胃癌及区域淋巴结中ICAM-1、LFA-1及FAK表达与临床生物学行为关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:胃癌是消化道最常见的恶性肿瘤之一,具有发病率高、死亡率高、预后差等特点,虽然目前对胃癌采取了多手段的综合治疗,且生存率较以往有所提高,但仍无突破性进展。侵袭和转移是影响肿瘤患者治疗效果和预后的重要因素,控制肿瘤细胞的侵袭和转移仍是当今肿瘤研究中的重要课题。
     细胞间粘附分子-l(ICAM-l)是一种非常重要的细胞粘附分子,它可以调节细胞与细胞、细胞与细胞外基质间的相互结合,被认为在肿瘤的局部浸润和远处转移中起着重要的作用。ICAM-l能辅助稳定T细胞受体介导的抗原呈递细胞(APC)和淋巴细胞的结合,是重要的细胞免疫协同激活因子。
     粘着斑激酶(FAK)是一种非受体蛋白酪氨酸激酶,分布在细胞粘着斑部位。近年来研究表明,在多种肿瘤组织中都有FAK蛋白表达的显著增加,且FAK蛋白的表达与肿瘤的发生及生物学行为有一定的相关性。
     本研究通过检测ICAM-1、LFA-1及FAK在胃癌组织、正常胃粘膜及淋巴结中的表达情况及T细胞亚群和NK细胞的表达情况,研究ICAM-1、LFA-1及FAK对胃癌发生和发展的影响及其与胃癌临床生物学行为之间的内在联系,为进一步探讨肿瘤免疫耐受的机制及改进肿瘤的免疫治疗和基因治疗的方法提供更多的理论依据。
     方法:选取河北医科大学第四医院外三科2007年7月~2007年11月胃癌手术切除标本共60例。采集胃癌组织标本、正常胃粘膜(距肿瘤边缘>5.0cm)及淋巴结。采用流式细胞仪测定癌组织和外周血中T淋巴细胞亚群和NK细胞的活性。用免疫组织化学方法(S-P法)检测胃癌组织、正常胃粘膜及淋巴结中ICAM-1、LFA-1及FAK蛋白表达情况。
     结果:
     1胃癌患者外周血及癌组织中T淋巴细胞亚群及NK分布情况
     胃癌组织中CD4+、CD8~+、NK细胞计数和CD4/CD8比值分别为37.44±8.90、36.40±8.86、9.28±3.37和0.51±0.11,外周血中的含量分别为52.01±9.55、20.66±5.19、19.94±6.28、1.57±0.49;外周血中CD4+、NK细胞计数和CD4+/CD8~+比值均显著高于胃癌组织(P<0.05),CD8~+细胞反之(P<0.05)。
     2胃癌组织中ICAM-1、LFA-1及FAK的表达与其临床生物学行为的关系
     2.1胃癌组织中ICAM-1的表达与其临床生物学行为的关系ICAM-1在胃癌组织的阳性表达率为53.33%,低于正常胃粘膜中的阳性表达率76.67%,二者比较差异有显著性(P<0.05);在分化程度中低分化组的阳性表达率为43.59%,低于高/中分化组的阳性表达率71.43%,二者比较差异有显著性(P<0.05);在有淋巴结转移组的阳性表达率为43.90%,低于无淋巴结转移组的阳性表达率73.68%,二者比较差异有显著性(P<0.05);在临床分期中III-IV期组的阳性表达率为45.46%,低于I-II期组的阳性表达率75.00%,二者比较差异有显著性(P<0.05);ICAM-1表达与患者性别、年龄、肿瘤部位、肿瘤大小、侵润深度及Borrmann分型均无关(P>0.05)。
     2.2胃癌组织中LFA-1的表达与其临床生物学行为的关系
     LFA-1在胃癌组织中的阳性表达率为43.33%,低于正常胃粘膜中的阳性表达率61.67%,二者比较差异有显著性(P<0.05)。低分化组的阳性表达率为33.33%,低于高/中分化组的阳性表达率61.90%,二者比较差异有显著性(P<0.05);在有淋巴结转移组的阳性表达率为29.27%,低于无淋巴结转移组的阳性表达率73.68%,二者比较差异有显著性(P<0.05);在临床分期中III-IV期组的阳性表达率为31.82%,低于I-II期组的阳性表达率75.00%,二者比较差异有显著性(P<0.05);LFA-1表达与患者性别、年龄、肿瘤部位、肿瘤大小、侵润深度及Borrmann分型均无关(P>0.05)。
     2.3胃癌组织中FAK的表达与其临床生物学行为的关系
     FAK在胃癌组织中的阳性表达率为70.00%,高于正常胃粘膜中的阳性表达率5.00%,二者比较差异有显著性(P<0.05);低分化组的阳性表达率为79.49%,高于高/中分化组的阳性表达率52.38%,二者比较差异有显著性(P<0.05);在浸润深度中T3+T4组的阳性表达率为77.08%,高于T1+T2组的阳性表达率41.67%,二者比较差异有显著性(P<0.05);在临床分期中III-IV期组的阳性表达率为79.55%,高于I-II期组的阳性表达率43.75%,二者比较差异有显著性(P<0.05);在有淋巴结转移组的阳性表达率为80.49%,高于无淋巴结转移组的阳性表达率47.37%,二者比较有显著性(P<0.05);FAK表达与患者性别、年龄、肿瘤部位、肿瘤大小及Borrmann分型均无关(P>0.05)。
     3胃癌区域淋巴结中ICAM-1、LFA-1及FAK的表达情况
     胃癌区域淋巴结中,有转移淋巴结中FAK的阳性表达率为90.63%,高于无转移淋巴结中的阳性表达率35.71%,二者比较差异有显著性(P<0.05);有转移淋巴结中ICAM-1的阳性表达率为40.63%,无转移淋巴结中的阳性表达率50.00%,二者比较无显著性差异(P>0.05);有转移淋巴结中LFA-1的阳性表达率为34.38%,无转移淋巴结中的阳性表达率42.86%,二者比较无显著性差异(P>0.05)。
     4胃癌组织中ICAM-1、LFA-1与CD4~+/CD8~+、NK细胞表达的相关性分析
     癌组织中ICAM-1与CD4~+/CD8~+、NK细胞的表达呈正相关(rs=0.900、rs=0.815,P<0.05);LFA-1与CD4~+/CD8~+、NK细胞的表达呈正相关(rs=0.954、rs=0.787,P<0.05)。
     5胃癌组织中ICAM-1、LFA-1及FAK表达的相关性分析胃癌组织中ICAM-1与FAK的表达呈明显负相关(rs= -0.387,P<0.01)。LFA-1与FAK的表达无明显相关(rs= -0.240,>0.05)。ICAM-1与LFA-1的表达无明显相关(rs=0.097,P>0.05)。
     结论:1胃癌患者癌组织中的CD4~+、NK细胞计数和CD4~+/CD8~+比值较外周血中的低,而CD8~+显著增高,提示胃癌患者癌组织局部呈现一个免疫低下或抑制状态。
     2胃癌组织中ICAM-1、LFA-1表达降低及FAK表达增高可能是胃癌发生的早期事件。三者表达失衡均与胃癌的分化程度,淋巴结转移,临床病理分期相关,在一定程度上反映了胃癌的进展过程,可作为监测胃癌进程的重要指标。
     3胃癌组织中ICAM-1及LFA-1蛋白的表达率明显低于正常胃组织,并随着肿瘤恶性程度的增高而降低,且NK细胞、CD4~+/CD~+8表达与两者表达呈正相关,提示ICAM-1/ LFA-1对T淋巴细胞第二信使的刺激减少,导致T细胞增殖与活化功能不足,不能产生足够的抗肿瘤免疫反应,从而导致胃癌细胞免疫逃逸现象。
     4胃癌组织中FAK与ICAM-1的表达呈明显负相关,说明在胃癌的发生发展过程中FAK抑制了ICAM-1的表达,在一定程度上抑制了机体的免疫功能,促进了胃癌细胞的免疫逃逸作用。
Objective:Gastric cancer is the most common malignant tumor of gastrointestinal tract, with high incidence rate, high death rate and bad prognosis. There is no any significant break through in its treatment, although the gastric cancer has been adopted multi-method therapies and its survival rate has risen. Invasion and metastasis is the most important factor to influence tumor patient’s therapeutic effieacy and prognoses, to control tumor cell’s invasion and metastasis is still an important topic in today’s tumor research.
     Intercellular adhesion molecule-1(ICAM-1) can regulate the adhesion between cells or the cell and extracellular matrix and play important roles in the infiltration and metastasis of the tumor. ICAM-1 is an accessory molecule stabilizing the T-cell receptor-mediated binding between antigen-presenting cells and T lymphocytes,and serves as a cofactor in activation of the cellular immune response.
     FAK is a non-receptor protein tyrosine kinase in cell adhesion lesion. Recent studies have shown that in a variety of tumor tissue have significantly increased expression of FAK, also FAK expression and the biological behavior and the occurrence of certain relevance.
     This study was to detect the expression of ICAM-1, LFA-1, FAK, T lymphocyte subset and NK cell in gastric carcinoma tissues, regional lymph node tissues and normal gastric mucosa. To investigate the relationships between the expression of ICAM-1, LFA-1 and FAK and clinical pathological characteris- tics of gastric cancer, and reveal the possible mechanisms of tumor’s escape from the body surveillance. In order to provide more theoretical evidence for the improvements of immuno- therapy and gene therapy for tumor.
     Methods:In this study, we selected 60 samples of gastric carcinoma, normal gastric mucosa(distance from the edge of tumor >5.0cm)and regional lymph node separately from 60 patients. All patients had gastrectomy in the 4th hospital of Hebei Medical University from July 2007 to November 2007. In this study, we detected the marks of T lymphocyte subsets and NK cells in tumorous tissues and peripheral blood from patients of gastric cancer with Flow Cytometrye. we used S-P immunohistochemical technique to detect the expressions of ICAM-1、LFA-1 and protein FAK in gastric carcinoma tissues, normal gastric mucosa and regional lymph node.
     Results:
     1 Distribution of T cell subgroup and NK cell in gastric cancer and peripheral blood
     The ratio of CD4~+, CD8~+, NK cell and CD4~+/CD8~+ in gastric cancer tissue were 37.44±8.90, 36.40±8.86, 9.28±3.37, 0.51±0.11 respectively; the ratio of CD4~+, CD8~+, NK cell and CD4~+/CD8~+ in peripheral blood were 52.01±9.55, 20.66±5.19, 19.94±6.28, 1.57±0.49 respectively. Their ratio of CD4~+, NK cell and CD4~+/CD8~+ in gastric cancer were lower than them in peripheral blood respectively, the differences were statistically significant(P<0.05). The ratio of CD8~+ T cell were higher in gastric cancer than it in peripheral blood, the differences were statistically significant (P<0.05).
     2 Correlations between the expression of ICAM-1, LFA-1 and FAK in gastric cancer tissues and clinical biological characteristics
     2.1 Correlations of ICAM-1 expression and clinicopathologic parameters of gastric cancer
     The positive rates of ICAM-1 were 53.33% in tissues of gastric carcinoma, which were lower than the rates of 76.67% in normal gastric mucosa, the comparison of the two shows significant difference (P<0.05). The positive rates in poorly differentiated group(43.59%) were significantly lower than well/moderately differentiated group(71.43%; P<0.05) in the degree of differentiation. The positive rates of the group with lymph node metastasis (43.90%) were significantly lower than that without lymph node metastasis (73.68%; P<0.05). In clinical stages, the positive rates in the group of III-IV stage (45.46%) were significantly lower than group of I-II stage (75.00%; P<0.05). The expression of ICAM-1 hadn’t relation with the age, gender, borrmann type, depth of infiltration, and tumor general typing ( P>0.05).
     2.2 Correlations of LFA-1 expression and clinicopathologic parameters of gastric cancer
     The positive rates of LFA-1 were 43.33% in tissues of gastric carcinoma, which were lower than the rates of 61.67% in normal gastric mucosa, the comparison of the two shows significant difference (P<0.05). The positive rates in poorly differentiated group (33.33%) were significantly lower than well/moderately-differentiated group (61.90%; P<0.05) in the degree of differentiation. The positive rates of the group with lymph node metastasis (29.27%) were significantly lower than that without lymph node metastasis (73.68%; P<0.05). In clinical stages, the positive rates in the group of III-IV stage (31.82%) were significantly lower than group of I-II stage (75.00%; P<0.05). The expression of LFA-1 hadn’t relation with the age, gender, borrmann type, depth of infiltration, and tumor general typing (P>0.05).
     2.3 Correlations of FAK expression and clinicopathologic parameters of gastric cancer
     The positive rates of FAK were 70.00% in tissues of gastric carcinoma, which were higher than the rates of 5.00% in normal gastric mucosa, the comparison of the two shows significant difference (P<0.05). The positive rates in poorly differentiated group (79.49%) were significantly higher than well/moderately differentiated group (52.38%, P<0.05) in the degree of differentiation. In the degree of infiltration, the positive rates in the group of T3+T4 (77.08%) were significantly higher than the rate in T1+T2 (41.67%; P<0.05). In clinical stages, the positive rates in the group of III-IV stage (79.55%) were significantly higher than group of I-II stage (43.75%; P<0.05). The positive rates of the group with lymph node metastasis (80.49%) were significantly higher than that without lymph node metastasis (47.37%; P<0.05). The expression of FAK hadn’t relation with the age, gender, borrmann type, and tumor general typing (P>0.05).
     3 Expression of ICAM-1, LFA-1 and FAK in gastric regional lymph node tissues
     In gastric regional lymph node tissues, the expressions of FAK in the group with lymph node metastasis (90.63%) were higher than that without lymph node metastasis (35.71%), the comparison of the two shows significant difference (P<0.05). the expressions of ICAM-1 in the group with lymph node metastasis (40.63%) were lower than that without lymph node metastasis (50.00%), the comparison of the two shows no significant difference (P>0.05); the expressions of LFA-1 in the group with lymph node metastasis (34.38%) were lower than that without lymph node metastasis (42.86%), the comparison of the two shows no significant difference (P>0.05).
     4 Correlations of the expressions of ICAM-1, LFA-1and the T cell subgroup, NK cell in the gastric cancer tissue
     The expression of ICAM-1 in gastric cancer tissue were significantly and positive correlated with the ratio of CD4+/CD8~+ and NK cell(rs=0.900、rs=0.815,P<0.05). The expression of LFA-1 in gastric cancer tissue were significantly and positive correlated with the ratio of CD4+/CD8~+ and NK cell(rs=0.954、rs=0.787,P<0.05)
     5 Correlations of the expressions of ICAM-1, LFA-1 and FAK in the gastric cancer tissue
     A significant negative correlation was observed between the expression of ICAM-1 and FAK in gastric carcinoma tissues (rs = -0.387, P<0.01). The expression of LFA-1 hadn’t relation with the ICAM-1 and FAK in gastric carcinoma tissues (P>0.05).
     Conclusion:1 The local immune function in gastric cancer patient was lower than that in peripheral blood. The rate of CD4+、NK cell and CD4+/CD8~+ in gastric cancer tissue were higher than those in the peripheral blood, but the rate of CD8~+ T cell was higher, the local immune function was low or suppressed.
     2 The expressions of ICAM-1, LFA-1, FAK may be involved into the occurrence and progression of gastric carcinoma. The abnormal expressions of FAK, ICAM-1 and LFA-1 may be one of the earlier of gastric carcinoma. The abnormal expressions of FAK, ICAM-1 and LFA-1 correlates with degree of infiltration, lymph node metastasis and TNM stages of gastric carcinoma, and it reflects the progression of gastric carcinoma in certain degree.
     3 The expression of ICAM-1 and LFA-1 in gastric cancer tissue were significantly and positively correlated with NK cell and CD4~+/CD8, indicating that ICAM-1/LFA-1 was significan- tly correlated with the immune function in the genesis and development of gastric cancer. Gastric cancer can decrease cancer tissue ICAM-1/LFA-1 expression to escape body immune system through some mechanism during its occurring and developing. An important cause of the escape may be the failure of the second messenger stimulus to T-lymphocyte from gastric carcinoma cells.
     4 In gastric carcinoma tissues, the expressions of FAK and ICAM-1 have negative correlation. It shows that the expressions of FAK has inhibited the expressions of ICAM-1, which inhibits the immune function of body in a certain degree, facilitates the immune escape of gastric carcinoma cells.
引文
1 中国抗癌协会.新编常见恶性肿瘤诊治规范胃癌分册.北京医科大学中国协和医科大学联合出版社,1999:5~7
    2 Fromowitz FB, Viola MV, Chao S, et al. Ras p21 expression in the progression of breast cancer. Hum Pathol, 1987, 18:1268~1275
    3 Kuss I, Hathaway B, Ferris RL, et al. Imbalance in absolutecounts of T lymphocyte subsets in patients with head and neckcancer and its relation to disease[J]. Adv- otorhinolaryngol, 2005, 7(62):161-172
    4 宋振川, 李勇, 王力利, 等. 胃癌 癌周淋巴结网膜及腹膜中 T 淋巴细胞亚群和 NK 细胞分布的研究.中国肿瘤临床, 2004, 4(31):232~234
    5 Hershberg RM, Mayer LF. Antigen processing and presentation by intestinal epithelial cells-polarity and complexity. lmmunol Today, 2000, 21(3): 123~128
    6 温江涛, 孙林, 刘海红. 胃癌患者外周血 T 淋巴细胞及NK 细胞检测的临床意义. 江苏大学学报(医学版), 2006, 2(16): 145~147
    7 常保萍, 刘文励, 孙汉英. 淋巴细胞功能相关抗原-1 研究进展.中国血液流变学杂志, 2005, 15(1):168-172
    8 刘菊, 熊枝繁. 肝癌组织中 ICAM-1 的表达和意义[J]. 胃肠病学和肝病学杂志, 2005, 14(5): 515-517
    9 Fujihara T, Swada T, Hiraeawa K, et al. Establishment of Iymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clin Exp Metastasis, 1988, 16 :389-398
    10 Sunami T, Yashiro M, Chung KH. ICAM-1 gene transfection inhibits Iymphnode metastasis by human gastric cancer cells. Jpn J Cancer Res, 2000 Sep:91:925-933
    11 Kohm AP, Miller DS. Role of ICAM-1 and P-selectin expression in the development and effecten function of CD4+CD25+ regulatory T cells. J Autoimmun, 2003, 21(3) 261-271
    12 Nasu K, Mizuno M, Kiso I, et al. Immunohistochemical analysis of intercellular adhesion molecule-1 expression in human gastric adenoma and adenocarcinoma[J]. Virchows, 1997, 430:279
    13 Tomita Y, Nishiyama T, Watanabe H, et al . Expression of intercellularadhesion molecule-l(ICAM-l) on renal-cell cancer: possible significance in host immune responses. Int J Cancer, 1990, 46:101
    14 Shirai A, FurukawaM, Yoshizaki T. Expression of intercellular adhesion molecule (ICAM)-1 in adenoid cystic carcinoma of the head and neck[J]. Laryngoscope, 2003, 113(11): 1955~1960
    15 Asosingh K, Vankerkhove V, Van Riet I, et al. Selective in vivo growth of lymphocyte function-associated antigen-l-me- diated homotypic cell-cell adhesion[J]. Exp Hematol, 2003, 31 (1):48~55
    16 Puig-Kroger A, Sanchez-Elsner T, Ruiz N, et al. RUNX/ AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements[J]. Blood, 2003, 102(9):3252~3261
    17 Ura H, Denno R, Hirata K. Correlation between nm23 protein and several cell adhesion molecules in human gastric carcinoma [J]. Jpn J Cancer Res,1996,87:512
    18 Kim R, Tanabe K, Emi M.Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses[J].Cancer Biol Ther, 2005, 4(9):924 -933
    19 Salomon B, Bluestone JA. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production[J]. Immunol, 1998;161:5138-5142
    20 Schneider GB, Kurago Z, Zaharias R, et al. Elevated focal adhesion kinase expression facilitates oral tumor cell invasion. Cancer, 2002, 95(12):2508-2515
    21 Webb DJ, Donais K, Whitmore LA, et al. FAK-Src signal-ling through paxillin, ERK andMLCK regulates adhesion disassembly[J]. Nat Cell Bio, l 2004, 6(2): 154-16
    22 Payne SL, Hendrix MJ, Kirschmann DA. Lysyl oxidase regulates actin filament formation through the p130(Cas) /Crk/DOCK180 signaling complex [J]. Cell Biochem, 2006, 98(4): 827-837
    23 Duxbury MS, ItoH, ZinnerMJ, et al. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells[J]. Surgery, 2004, 135(5): 555-562
    24 ManoharA, Shome SG, Lamar J, et al. Alpha3 beta1 integrin promotes keratinocyte cell survival through activation of aMEK/ERK signaling pathway[J]. Cell Sci 2004, 117(Pt18): 4043-4054
    25 Hehlgans S, Haase M, Cordes N. Signalling via integrins: Implications for cell survival and anticancer strategies[J]. Biochim Biophys Acta, 2007, 1775(1): 163-180
    26 Rovin JD, Frierson HF Jr, Ledinh W, et al. Expression of focal adhesion kinase in normal and pathologic human Prostate tissues. Prostate, 2002, 53(2):124-132
    27 Sood AK, Coffin JE, Schneider GB, et al. Biological significance of focal adhesion kinase in ovarian cancer:role inmigration and invasion[J]. Am J Pathol, 2004, 165(4): 1087-1095
    28 吴小红, 张建新, 王旭青, 等. 胃癌组织中的 FAK 蛋白的表达及其临床意义.苏州大学学报(医学版), 2007, 27(3)417-419
    29 Miyazaki T, Kato D, Hakajima M,et al. FAK over expression in correlated with tumor invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma [J]. Br J Cancer, 2003, 89(1):140-145
    30 White DE, Kurpios NA, Zuo D, et al. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction[J]. Cancer Cell, 2004, 6(2): 159-170
    31 Wozniak MA, Modzelewska K, Kwong L, et al. Focal adhesion regulation of cell behavior[J]. Biochim Biophys Acta, 2004, 1692(2-3):103-109
    32 胡章颜, 刘文庆, 刘康达. 黏着斑激酶与肿瘤. 基础医学与临床. 2007, 27(10):1177-1180
    33 Yasuda M, Tanaka Y, Tamura M, et al Stimulation of {beta}1 intergrin Down-Regulates. ICAM-1 Expression and ICAM-1 dependent Adhesion of Lung Cancer Cells through Focal Adhesion Kinase. Cancer Res 2001; 61:2022-2030
    1 Ozer G, Altinel M, Kocak B, et al. Potential value of soluble intercel- lular adhesion molecule-1 in the serum of patients with bladder cancer[J]. Urol Int, 2003, 70(3):167-171
    2 常保萍, 刘文励, 孙汉英. 淋巴细胞功能相关抗原-1 研究进展. 中国血液流变学杂志, 2005,15(1):168-172
    3 黄文荣, 王立生. T细胞LFA-1/ICAM-1协同刺激信号的研究进展. 中国实验血液学杂志, J Exp Hematol 2004; 12(4); 533-537
    4 Salomon B, Bluestone JA. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol, 1998; 161:5138-5142
    5 Dubey C, Croft M, Swain SL. Costimulatory requirements of naive CD4+T cells. ICAM-1 or B7-1 can costimulate naive CD4+T cell activation but both are required for optimumresponse. J Immunol, 1995; 155: 45-57
    6 Wang H, Moon EY, Azouz A, et al. SKAP-55 regulates integrin adhesion and formation of T cell-APC conjugates. Nat Immunol. 2003; 4: 366-374
    7 Porter JC, Bracke M, Smith A, et al. Signaling through integrin LFA-1 leads to filamentous actin polymerization and remodeling, resulting in enhanced T cell adhesion. J Immunol, 2002; 168:6330-6335
    8 Sims TN, Dustin ML. The immunological synapse: integrins take the stage. Immunol Rev, 2002; 186:100-117
    9 Ni HT, Deeths MJ, Li W, et al. Signaling pathways activated by leukocyte function-associated Ag-1-dependent costimula- tion. J Immunol, 1999; 162: 5183-5189
    10 Shier P, Ngo K, Fung-Leung WP. Defective CD8+T cell activationand cytolytic function in the absence of LFA-1 cannot be restored byincreased TCR signaling. J Immunol, 1999; 163:4826-4832
    11 Labuda T, Wendt J, Hedlund G, et al. ICAM-1 costimulation induces IL-2 but inhibits IL-10 production in superantigen- activated human CD4+T cells. Immunology, 1998; 94: 496-502
    12 Chen T, Goldstein JS, O′Boyle K, et al. ICAM-1 co-stimulation has differential effects on the activation of CD4+and CD8+T cells. Eur J Immunol, 1999; 29:809-814
    13 Lo CG, Lu TT, Cyster JG. Integrin-dependence of lymphocyteentry into the splenic white pulp[J]. J Exp Med,2003, 197 (3):353-361
    14 Riaz AA, WanMX, Schaefer T, et al. Fundamental and distinct roles of P-selectin and LFA-1 in ischemia/ reperfusion-induced leukocyte-endothelium interacttions in the mouse colon[J]. Ann Surg, 2002, 236(6): 777-784
    15 张海伶, 李红霞. 大肠癌中 ICAM-1 基因的表达及其对预后的影响. 中国现代医药杂志, Jun 2006, Vol 8, No.6
    16 Guo J, Si L, Wang Y. An in situ study on immunos- timulatory molecules in cancer cells within the cervical carcinoma tissues [J]. Chin Med J, 2000, 80(5):342-345
    17 Koutsami MK, Doussis-Anagnostopoulou I, Papavassiliou AG, et al. Genetic and molecular coordinates of neuroendocrine lung tumors, with emphasis on small-cell lung carcinoma [J]. Mol Med, 2002, 8(8):419-436
    18 Patel A, Halliday GM, Cooke BE, et al. Evidence that regression in keratoacanthoma is immunologically mediated: a comparission with squamous cell carcinoma [J]. Br J Dermatol, 1994, 131(6):789-798
    19 李然伟, 于颖, 李健. ICAM-1 表达与膀胱癌生物学行为关系的研究. J. N. BETHUNE UNIV. MED. SCI. 1999 Vol.25 No.5
    20 Shirai A, FurukawaM, Yoshizaki T. Expression of intercell -ular adhesion molecule (ICAM-1) in adenoid cystic carcinoma of the head and neck[J]. Laryngoscope, 2003, 113(11):1955~1960
    21 Asosingh K, Vankerkhove V, Van Riet I, et al. Selective invivo growth of lymphocyte function-associated antigen-l- me-diated homotypic cell-cell adhesion[J]. Exp Hematol, 2003, 31 (1):48~55
    22 Puig-Kroger A, Sanchez-Elsner T, Ruiz N, et al. RUNX/ AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through over lapping regulatory elements[J]. Blood, 2003, 102(9):3252~3261
    23 Wolfram RM, Budinsky AC, Brodowicz T, et al. Defective antigen presentation resulting from impaired expression of costimulatory molecules in breast cancer loantigen-specific clonal anergy [J]. J Exp Med, 1994, 180(5):1665-1673
    24 Sunami T, Yashiro M, Chung KH. ICAM-1 gene transfection inhibits Iymph node metastasis by human gastric cancer cells. Jpn J Cancer Res, 2000 Sep:91:925-933
    25 Kanwar JR, Berg RW, Yang Y, et al. Requirements for ICAM-1 immunogene therapy of lymphoma. Cancer Gene Ther, 2003, 10(6):468-476
    26 Coskun U, Sancak B, Sen I, et al. Serum P-selection soluble vascular cell adhesion molecule-1(sVCAM-1) and soluble intercellular adhesion molecule-1(sICAM-1) levels in bladder carcinoma patientswith different stages[J]. Int Immun- opharmacol, 2006, 6(4):672-677
    27 Hirayama Y, Sakamaki S, Tsuji Y, et al. IgM type multiple myeloma expressing various surface adhesion molecules and demonstrating an aggressive clinical course[J]. Rinsho Ket-sueki, 2003, 44(9):957~961
    28 Harada T, Kawaminami H, Miura NN. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG[J]. J Interf Cytok Res, 2006, 26(4):235-247
    29 Caridad Rosette, Richard Broth, Paul Oeth, et al. Role of ICAM-1 in invasionof human ovarian cancer cells [J].Carcinogenesis, 2005, 26(5):943-950
    30 Nasu K, Narallara H, Etoh Y, et al. Senrum levels of intercellular adhesion molecule-l (ICAM-1) and the expression of ICAM-1 mRNA in uterine cervical cancer. Gynecol Oncol, 1997, 65:304-308
    31 Santarosa M, Favaro D, Quaia M, et al. Expression and release of intercellular adhesion molecule-1 in renal-cancer Patients. Int J Cancer, 1995, 62:271-275
    32 Sprenger A, Schardt C, Rotseh M, et al. Soluble intercellular adhesion molecule-1 in Patients with lung cancer and benign lung diseases. J Cancer Clin Res Oncol, 1997, 123:632-638
    33 Smits H H, De J, Esther C, et al. Intercellular adhesion- molecule-1/LFA-1 ligation favors human Th1 development. Immunol, 2002, 168(4):1710
    34 Meineke V, Moede T, Gilbertz KP, et al. Portein kinase inhibitors modulatetime-dependent effects of UV and ionizing irradiation on ICAM-1 expressionon human hepatoma cells. Int J RadiatBiol. 2002,78(7):577~5831
    35 Kim R, Tanabe K, Emi M.Cancer cell immune escape andtumor progression by exploitation of anti-inflammatory and pro-inflammatory responses[J].Cancer Biol Ther, 2005,4(9):924-933
    36 Perabo F, Sharma S, Gierer R, et al. Circulating intercellular adhesion mol-ecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1) and E-selectin in urological malignancies [J]. Indian J Cancer, 2001, 38(1):1-7
    37 徐楗荧, 李英勇. E-cad 与 ICAM-1 在泌尿生殖系统肿瘤中的研究进展. 国际医药卫生导报, 2007 年第 13 卷第 19 期(半月刊)
    38 ogawa Y, Hirakawa K, Nakata B, et al. Expression of intercellular adhesion molecule-1 in invasive breast cancer reflects low growth potential, negative lymph node involve -ment, and good Prognosis . Clin Cancer Res, 1998, 4:31-36
    39 Aboughalia AH. Elevation of hyaluronidase-1 and soluble intercellular adhesion molecule-1 helps select bladder cancer patients at risk of invasion[J]. Arch Med Res, 2006, 37 (1):109-116
    40 Shin HS, Jung CH, Park HD, et al. The relationship between the serum intercellular adhesion molecule-1 level and the prognosis of the diseasein bladder cancer[J]. Korean J Intern Med, 2004, 19(1):48-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700