et al., Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes,2008.57(10): 2644-51.
    [3].Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes,2007.56(7):1761-72.
    [4]. Burger, D., A. Xenocostas, and Q.P. Feng, Molecular basis of cardioprotection by erythropoietin. Curr Mol Pharmacol,2009.2(1):56-69.
    [5]. Khedr, E., et al., Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients. Hemodial Int,2009.13(3):340-6.
    [6]. Tuzcu, A., et al., The comparison of insulin sensitivity in non-diabetic hemodialysis patients treated with and without recombinant human erythropoietin. Horm Metab Res,2004.36(10):716-20.
    [7]. Katz, O., et al., Erythropoietin treatment leads to reduced blood glucose levels and body mass:insights from murine models. J Endocrinol.205(1):87-95.
    [8]. Hojman, P., et al., Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS One,2009. 4(6):e5894.
    [9]. Calvillo, L., et al., Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A,2003.100(8):4802-6.
    [10]. Sharples, E.J., C. Thiemermann, and M.M. Yaqoob, Mechanisms of disease: Cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. Nat Clin Pract Nephrol,2005.1(2):87-97.
    [11]. Patel, N.S., et al., Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int,2004. 66(3):983-9.
    [12]. Sakanaka, M., et al., In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A,1998.95(8):4635-40.
    [13]. Wen, T.C., et al., Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res, 2002.67(6):795-803.
    [14]. Wu, W.T., et al., Low-dose erythropoietin aggravates endotoxin-induced organ damage in conscious rats. Cytokine.49(2):155-62.
    [15]. Kleemann, R., et al., Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One.5(1):e8817.
    [16]. Wueest, S., et al., Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia, 2009.52(3):541-6.
    [17]. Choi, J.S., et al., Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol Nutr Food Res.54(7): 1004-13.
    [18]. He, T.C., et al., Association of the p85 regulatory subunit of phosphatidylinositol 3-kinase with an essential erythropoietin receptor subdomain. Blood,1993.82(12):3530-8.
    [19]. Fisher, J.W., Erythropoietin:physiology and pharmacology update. Exp Biol Med (Maywood),2003.228(1):1-14.
    [20]. Summers, S.A., et al., Signaling pathways mediating insulin-stimulated glucose transport. Ann N Y Acad Sci,1999.892:169-86.
    [21]. Wang, Q., et al., Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia.53(6): 1227-38.
    [22]. Li, Y., et al., Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res,2006.71(4): 684-94.
    [23]. Pallet, N., et al., Antiapoptotic properties of recombinant human erythropoietin protects against tubular cyclosporine toxicity. Pharmacol Res.61(1):71-5.
    [24]. Perseghin, G., Viewpoints on the way to a consensus session:where does insulin resistance start? The liver. Diabetes Care,2009.32 Suppl 2:S164-7.
    [25]. Seppala-Lindroos, A., et al., Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab,2002.87(7): 3023-8.
    [26]. Holt, H.B., et al., Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia,2006.49(1): 141-8.
    [27]. Shimomura, I., et al., Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell,2000.6(1):77-86.
    [28]. Najjar, S.M., et al., Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab,2005.2(1):43-53.
    [29]. Shimano, H., et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform la in livers of transgenic mice and in cultured cells. J Clin Invest,1997.99(5):846-54.
    [30]. Ahmed, M.H. and C.D. Byrne, Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today,2007.12(17-18):740-7.
    [31]. Puigserver, P., et al., Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-lalpha interaction. Nature,2003.423(6939):550-5.
    [32]. Kim, J.A., Y. Wei, and J.R. Sowers, Role of mitochondrial dysfunction in insulin resistance. Circ Res,2008.102(4):401-14.
    [33]. Nicolai, A., et al., Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension,2009. 53(3):508-15.
    [34]. Iozzo, P., Viewpoints on the way to the consensus session:where does insulin resistance start? The adipose tissue. Diabetes Care,2009.32 Suppl 2:S168-73.
    [35]. Zechner, R., et al., The role of lipoprotein lipase in adipose tissue development and metabolism, Int J Obes Relat Metab Disord,2000.24 Suppl 4:p. S53-6.
    [36]. Houstis, N., E.D. Rosen, and E.S. Lander, Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature,2006.440(7086): 944-8.
    [37]. Lin, Y., et al., The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem,2005.280(6):4617-26.
    [38]. Imoto, K., et al., Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes,2006.55(5):1197-204.
    [39]. Paolisso, G. and D. Giugliano, Oxidative stress and insulin action:is there a relationship? Diabetologia,1996.39(3):357-63.
    [40]. Ceriello, A., Oxidative stress and glycemic regulation. Metabolism,2000. 49(2 Suppl 1):27-9.
    [41]. Kunitomo, M., et al., Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome. J Pharmacol Sci,2008. 107(2):128-37.
    [42]. Fernandez-Checa, J.C. and N. Kaplowitz, Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol,2005. 204(3):263-73.
    [43]. Hussein, A.E., et al., Effects of combined erythropoietin and epidermal growth factor on renal ischaemia/reperfusion injury:a randomized experimental controlled study. BJU Int.
    [44]. Sayan, H., et al., Pharmacological preconditioning with erythropoietin reduces ischemia-reperfusion injury in the small intestine of rats. Life Sci,2009. 84(11-12):364-71.
    [45]. Yilmaz, S., et al., The protective effect of erythropoietin on ischaemia/reperfusion injury of liver. HPB (Oxford),2004.6(3):169-73.
    [46]. Bakan, V., et al., The protective effect of erythropoietin on the acute phase of corrosive esophageal burns in a rat model. Pediatr Surg Int.26(2):195-201.
    [47]. Abdelrahman, M., et al., Erythropoietin attenuates the tissue injury associated with hemorrhagic shock and myocardial ischemia. Shock,2004.22(1):63-9.
    [48]. Agarwal, R., J.L. Davis, and L. Smith, Serum albumin is strongly associated with erythropoietin sensitivity in hemodialysis patients. Clin J Am Soc Nephrol, 2008.3(1):98-104.
    [49]. Kumashiro, N., et al., Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1 alpha in hepatic insulin resistance. Diabetes,2008.57(8):2083-91.
    [50]. Schenk, S., M. Saberi, and J.M. Olefsky, Insulin sensitivity:modulation by nutrients and inflammation. J Clin Invest,2008.118(9):2992-3002.
    [51]. Wellen, K.E. and G.S. Hotamisligil, Inflammation, stress, and diabetes. J Clin Invest,2005.115(5):1111-9.
    [52]. Arkan, M.C., et al., IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med,2005.11(2):191-8.
    [53]. Yuan, M., et al., Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science,2001.293(5535):1673-7.
    [54]. Arafa, H.M., Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit,2005.11(7):BR228-234.
    [55]. Tilg, H. and A.R. Moschen, Inflammatory mechanisms in the regulation of insulin resistance. Mol Med,2008.14(3-4):222-31.
    [56]. Hirosumi, J., et al., A central role for JNK in obesity and insulin resistance. Nature,2002.420(6913):333-6.
    [57]. Maffei, M., et al., Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA,1995.92(15):6957-60.
    [58]. Kralisch, S., et al., Adipokines in diabetes and cardiovascular diseases. Minerva Endocrinol,2007.32(3):161-71.
    [59]. Friedman, J.M. and J.L. Halaas, Leptin and the regulation of body weight in mammals. Nature,1998.395(6704):763-70.
    [60]. Erbayraktar, S., et al., Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A,2003.100(11): 6741-6.
    [61]. Leist, M., et al., Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science,2004.305(5681):239-42.
    [1]. Yang WY, Lu JM, Weng JP, Jia WP, et al. Prevalence of Diabetes among Men and Women in China. The New England Journal of Medicine.2010; 24;362(25):2433.
    [2]. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity:modulation by nutrients and inflammation. J. Clin. Investig.2008; 118:2992-3002
    [3]. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature,2001; 414:799-806.
    [4]. Uhlar M, Alexander S. Serum amyloid A, the major vertebrate acute2phase react2 ant Clarissa. J B iochem,1999,265:501-523.
    [5]. Xu Y, Yamada T, Satoh T, et al. Measurement of serum amyloid Al (SAA1), amajor isotype of acute phase SAA. Clin Chem Lab Med,2006,44 (1): 59-63.
    [6]. Urieli-Shoval S,Meek RL, Hanson RH, et al. Human serum amyloid A genes are exp ressed in monocyte/macrophage cell lines. Am J Pathol,1994,145: 650-660.
    [7]. Sjoholm K, Palming J et al. A Microarray Search for Genes Predominantly Expressed in Human Omental Adipocytes:Adipose Tissue as a Major Production Site of Serum Amyloid A. J Clin Endocrinol Metab. 2005;90(4):2233-9
    [8]. Poitou C, Viguerie N et al. Serum amyloid A:production by human white adipocyte and regulation by obesity and nutrition. Diabetologia. 2005;48(3):519-28.
    [9]. Thorn CF, Lu ZY, Whitehead AS. Regulation of the human acute phase serum amyloid A genes by tumour necrosis factor-alpha, interleukin-6 and glucocorticoids in hepatic and epithelial cell lines. Scand J Immunol,2004.59: 152-158.
    [10]. Hagihara K, Nishikawa T, Isobe T, et al. IL-6 plays a critical role in the synergistic induction of human serum amyloid A (SAA) gene when stimulated with proinflammatory cytokines as analyzed with an SAA isoform real-time quantitative RT-PCR assay system. Biochem Biophys Res Commun 2004. 314:363-369.
    [11]. Yang RZ, Lee MJ et al. Acute-Phase Serum Amyloid A:An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications. PLOS MED,2006;Jun;3(6):e287
    [12]. Furlaneto CJ, Campa A. A novel function of serum amyloid A:a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-lbeta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun, 2000,268:405-408.
    [13]. Hatanaka E, Furlaneto CJ, Ribeiro FP, et al. Serum amyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett,2004.91:33-37.
    [14]. Kraja AT, Province MA, Arnett D, Wagenknecht L, Tang W, Hopkins PN, et al. Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster? Nutr Metab (Lond).2007;4:28.
    [15]. Panagiotakos DB, Pitsavos C, Yannakoulia M, Chrysohoou C, Stefanadis C. The implication of obesity and central fat on markers of chronic inflammation: the ATTICA study. Atherosclerosis.2005;183:308-15.
    [16]. Verdaet D, Dendale P, De Bacquer D, Delanghe J, Block P, De Backer G. Association between leisure time physical activity and markers of chronic inflammation related to coronary heart disease. Atherosclerosis. 2004; 176:303-10.
    [17]. O'Brien KD, Brehm BJ, Seeley RJ, Bean J, Wener MH, Daniels S, et al. Diet-induced weight loss is associated with decreases in plasma serum amyloid A and C-reactive protein independent of dietary macronutrient composition in obese subjects. J Clin Endocrinol Metab.2005;90:2244-9.
    [18]. Helmersson J, Vessby B, Larsson A, Basu S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation.2004; 109:1729-34.
    [19]. Ley SH, Harris SB, Connelly PW, Mamakeesick M, Gittelsohn J, Hegele RA, et al. Adipokines and incident type 2 diabetes in an aboriginal Canadian corrected population:the Sandy Lake Health and Diabetes Project. Diabetes Care.2008;31:1410-5.
    [20]. Cheng N, He R, Tian J, Ye PP, Ye RD. Cutting edge:TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol.2008 Jul 1181(1):22-6.
    [21]. Ghanim H, Dhindsa S, Aljada A, Chaudhuri A, Viswanathan P, Dandona P. Low-dose rosiglitazone exerts an anti-inflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics. J Clin Endocrinol Metab.2006;91:3553-8.
    [22]. Scheja L, Heese B, Zitzer H, Michael MD, Siesky AM, Pospisil H, et al. Acute-phase serum amyloid A as a marker of insulin resistance in mice. Exp Diabetes Res.2008:230837.
    [23]. He R, Sang H, Ye RD. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood,2003,101:1572-1581.
    [24]. Jijon HB, Madsen KL, Serum amyloid A activates NF-kappaB and proinflammatory gene expression in human and murine intestinal epithelial cells. Eur J Immunol.2005; 35(3):718-26.
    [25]. Cai DS, Yuan MS. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med.2005; 11(2):183-190.
    [26]. Ye XY, Xue YM, Sha JP, Li CZ, Zhen ZJ. Serum amyloid A attenuates cellular insulin sensitivity by increasing JNK activity in 3T3-L1 adipocytes. J Endocrinol Invest.2009;32 (7):568-75.
    [27]. Walder K, Kantham L, McMillan JS, et al. Tanis:A link between type 2 diabetes and inflammation? Diabetes,2002,51:1859-1866.
    [28]. Liu J, Tang H, Niu L, Xu Y. Upregulation of Tanis mRNA expression in the liver is associated with insulin resistance in rats. Tohoku J Exp Med.2009 Dec;219(4):307-10.
    [29]. Gao Y, Walder K, Sunderland T, et al. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. Diabetes,2003, 52:929-934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700