光合细菌对水产养殖病害细菌的拮抗功能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从河水、鱼塘底泥等样品中分离到28株紫色非硫光合细菌,分别对其进行鉴定和生理特性研究。试验结果表明,28株分离菌株均属于红假单胞菌属,其中18株为沼泽红假单胞菌(Rps.palustris)、9株为胶质红假单胞菌(Rps.gelatinosa),1株为球形红假单胞菌(Rps.sphaeroides)。通过对紫色非硫光合细菌不同分离株的碳源利用能力、培养条件、脱氢酶活性以及去除养殖水体NH4+-N、NO2-N和COD能力的比较,结果显示不同菌株的生理功能存在较大差异。
    选用从淡水分离的代表菌株球形红假单胞菌PSB-3、胶质红假单胞菌H1和沼泽红假单胞菌H10与实验室保藏菌种荚膜红假单胞菌PSB-2进行拮抗功能研究,测定其抑菌谱与最低抑菌浓度。结果表明,4株紫色非硫光合细菌的代谢产物对嗜水气单胞菌、温和气单胞菌、溶藻弧菌、副溶血弧菌等29株水产养殖病原菌与人体条件致病菌均有抑制作用,但对病原真菌无抑菌作用。在4株光合细菌中,荚膜红假单胞菌的抑菌活性强于其他菌株,对多数病原菌的最低抑菌浓度为8~16AU/ml,而其他光合细菌为4~16AU/ml。4株光合细菌对部分耐药菌株的抑菌效果优于抗菌素的抑菌作用。光合细菌在细胞生长初期不具有抑菌表征,细胞生长进入对数期后抑菌活性逐渐增强,当细胞生长至稳定期或衰亡期达到最大的抑菌活性;细胞经破碎后,其抑菌活性增强。
    研究环境因素对4株紫色非硫光合细菌代谢产物抑菌活性的影响,试验表明pH值、氨氮和亚硝基氮浓度对其抑菌活性影响较大:pH7~9,抑菌活性较强;氨氮和亚硝基氮浓度越低,抑菌效果越好;抑菌活性对温度、养殖水体的溶氧变化不敏感。紫色非硫光合细菌拮抗产物具有很好的热稳定性;对蛋白酶K和α-糜蛋白酶不敏感,对胰蛋白酶、胃蛋白酶和枯草杆菌蛋白酶较敏感;但其抑菌活性不受紫外照射的影响。
    紫色非硫光合细菌的去细胞上清液,进行CM-Sephadex C-50柱层析或CM-650M高效液相色谱分离,分离纯化得到的抑菌蛋白对伤寒沙门氏菌BF1016和嗜水气单胞菌A.h均具有抑菌活性。4株紫色非硫光合细菌的抑菌蛋白经毛细管区带电泳检测,其分离图谱基本为一条谱带,均已达到较高纯度。荚膜红假单胞菌PSB-2和沼泽红假单胞菌H10抑菌蛋白的SDS-PAGE电泳结果也显示出已达到电泳纯。荚膜红假单胞菌PSB-2分泌的抑菌蛋白经MALDI-TOF质谱检测,其准确分子量为9290Da。根据其抑菌蛋白的性质,初步判断紫色非硫光合细菌在对数期产生的拮抗物质为细菌素,可归为小分子热稳定肽类。
    本文关于紫色非硫光合细菌分离鉴定、生理功能、拮抗功能、拮抗物质的分离纯化与性质表征的研究成果为建立光合细菌生物防治水产养殖动物病害基础
    
    
    理论,推广光合细菌在实际生产中的应用具有重要意义。
Twenty-eight strains of purple nonsulfer photosynthetic bacteria (PNB) isolated from river water and fish-pond mud were identified, and their characteristics were studied. The experimental results showed that above twenty-eight strains all belonged to Rhodopseudomonas, eighteen of these strains were identified as Rps.palustris, nine strains were Rps.gelatinosa, and one strain was Rps.sphaeroides. There are many differences among the experimental strains in utilization abilities of different carbon sources, culture conditions, dehydrogenase activity and abilities of removing NH4+-N, NO2-N and COD of aquaculture water.
    The antibiotic abilities of Rps.sphaeroides PSB-3, Rps.gelatinosa H1, and Rps.palustris H10 which were separated from fresh water, and preserved Rps.capsulata PSB-2 were assayed. Inhibition tests on solid medium showed that, four strains of PNB displayed a broad inhibitory spectrum. Twenty-nine strains of pathogens which caused important diseases in aquaculture and human clinical diseases such as Aeromonas hydrophila, Aeromonas sobria, Vibrio alginolyticus, Vibrio parahaemolyticus and so on were sensitive to the metabolic products of PNB. But fungus pathogens were all resistant to the four strains of PNB. The minimum inhibitory concentration (MIC) of the metabolic products of PNB was determined by using agar disk dilution method. Rps.capsulata had the strongest antibacterial activity among four strains of PNB, and its MIC against the majority of bacteria pathogens was 8~16AU/ml. MIC of other PNB were only 4~16AU/ml. Compared the antagonism of PNB with antibiotics, the antagonistic products produced by the four strains of PNB had obvious antibacterial effect on some drug-resistant strains. There was no antibacterial effect during the initial stage of cellular growth. The antagonistic activity of PNB began to increase in exponential phase, reached maximum in the stationary and death phases, and increased when the PNB cells were disintegrated with ultrasonication.
    Effects of environmental factors on the antibacterial activities of four purple nonsulfer photosynthetic bacterial metabolic products were studied. It showed that their antibacterial activities were affected significantly by pH and the concentration of
    
    
    NH4+-N and NO2-N: antimicrobial effects were strong between pH 7 and 9 and under low concentration of NH4+-N and NO2-N, but antimicrobial activities was not sensitive to the change of temperature and dissolved oxygen in aquaculture water. The antagonistic products produced by PNB were heat-stable; the inhibitory activities of PNB was not lost upon treatment with proteanase K, α-chymotrypsin, and ultraviolet radiation, but sensitive to trypsin, pepsin, and subtilisin.
    The antagonistic substances in cell-free supernatant (CFS) of purple nonsulfer photosynthetic bacteria purified by column chromatography on CM-Sephadex C-50 and CM-650M HPLC were determined by SDS-PAGE, capillary zone electrophoresis (CZE) and mass spectrometry. The purified antibacterial proteins had a strong inhibiting activities against the pathogens of Salmonella typhi BF1016 and Aeromonas hydrophila A.h. Only one band was shown when four antibacterial proteins were checked by CZE. The antibacterial proteins of Rps.capsulata PSB-2 and Rps.palustris H10 were confirmed as electrophoresis purity with SDS-PAGE. The molecular weigh of antibacterial protein produced by Rps.capsulata PSB-2 was 9290Da. According to their characteristics, the antagonistic substances produced by PNB in exponential phase were bacteriocin and they had been classified into small heat-stable peptide (SHSP).
    The result of this paper including studies on isolation, identification, physiological and antagonistic function of purple nonsulfer photosynthetic bacterium, purification and characterization of antagonistic substances is helpful to establish basic theory on biological control of photosynthetic bacteria over diseases in aquaculture and popularize application of PSB in practical production.
引文
[1] 张道波,马甡. 谈对虾暴发性流行病的病因及防治. 饲料工业,1997,18(9):37-39.
    [2] 黄印尧,陈信忠,颜江华. 欧鳗(Anguilla anguilla)“狂游症”病调查报告. 福建畜牧兽医,1997,(2):3-5.
    [3] 施卫旭,潘孝益. 海南南部地区暴发石斑鱼细菌性白斑病的诊治. 中国动物检疫,1997,14(2):17-18.
    [4] 于瑞海,王如才,田传远,等. 栉孔扇贝大面积死亡原因分析及预防的探讨. 海洋湖沼通报,1998,(3):69-72.
    [5] 储卫华. 异育银鲫细菌性败血症病原与防治研究. 水利渔业,2001,21(1):40.
    [6] 史成银,朱心玲,卢全章. 细菌性败血症引起鲫凝血障碍的研究. 水生生物学报,1998,22(4):367-371.
    [7] 吴建农. 鲢细菌性败血症病原的研究. 上海水产大学学报,1997,6(2):112-115.
    [8] 李世敏,贾立蒙. 淡水白鲳细菌性败血症的治疗. 科学养鱼,1998,(6):8.
    [9] 祖国掌,余为一,李槿年. 草鱼细菌性败血症的诊断及流行病学调查. 淡水渔业,2000,30(5):35-37.
    [10] 陈昌福,刘毅. 斑鳢细菌性败血症病原菌的分离与鉴定. 中国兽医学报,1998,18(2):144-146.
    [11] 沈锦玉,尹文林,钱冬,等. 中华绒螯蟹“腹水病”及“抖抖病”并发病病原的研究. 中国水产科学,2000,7(3):89-92.
    [12] 顾志峰,王文,杜开和,等. 中华绒螯蟹"颤抖病"病原、病理学初步研究. 湖泊科学,2000,12(4):367-372.
    [13] 杨先乐. 淡水虾蟹的重大疾病及其防治对策. 淡水渔业,2001,31(6):46-48.
    [14] 董传甫,林天龙,陈日升,等. 日本鳗鲡败血腹水病病原研究. 水产科学,2002,21(1):5-8.
    [15] 朱越雄,曹广力. 蟹源温和气单胞菌的分离及鉴定. 水利渔业,2003,23(3):60-61.
    [16] 李军,叶军,傅慰亭,等. 香港养殖海鲷弧菌致病菌药物敏感性及耐药质粒研究. 微生物学报,1999,39(5):461-468.
    [17] 陶保华,石和荣,黄俊文,等. 假单胞菌引起罗氏沼虾黄鳃、黑鳃病的研究. 中山大学学报(自然科学版),2000,39,增刊:255-259.
    
    [18] 刘云,姜明,姜国良,等. 迟缓爱德华氏菌对牙鲆免疫器官的影响. 海洋科学,2000,24(12):42-46.
    [19] 常建波,宫向红,孙逢贤,等. 养殖石鲽鱼病原菌鸭瘟巴斯德氏菌(Pasteurella anatipestifer)初步研究. 海洋湖沼通报,2002,(1):57-61.
    [20] 杜佳垠. 海水养殖鱼类链球菌病. 渔业现代化,2001,(5):28-29.
    [21] 丁雷,岳永生,宋憬愚. 虹鳟皮肤溃烂病的病原菌研究. 淡水渔业,2002,32(3):28-30.
    [22] 汪长友,郑尧兰. 大黄鱼网箱育种阶段的病害与诊治. 齐鲁渔业,2004,21(2):39-41.
    [23] 殷战,徐伯亥. 鱼类细菌性疾病的研究. 水生生物学报,1995,19(1):76-83.
    [24] Michel C, Alderman D. Chemotherapy in Aquaculture: from theory to reality. Paris: Office International Des Epizooties, 1992. 71-138, 254-259.
    [25] Austin B, Austin D A. Bacterial fish pathogens: Disease in farmed and wild fish. England: Ellis Horwood Ltd., 1993. 357-358.
    [26] 王秀珍,刘国印. 北里霉素防治草鱼“三病”试验. 淡水渔业,1994,24(6):18-20.
    [27] 艾晓辉,左文功,贺路. 淡水养殖鱼类细菌出血性败血病药物防治研究. 中国水产科学,1997,4(3):54-61.
    [28] 丁雷,岳永生,谢光伟. 乌鳢细菌性脓疮病病原的研究. 水利渔业,1999,19(6):27-28.
    [29] Duff D C B. The oral immunization of trout against Bacterium salmonicida. J. Immunol., 1942,44(1):87-94.
    [30] 李太武,丁明进,相建海,等. 皱纹盘鲍对河流弧菌-Ⅱ苗免疫的研究. 海洋与湖沼,1997,28(1):27-32.
    [31] 沈锦玉,尹文林,钱冬,等. 中华鳖细菌性疾病免疫防治的研究. 浙江大学学报(农业与生命科学版),2000,26(3):325-328.
    [32] 钟全福,樊海平. 中草药对欧洲鳗病原菌的抑制作用研究. 水利渔业,2002,22(4):44-46.
    [33] 罗晓松,刘志刚,张征,等. 中华鳖出血性肠道坏死症及中草药防治实验. 淡水渔业,2000,30(7):46-47.
    [34] 陈学年,郭玉娟. 中草药防治鲫鱼败血病试验. 淡水渔业,2001,31(1):43-45.
    [35] 魏祥东,陈东江,叶长明,等. 有益微生物群在水产养殖中的应用及发展前景. 中山大学学报(自然科学版),2002,41,增刊:128-131.
    [36] Husevag B, Lunestad B T, Johannessen P J, et al. Simultaneous occurrence of Vibrio salmonicida and antibiotic-resistant bacteria in sediments at abandoned aquaculture sites. J. Fish Dis., 1991,14(6):631-640.
    
    [37] Aoki T, Sakaguchi T, Kitao T. Multiple drug resistant plasmids from E. tarda in eel culture ponds. Bull Jpn. Soc. Sci. Fish, 1987,53(10):1821-1825.
    [38] Tsoumas A, Aoderman D J, Rodgers C J. Aeromonas salmonicida: development of resistance to 4-quinoline antimicrobials. J. Fish Dis., 1989,12(5):493-507.
    [39] Pedersen K, Tiainen T, Larsen. J L. Antibiotic resistance of Vibrio. anguillarum in relation to serovar and plasmid contents. Acta Vet Scand, 1995,36(1):55-64.
    [40] Aoki T, Kitao T. Changes in drug resistance of Vibrio. Anguillarum in cultured ayu in Japan. J. Fish Dis., 1981,4(2):223-230.
    
    [41] Aoki T, Sakaguchi T, Kitao T. Multiple drug resistant plasmids from E. tarda in eel culture ponds. Bull Jpn. Soc. Sci. Fish, 1987,53(10):1821-1825.
    [42] Takashima N, Aoki T, Kitao T. Epidemiology surveillance of drug-resistant strains of Pasteurella piscicida. Fish Pathol., 1985,2(2/3):209-217.
    [43] Ansary A, Haneef R M, Torres J L, et al. Plasmids and antibiotic resistance in Aeromonas hydrophila isolated in Malaysia from healthy and diseased fish. J. Fish Dis., 1992,15(2):191-196.
    [44] 李爱华,蔡桃珍,吴玉深. 我国鱼类病原——嗜水气单胞菌的耐药性研究. 微生物学通报,2001,28(1):56-63.
    [45] 唐雪莲,王群,李健,等. 渔用抗菌药物代谢动力学和残留的研究现状. 海洋湖沼通报,2002,(2):62-70.
    [46] 李兆新. 水生动物药物残留监控刻不容缓. 中国水产,2000,10:10-11.
    [47] 杨先乐,蔡完其. 我国渔药的研究和生产. 水利渔业,1998,(1):23-24.
    [48] Walczak E M, Noga E J, Hartmann J X. Properties of a vaccine for channel catfish virus disease and a method of administration. Dev. Biol. Stand., 1981,49:419-429.
    [49] Sypriyade H. Vaksinasi untuk mencegah penyakit bacterial padaikan. Bul. Warta Mina, 1985,9:34-39.
    [50] Dorson M. Applied immunology of fish. In: De Kinkelin P, eds. Symposium of Fish vaccination. Paris: O.I.E., 1984. 39-74.
    [51] De Kinkelin P. Immunization against virus diseases occurring in cold water. In: De Kinkelin P, eds. Symposium of Fish vaccination. Paris: O.I.E., 1984. 167-198.
    [52] Michel C. Evaluation of the protective activity and economic efficacy of vaccines for fish. In: De Kinkelin P, eds. Symposium of Fish vaccination. Paris: O.I.E., 1984. 75-96.
    [53] 王育锋,彭秀真,周嗣泉. 用光合细菌菌液池塘培育淡水鱼种的试验. 水产学报,1990,14(4):347-350.
    
    [54] 吉海平,陈金山. 光合细菌在净化水质中的应用试验研究. 生物工程进展,1998,18(2):29-32.
    [55] 韩梅,陈锡时,于永双. 光合细菌净化河蟹养殖水质的研究. 沈阳农业大学学报(自然科学版),1999,30(1):64-66.
    [56] 王金秋,李德尚,董双林,等. 面包酵母添加光合细菌和Vc后培养成轮虫的效果. 水产科技情报,1999,26(1):25-27.
    [57] 刘福军,胡文英. 光合细菌对盐碱地池塘浮游生物的影响. 湖泊科学,2002,14(1):83-89.
    [58] 李勤生. 光合细菌的基本特性及其在水产养殖中的应用研究概况. 水利渔业,1995,(1):3-5,24.
    [59] 李坤宝,程启明. 光合细菌在淡水家鱼养殖中的应用研究. 粮食与饲料工业,1998,(10):35-36. 
    
    [60] 田晓琴,杨兴,陈广城,等. 光合细菌在温室养鳖中的应用研究. 中国水产,1999,(11):18-19.
    [61] 严正凛,吴萍茹,高霞灵. 海带、江蓠浸渍光合细菌菌液后喂养九孔鲍的效果. 水产学报,2001,25(2):136-140.
    [62] 邱宏端,李明伟,陈聪辉,等. 耐盐红螺菌科细菌发酵酱渣生产蛋白饲料的工艺研究. 农业工程学报,2002,18(6):118-122.
    [63] 陈鹏飞,毛江,黄剑飞,等. 光合细菌(PSB)在西伯利亚鲟鱼饲料中的作用及其对主要消化酶活性的影响. 粮食与饲料工业,2003,(11):27-28.
    [64] 姚志军,王育锋,彭秀真,等. 光合细菌对鳖的促长作用研究. 齐鲁渔业,1996,13(5):30-31.
    [65] 郑耀通,胡开辉. 固定化光合细菌净化养鱼水质试验. 中国水产科学,1999,6(4):55-58.
    [66] 孙德文,詹勇,许梓荣. 微生态制剂在水产养殖中的应用. 淡水渔业,2002,32(3):54-57.
    [67] 小林正泰. 光合成细菌と养鱼. 日本:养殖,1981,18(8):56-59.
    [68] 史家梁. 光合细菌(PSB)与日本的水产养殖. 水产科技情报,1995,22(5):212-216.
    [69] 邢华. 光合细菌在水产养殖上的开发及应用(二). 科学养鱼,1994,(3):20.
    [70] Austin Blrianto A, Robertson P A W. The use of Bacteris as probiotics in Aquaculture. In: proceedings of International Symposium on Marine Biotechnology, China, December 6~8, 2000, Qingdao. P. R. China: 2000. 218-221.
    [71] 刘利平. 光合细菌在水产养殖上的应用. 内陆水产,2000,(11):21-22.
    
    [72] 刘双江,孙燕,岑运华,等. 采用光合细菌控制水体中亚硝酸盐的研究. 环境科学,1995,16(6):21-23.
    [73] 孙舰军,丁美丽. 氨氮对中国对虾抗病力的影响. 海洋与湖沼,1999,30(3):267-272.
    [74] 倪纯治,叶德赞,周宗澄,等. 光合细菌对养殖水体的生态调控作用. 台湾海峡,1997,16(3):265-269.
    [75] 邱宏端,徐姗楠,朱航,等. 耐盐红螺菌科细菌对淡水鱼池水质及细菌类群的影响. 水产学报,2002,26(3):231-236.
    [76] 史家梁. 光合细菌(PSB)与日本的水产养殖. 水产科技情报,1995,22(5):212-216.
    [77] 曾宇,秦松,梁明山. 光合细菌综合应用新进展. 水产科学,2000,19(5):34-36.
    [78] 朱励华,韩茵,陈勃,等. 光合细菌的培养及其在水产养殖中的应用. 水产养殖,1997,(2):25-27.
    [79] 黄美珍. 光合细菌对致病弧菌的抑制作用. 台湾海峡,1999,18(1):92-94.
    [80] 邱宏端,陈智伟,袁重桂,等. 耐盐红螺菌对水产养殖病害细菌的拮抗作用. 水产学 报,2003,27(1):69-74.
    [81] Burgess J G , Miyashita H, Sudo H, et al. Antibiotic production by the marine photosynthetic bacterium Chromatium purpuratum NKPB031704: localization of activity to the chromatophores. FEMS Microbiology Letters, 1991,68(3):301-305.
    [82] Hirotani H, Ohigashi H, Kobayashi M, et al. Inactivation of T5 phage by cis-vaccenic acid, an antivirus substance from Rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols. FEMS Microbiology Letters, 1991,61(1):13-17.
    [83] 李东风. 光合细菌的开发应用动态. 微生物学杂志,1998,18(2):44-50.
    [84] 刘勇,张德咏,王小平. 光合细菌PSB-1对辣椒病毒病的防治作用. 湖南农业科学,2000,(6):30-31.
    [85] 邱宏端,石贤爱,郭养浩,等. 耐盐和降高NH4+、NO2- 红螺菌科细菌的选育及应用. 水产学报,1999,增刊:92-96.
    [86] 刘如林,刁虎欣,梁凤来,等. 光合细菌及其应用. 北京:中国农业科技出版社,1991. 17,79-88.
    [87] Weaver P F, Wall J D, Gest H. Characterization of Rhodopseudomonas capsulata. Arch. Microbiol., 1975,105:207-216.
    [88] 东秀珠,蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社,2001. 21-31,364-398.
    [89] 邱宏端,腾蓉,陈雷鸣,等. 荚膜红假单胞菌应用型扩大培养液的优化实验. 大连水产学报,2001,16(1):29-33.
    
    [90] 俞毓馨,吴国庆,孟宪庭,等. 环境工程微生物检验手册. 北京:中国环境科学出版社,1990. 353.
    [91] 陈天寿,严得喜,李根生,等. 微生物培养基制造与应用. 北京:中国农业出版社,1995. 289,494.
    [92] 龚毅,蒋华,杨胜利. 新的热带假丝酵母载体-宿主系统的建立. 生物工程学报,1997,13(3):309-312.
    [93] 张肇铭,邓松录,赵良起,等. 球形红假单胞菌的分离鉴定和生理特性. 山西大学学报(自然科学版),1984,4:53-59.
    [94] 布坎南 R E,吉本斯 N E. 伯杰细菌鉴定手册(中国科学院微生物研究所《伯杰细菌鉴定手册》编译组译). 第八版. 北京:科学出版社,1984. 16-29.
    [95] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法. 第三版. 北京:中国环境科学出版社,1989. 246-248,254-256,260-263,359-361.
    [96] 牛志卿,刘建荣,吴国庆. TTC-脱氢酶活性测定法的改进. 微生物学通报,1994,21(1):59-61.
    [97] Benkerroum N, Ghouati Y, Sandine W E, et al. Methods to demonstrate the bactericidal activity of bacteriocins. Letters in Applied Microbiology, 1993,17:78-81.
    [98] Barefoot S F, Klaenhammer T R. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol, 1983,45:1808-1815.
    [99] 桂炳东,孙敬,徐建民. 细菌药物敏感性试验测定手册. 南昌:江西科学技术出版社,2000. 19-30.
    [100] 中国医学科学院卫生研究所. 水质分析法. 北京:人民卫生出版社,1974. 160-167.
    [101] 汪家政,范明. 蛋白质技术手册. 北京:科学出版社,2001. 77-101,189-211.
    
    [102] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970,227:680-685.
    [103] 郭尧君. 蛋白质电泳实验技术. 第一版. 北京:科学出版社,1999. 57-142.
    [104] 吕茂民,章金刚. 生物质谱技术及其应用. 生物技术通报,2001,(4):38-41.
    [105] 王杰,丁洁. 高效毛细管电泳技术. 中国医药工业杂志,1997,28(7):327-332.
    [106] 平山修. 光合成细菌の色素. 发酵と工业,1978,36(7):563-573.
    [107] Jensen L S. Carotenoids of photosynthetic bacteria - distribution, structure and biosynthesis. In: Gest H, Sanpietro A, Vcenon L P, eds. Bacterial Photosynthesis. Yellow Springs, Ohio: Antionch Press, 1963. 19-34.
    [108] 周庭银,赵虎. 临床微生物学诊断与图解. 上海:上海科学技术出版社,
    
    
    2001. 205-232.
    [109] 张银华,徐盈,张箐,等. 罗氏沼虾中等足类AGH类似物的分离与鉴定. 水生生物学报,2000,24(2):167-171.
    [110] Tagg J R, Dajani A S, Wannamaker L W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev., 1976,40:722-756.
    [111] Baba T, Schneewind O. Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol., 1998,6:66-71.
    [112] Hancock R E W, Chapple D S. Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 1999,43(6):1317-1323.
    [113] Nilsson L, Chen Y, Chikindas M L, et al. Carbon Dioxide and Nisin Act Synergistically on Listeria monocytogenes. Appl. Environ. Microbiol., 2000,66:769-774.
    [114] Bradley D E. Ultrastructure of bacteriophages and bacteriocins. Bacteriol. Rev., 1967,31:230-314.
    [115] Hancock R E W, Scott M G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci., 2000,97(16):8856-8861.
    [116] Miteva V, Stefanova T Z, Budakov I, et al. Characterization of bacteriocins produced by strains from traditional Bulgarian dairy products. Syst. Appl. Microbiol., 1998,21:151-161.
    [117] Chen Y, Ludescher R D, Montville T J. Electrostatic, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles.?Appl. Environ. Microbiol., 1997,63:4770-4777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700