外来植物南美蟛蜞菊非结构性抗病机制及对其成功入侵的贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵为当下全球变化的主要内容之一,也是重要的国际环境生态问题,威胁着全球的环境生态和经济发展。虽然关于生物入侵的机制研究已有不少报道,却极少见系统研究入侵植物的抗病性机制的报道。本研究从群落学、次生代谢产物、植物抗病基因(R-gene)、植物内生菌等四个方面首次对入侵植物南美蟛蜞菊(Wedelia trilobata (L.) Hitchc)非结构性抗病机制进行了研究,并探讨了其对南美蟛蜞菊成功入侵的可能贡献,具体如下:
     1.通过传统的群落学调查方法,确定了入侵植物南美蟛蜞菊在野外很少染病的情况,南美蟛蜞菊的入侵会显著降低其入侵植物群落物种多样性。并且,经济活动加剧了南美蟛蜞菊的入侵。
     2.从生化水平探讨南美蟛蜞菊抗病的机制,确定了南美蟛蜞菊不同组织的次生代谢产物既能够抑制立枯丝核及香蕉枯萎病等植物病原真菌,亦能够促进丁香假单胞等植物病原细菌的能动性与细胞膜生成。
     3.通过对南美蟛蜞菊抗病基因同源序列NBS-LRR RGAs的克隆及分析,获得了2类(tir-NBS-LRR和non-tir-NBS-LRR)3条NBS-LRR RGAs序列WTRGA1(基因库登录号JX566690), WTRGA2(基因库登录号JX566691); WTRGA3(基因库登录号JX566692);进一步计算这两类NBS-LRR R-gene在入侵植物与非入侵植物中的进化速率dN/dS,结果显示,对于tir-NBS-LRR R-gene,入侵植物的进化速率显著高于非入侵植物,而对于non-tir-NBS-LRR R-gene,入侵植物的进化速率也比非入侵植物的高。意味着入侵植物具有更强的产生遗传变异的能力,也表明与非入侵植物相比,入侵植物对病原的识别能力和抗病能力可能更强。这将促使入侵植物在应对新生境当地地病原选择压力上赢得与本地植物的竞争。
     4.采用微生物学传统分离培养法及16S rDNA基因序列分析的方法,对采集自我国5个省区的南美蟛蜞菊样品进行内生菌的分离,共分离鉴定了21个属156株南美蟛蜞菊的内生细菌(WTB)。16S rDNA序列分析结果表明南美蟛蜞菊的内生细菌与己报道其他植物类似,一些常见的类群,如肠杆菌属(Enterobacter)、假单胞菌(Pseudomonas)等广泛分布在各个种群。选取其中3个比较典型地潜在具有抗病性的类群(Bacillus, Pseudomonas, Variovorax)各选取1株代表菌株(JS、Psp、Vp8)进行抗病性测试。结果表明,南美蟛蜞菊的内生细菌能通过分泌一些抗菌物质显著抑制立枯丝核及香蕉枯萎病等植物病原真菌及丁香假单胞病原细菌。并且在病原压力下,接种过该内生细菌的南美蟛蜞菊茎段比未接种内生细菌的茎段生长得更好。另外,将采集自上述5个地方(海南海口、广东佛山、福建厦门、广西南宁、云南西双版纳)的南美蟛蜞菊茎段及实验室培养的无菌苗,在灭菌土壤里进行扦插,每三天施以无菌蒸馏水,同时无菌苗作为对照,3个月后收获,结果表明,扦插苗总体比无菌苗长势好,各项生理指标也更佳。
     总结以上几部分研究,南美蟛蜞菊极其可能存在如下3方面非结构性抗病机制使其在野外极少染病:1)南美蟛蜞菊本身能合成具有抗真菌活性的代谢产物,2)南美蟛蜞菊NBS-LRR抗病基因具有高的进化速率,潜在的增加了其抗病基因的丰富度,3)南美蟛蜞菊具有能抑制病原菌的内生细菌。这几方面的非结构性抗病机制都能增强南美蟛蜞菊的抗病性,增强其入侵力,促进其成功入侵。另外,南美蟛蜞菊可能可以合成分泌一些代谢产物吸引类似丁香假单胞的病原细菌,南美蟛蜞菊本身不仅对此类病原细菌不感病,还可抗此类病原,并以此为武器来抑制其他本地植物,这从反面相对增强其自身同其他植物的竞争力。加上南美蟛蜞菊内生细菌的促生作用,这些都可为南美蟛蜞菊定殖新生境时抵抗当地病原、利用当地病原对抗本地植物及快速生长做出贡献,均可能在一定程度上增强其入侵性。
Currently, as the main content of the current global changes and the important international environmental ecological problem, biological invasions continue to homogenize biota, and have already became another major threat to global biodiversity. It threats both global ecological security and economic development. There are many reports about biological invasion mechanisms, however, there is few reports about systematic disease resistance of invasive species. Non-constitutive disease resistance mechanisms of invasive weed Wedelia trilobata and their contribution to W. trilobata's invasion were first studied from four different aspects in this thesis: community, secondary metabolites, R-gene, and endophytic bacteria. The details are as following:
     1. By traditional community survey, this study showed that few W. trilobata suffer from disease in the field and its invasion significantly decreased its invaded community's flora species diversity. And W. trilobata's invasion showed an positive correlation withlocal economic output,
     2. Exploration disease-resistance mechanism of W. trilobata from biochemical level. The secondary metabolites from different issues of W. trilobata can suppress the growth of plant pathogen fungus Fusarium oxysporum f.spcuben (Fo) and Rhizoctonia solani(Rs), whereas, it can promote the motility and biofilm formation of plant pathogen bacteria Pseudomonas syringae pv. tomato DC3000(Pst).
     3. Further research also being conducted to detect the resistance gene analogs (RGAs) which involved two NBS-LRR of RGAs:tir-NBS-LRR (WTRGA1(Genbank Accession No. JX566690) and WTRGA2(Genbank Accession No. JX566691)) and non-tir-NBS-LRR (WTRGA3(Genbank Accession No. JX566692)). Then these two classes'dN/dS of NBS-LRR R-gene/RGAs were calculated. It was found that average dN/dS of invasive plants is significantly higher than that of non-invasive plants for tir-NBS-LRR R-gene/RGAs. While the invasive plants also showed higher dN/dS than that of non-invasion species for non-tir-NBS-LRR R-gene/RGAs.. The higher evolutionary rate of the RGAs of invasive plants compared to that of non-invasion species indicated the stronger ability to produce genetic variation and to identify and resistance to pathogens. And all these ability of the invasive plants will lead to that they win the competition with native plants under the local pathogens.
     4.156endophytic bacterias, which were isolated from W. trilobata samples, were collected from five provinces by traditional microbiological separation culture methods and16Sr DNA gene sequence analysis. These156strains belonged to21genu. Similar to previous reports, common endophyte bacterias were indentified and existed in each population of W. trilobata, such as Enterobacter. and Pseudomonas. In addition, one strain from three typical potential resistance group(Bacillus, Pseudomonas, and Variovorax), which were termed as JS、Psp、Vp8accordingly, were selected to test resistance to pathogens. The results showed that W. trilobata endophytic bacteria can secrete some antibacterial substances to suppress the plant pathogen fungus Rs, Fo and plant pathogen bacteria Pst. And under pathogen pressure, the growth of the stem segments of W. trilobata inoculated with endophytic bacteria was better than that of without endophytic bacteria inoculation. Meanwhile, stem segments of W. trilobata collected from those above five provinces were cultivated in the sterile soil, watering with sterile water every three days and harvested after three months. Sterile seedlings of W. trilobata were conducted as control treatment. The results indicated that, the growth of stem segments was better than that of sterile seedlings. Each physiological indicator of stem segments was better than that of sterile seedlings.
     The above researches indicated that W. trilobata might have three non-structural disease-resistance mechanisms, which then strengthened its disease-resistance ability:1) W. trilobata could synthesize metabolites with disease-resistance activity;2) the NBS-LRR R-gene of W. trilobata has a higher evolutionary rate, which potentially increased the richness of its R-gene;3) W. trilobata possesses endophytic bacterias which can depress the growth of indigenous bacteria. Additionally, W. trilobata may be able to attract pathogen bacteria (e.g. Pst) by secreting some metabolites, whereas W. trilobata could not be susceptible to these pathogen bacteria, it even could resistence to these pathogens, which could be used as weapons to depress local plants then to increase its competition with these local plants. And endophytic bacterias of W. trilobata possess promoting effects. All the above mechanisms, which could prevent the infection from local pathogens and use local pathogens to infect local plants and promote the rapid growth of W. trilobata, contributed great to strengthen W. trilobata's invasiveness.
引文
[1]吴峙山,聂桂生.环境污染.In:胡乔木(编).中国大百科全书(环境科学)[M].北京:中国大百科全书出版社,1992.203.
    [2]Wang R L, Rehman S U, Liang X T et al. Effects of simulated acid rain on the allelopathic potential of invasive weed Wedelia trilobata[J]. Allelopathy Journal,2012,30 (1):23-32.
    [3]Wang X, Ma L Q, Rathinasabapathi B et al. Mechanisms of Efficient Arsenite Uptake by Arsenic Hyperaccumulator Pteris vittata[J]. Environmental Science & Technology,2011,45 (22):9719-9725.
    [4]Trevors J T,Saier M H, Jr. Regulation of Pollution [J]. Water, Air, and Soil Pollution,2010,205 (1):19-20.
    [5]Elliott M. Biological pollutants and biological pollution-an increasing cause for concern[J]. Marine Pollution Bulletin,2003,46 (3):275-280.
    [6]Horan R D, Perrings C, Lupi F et al. Biological Pollution Prevention Strategies under Ignorance:The Case of Invasive Species[J]. American Journal of Agricultural Economics,2002,84 (5):1303-1310.
    [7]Li B, Liao C-h, Zhang X-d et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects[J]. Ecological Engineering,2009,35 (4):511-520.
    [8]McGeoch M A, Butchart S H M, Spear D et al. Global indicators of biological invasion:species numbers, biodiversity impact and policy responses[J]. Diversity and Distributions,2010,16 (1):95-108.
    [9]Pejchar L,Mooney H A. Invasive species, ecosystem services and human well-being[J]. Trends in Ecology & Evolution,2009,24 (9):497-504.
    [10]van der Wal R, Truscott A M, Pearce I S K et al. Multiple anthropogenic changes cause biodiversity loss through plant invasion[J]. Global Change Biology,2008,14 (6):1428-1436.
    [11]Brenchley R, Spannagl M, Pfeifer M et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature,2012,491 (7426):705-710.
    [12]Curtis B A, Tanifuji G, Burki F et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs[J]. Nature,2012,492 (7427):59-65.
    [13]Levine J M. Species Diversity and Biological Invasions:Relating Local Process to Community Pattern[J]. Science,2000,288 (5467):852-854.
    [14]Rudgers J A,Orr S. Non-native grass alters growth of native tree species via leaf and soil microbes[J]. Journal of Ecology,2009,97 (2):247-255.
    [151 Hemsley P A, Weimar T, Lilley K S et al. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis[J]. New Phytologist,2013,197 (3):805-814.
    [16]Strayer D L. Eight questions about invasions and ecosystem functioning[J]. Ecology Letters,2012,15 (10):1199-1210.
    [17]Rodriguez-Enriquez M J, Mehdi S, Dickinson H G et al. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen[J].New Phytologist,2012.
    [18]Pysek P,Richardson D M. Invasive Species, Environmental Change and Management, and Health[J]. Annual Review of Environment and Resources,2010,35 (1):25-55.
    [19]Qian H,Ricklefs R E. The role of exotic species in homogenizing the North American flora[J]. Ecology Letters, 2006,9(12):1293-1298.
    [20]Ehrenfeld J G,Scott N. Invasive species and the soil:Effects on organisms and ecosystem processes[J]. Ecological Applications,2001,11 (5):1259-1260.
    [21]Olden J D, LeRoy Poff N, Douglas M R et al. Ecological and evolutionary consequences of biotic homogenization[J]. Trends in Ecology & Evolution,2004,19 (1):18-24.
    [22]Zavaleta E S, Hobbs R J,Mooney H A. Viewing invasive species removal in a whole-ecosystem context[J]. Trends in Ecology & Evolution,2001,16 (8):454-459.
    [23]丁建清,解焱.中国外来物种入侵机制及对策[J].1996,107-128.
    [24]强胜,曹学章.中国异域杂草的考察与分析[J].植物资源与环境学报,2000,9(4):34-38.
    [25]李博,马克平.生物入侵:中国学者面临的转化生态学机遇与挑战[J].生物多样性,2010,(06):529-532.
    [26]Richardson D M,Pysek P. Fifty years of invasion ecology-the legacy of Charles Elton[J]. Diversity and Distributions,2008,14 (2):161-168.
    [27]Rout M E,CalIaway R M. An Invasive Plant Paradox [J]. Science,2009,324 (5928):734-735.
    [28]Raizada P. Raghubanshi A S,Singh J S. Impact of invasive alien plant species on soil processes:A review[J]. Proceedings of the National Academy of Sciences India Section B-Biological Sciences,2008,78288-298.
    [291 Yu H, Yu F H, Miao S L et al. Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery[J]. Biological Conservation,2008,141 (10):2653-2661.
    [30]Bunn S E, Davies P M, Kellaway D M et al. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading[J]. Freshwater Biology,1998,39 (1):171-178.
    [31]Potts S G, Biesmeijer J C, Kremen C et al. Global pollinator declines:trends, impacts and drivers[J]. Trends in Ecology & Evolution,2010,25 (6):345-353.
    [321 D'Antonio C M, Hughes R F,Vitousek P M. Factors influencing dynamics of two invasive C4 grasses in seasonally dry Hawaiian woodlands[J]. Ecology,2001,82 (1):89-104.
    [33]Mason R A B, Cooke J, Moles A T et al. Reproductive output of invasive versus native plants[J]. Global Ecology and Biogeography,2008,17 (5):633-640.
    [34]Joshi J,Vrieling K. The enemy release and EICA hypothesis revisited:incorporating the fundamental difference between specialist and generalist herbivores[J]. Ecology Letters,2005,8 (7):704-714.
    [35]Callaway R M, Cipollini D, Barto K et al. Novel weapons:Invasive plant suppresses fungal mutualists in America but not in its native Europe[J]. Ecology,2008,89 (4):1043-1055.
    [36]Blumenthal D M. Interactions between resource availability and enemy release in plant invasion[J]. Ecology Letters,2006,9 (7):887-895.
    [37]Keane R M,Crawley M J. Exotic plant invasions and the enemy release hypothesis[J]. Trends in Ecology & Evolution,2002,17 (4):164-170.
    [38]Verhoeven K J F, Biere A, Harvey J A et al. Plant invaders and their novel natural enemies:who is naive[J]? Ecology Letters,2009,12 (2):107-117.
    [39]Hull-Sanders H M, Clare R, Johnson R H et al. Evaluation of the evolution of increased competitive ability (EICA) hypothesis:Loss of defense against generalist but not specialist herbivores[J]. Journal of Chemical Ecology,2007,33 (4):781-799.
    [40]Handley R J, Steinger T, Treier U A et al. Testing the evolution of increased competitive ability (EICA) hypothesis in a novel framework[J]. Ecology,2008,89 (2):407-417.
    [41]Eppinga M B, Rietkerk M, Dekker S C et al. Accumulation of local pathogens:a new hypothesis to explain exotic plant invasions[J]. Oikos,2006, 114 (1):168-176.
    [42]Mangla S, Inderjit,Callaway R M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants[J]. Journal of Ecology,2008,96(1):58-67.
    [43]Nijjer S, Rogers W E,Siemann E. Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens[J]. Proceedings of the Royal Society B-Biological Sciences,2007,274 (1625):2621-2627.
    [44]Bais H P, Vepachedu R, Gilroy S et al. Allelopathy and exotic plant invasion:From molecules and genes to species interactions[J]. Science,2003,301 (5638):1377-1380.
    [45]Callaway R M,Ridenour W M. Novel weapons:invasive success and the evolution of increased competitive ability[J]. Frontiers in Ecology and the Environment,2004,2 (8):436-443.
    [46]Callaway R M, Thelen G C, Rodriguez A et al. Soil biota and exotic plant invasion[J]. Nature,2004,427 (6976):731-733.
    [47]Klironomos J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature, 2002,417 (6884):67-70.
    [48]Lavergne S,Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104 (10):3883-3888.
    [49]Du D L, Winsor J A, Smith M et al. Resistance and tolerance to herbivory changes with inbreeding and ontogeny in a wild gourd (Cucurbitaceae)[J]. American Journal of Botany,2008,95 (1):84-92.
    [50]MacKay J,Kotanen P M. Local escape of an invasive plant, common ragweed(Ambrosia artemisiifolia L.), from above-ground and below-ground enemies in its native area[J]. Journal of Ecology,2008,96 (6):1152-1161.
    [51]Rogers W E,Siemann E. Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum[J]. Journal of Applied Ecology,2004,41 (3):561-570.
    [52]Zou J W, Rogers W E,Siemann E. Increased competitive ability and herbivory tolerance in the invasive plant Sapium sebiferum[J]. Biological Invasions,2008,10 (3):291-302.
    [53]Mitchell C E,Power A G. Release of invasive plants from fungal and viral pathogens[J]. Nature,2003,421 (6923):625-627.
    [54]牛红榜,刘万学,万方浩,等.紫茎泽兰根际土壤中优势细菌的筛选鉴定及拮抗性能评价[J].应用生态学报,2007,(12):2795-2800.
    [55]Brown J K M. A cost of disease resistance:paradigm or peculiarity[J]? Trends in Genetics,2003,19 (12):667-671.
    [56]Feng Y L, Lei Y B, Wang R F et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106 (6):1853-1856.
    [57]Blumenthal D, Mitchell C E, Pysek P et al. Synergy between pathogen release and resource availability in plant invasion[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106 (19):7899-7904.
    [58]Wang D P, Wan H L, Zhang S et al. gamma-MYN:a new algorithm for estimating Ka and A's with consideration of variable substitution rates[J]. Biology Direct,2009,420-38.
    [59]Ni G Y, Song L Y, Zhang J L et al. Effects of root extracts of Mikania micrantha HBK on soil microbial community[J]. Allelopathy Journal,2006,17 (2):247-254.
    [60]Godfree R C, Thrall P H,Young A G. Enemy release after introduction of disease-resistant genotypes into plant-pathogen systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(8):2756-2760.
    [61]Orians C M,Ward D. Evolution of Plant Defenses in Nonindigenous Environments[J]. Annual Review of Entomology,2010,55439-459.
    [62]Hill W G. Understanding and using quantitative genetic variation[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2010,365 (1537):73-85.
    [63]Shen J D, Araki H, Chen L L et al. Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana[J]. Genetics,2006,172 (2):1243-1250.
    [64]Ehrenreich I M,Purugganan M D. The molecular genetic basis of plant adaptation[J]. American Journal of Botany,2006,93 (7):953-962.
    [65]Cripps M, Bourdot G, Saville D et al. Influence of insects and fungal pathogens on individual and population parameters of Cirsium arvense in its native and introduced ranges[J]. Biological Invasions,2011,13 (12):2739-2754.
    [66]Chun Y J, van Kleunen M,Dawson W. The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance[J]. Ecology Letters,2010,13 (8):937-946.
    [67]Colautti R I, Ricciardi A, Grigorovich I A et al. Is invasion success explained by the enemy release hypothesis[J]? Ecology Letters,2004,7 (8):721-733.
    [68]Hill S B,Kotanen P M. Phylogenetic structure predicts capitular damage to Asteraceae better than origin or phylogenetic distance to natives[J]. Oecologia,2011,166 (3):843-851.
    [69]Hawkes C V. Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction[J]. American Naturalist,2007,170 (6):832-843.
    [701 Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444 (7117):323-329.
    [71]Holmes G J,Stange R R. Influence of wound type and storage duration on susceptibility of sweetpotatoes to Rhizopus soft rot[J]. Plant Disease,2002,86 (4):345-348.
    [72]Holgado R,Magnusson C. Nematodes as a Limiting Factor in Potato Production in Scandinavia[J]. Potato Research,2012,55 (3-4):269-278.
    [73]刘龙,焦宇.西北路域植被建设中的有害生物控制[J].公路交通科技,2004,11
    [74]臧威,孙剑秋,张淑园,等.植物诱导抗病性及其机理的研究现状[J].种子,2006,(09):45-50.
    [75]Ross A F. Systemic acquired resistance induced by localized virus infections in plants[J]. Virology,1961,14 (3):340-358.
    [76]Chester K S. The Problem of Acquired Physiological Immunity in Plants[J]. The Quarterly Review of Biology, 1933,8 (3):275-324.
    [771 Houterman P M, Ma L, Van Ooijen G et al. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein 1-2 intracellularly[J]. The Plant Journal,2009,58 (6):970-978.
    [781 Huang H, Qi S-D, Qi F et al. NtKTIl, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco's defense response[J]. FEBS Journal,2010,277 (19):4076-4088.
    [79]Saleem A, El-Said A, Maghraby T et al. Pathogenicity and Pectinase Activity of Some Facultative Mycoparasites Isolated from Viciafaba Diseased Leaves in Relation to Photosynthetic Pigments of Plant[J]. Plant Pathology & Microbiology,2012,3 (6):141.
    [80]Flor H H. The Complementary Genie Systems in Flax and Flax Rust. In:Demerec M (eds.). Advances in Genetics[M].Academic Press,1956.29-54.
    [81]Thompson J N,Burdon J J. Gene-for-gene coevolution between plants and parasites[J]. Nature,1992,360 (6400):121-125.
    [82]Belkhadir Y, Subramaniam R,Dangl J L. Plant disease resistance protein signaling:NBS-LRR proteins and their partners[J]. Current Opinion in Plant Biology,2004,7 (4):391-399.
    [83]Hammond-Kosack K E Jones J D. Plant disease resistance genes[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48 575-607.
    [84]Fletcher J N S, Poole S, et al. Cytokine degradation by biofilms of Porphyromonas gingivalis[J]. Curr Microbiol, 1998,36(2):216-219.
    [85]Krupinsky J M, Bailey K L, McMullen M P et al. Managing plant disease risk in diversified cropping systems[J]. Agronomy Journal,2002,94 (2):198-209.
    [86]孔令圆.小麦赤霉病的发生与防治[J].现代农业科技,2011,(11):198-201.
    [87]Buskila Y, Tsror L, Sharon M et al. Postharvest Dark Skin Spots in Potato Tubers Are an Oversuberization Response to Rhizoctonia solaniInfection[J]. Phytopathology, 2011, 101 (4):436-444.
    [88]Graham J H, Gottwald T R, Riley T D et al. Penetration through leaf stomata and strains of Xamthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases[J]. Phytopathology, 1992, 82 (11):1319-1325.
    [89]Martin C, Miller J, Busch R et al. Quantitation of slow rusting in seedling and adult spring wheat[J]. Canadian Journal of Botany, 1979, 57(14):1550-1556.
    [90]Anderson N A. The genetics and pathology of Rhizoctonia solant[J]. Annual Review of Phytopathology, 1982, 20 (1):329-347.
    [91]Daayf F, Schmitt A ,Belanger R R. Evidence of Phytoalexins in Cucumber Leaves Infected with Powdery Mildew following Treatment with Leaf Extracts of Reynoutria sachalinensi[J].Plant Physiology, 1997, 113 (3):719-727.
    [92]Shetty R, Jensen B, Shetty N P et al. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pammosa [J]. Plant Pathology, 2012, 61 (1): 120-131.
    [93]Leben C. Epiphytic microorganisms in relation to plant disease[J]. Annual Review of Phytopathology, 1965, 3 (1):209-230.
    [94]Leben C,Daft G. Influence of an epiphytic bacterium on cucumber anthracnose, early blight of tomato, and northern leaf blight of corn[J]. Phytopathology, 1965, 55 760-762.
    [95]Roane M K, Griffin G J ,Elkins J R. Chestnut blight, other Endothia diseases, and the genus Endothia[J]. The American Phytopathological Society, 1986.
    [96]张淑平.稻曲病所致损失及水稻品种形态学抗病性的研究[D].1996,硕士
    [97]李振歧,商鸿生.中国农作物抗病性及其利用[M].北京:中国农业出版社,2005.
    [98]Selote D, Robin G P ,Kachroo A. GmRIN4 protein family members function nonredundantly in soybean race-specific resistance against Pseudomonas syringae [J]. New Phytologist, 2012, n/a-n/a.
    [99]李华.欧亚种葡萄品种对霜霉病感病性的研究[J].园艺学报,1988,(01):23-26.
    [100]李华,张振文.欧亚种葡萄白粉病微效抗病基因原取代积累[J].西北植物学报,1995,(02):120-124.
    [101]Gebhardt C ,Valkonen J P T. Organization of genes controlling disease resistance in the potato genome[J]. Annual Review of Phytopathology, 2001, 39 (1):79-102.
    [102]Singh R P, Huerta-Espino J, Bhavani S et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats[J]. Euphytica, 2011, 179 (1):175-186.
    [103]董继新,董海涛,李德葆.植物抗病基因研究进展[J].植物病理学报,2001,31(1):1-9.
    [104]Harper C J, Bomfleur B, Decombeix A-L et al. Tylosis formation and fungal interactions in an Early Jurassic conifer from northern Victoria Land, Antarctica[J]. Review of Palaeobotany and Palynology, 2012, 175 (0):25-31.
    [105]Guest D ,Brown J. Plant defences against pathogens[J]. Plant Pathogens and Plant Diseases, 1997, 263-286.
    [106]Harikrishnan R, Balasundaram C, Jawahar S et al. Solanum nigrum enhancement of the immune response and disease resistance of tiger shrimp, Penaeus monodon against Vibrio harveyt[J]. Aquaculture, 2011, 318 (1-2):67-73.
    [107]Conn E E. Cyanogenic compounds[J]. Annual Review of Plant Physiology, 1980, 31 (1):433-451.
    [108]Chanda B, Xia Y, Mandal M K et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants[J]. Nat Genet, 2011,43 (5):421-427.
    [109]Mendes R, Kruijt M, de Bruijn I et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria[J]. Science, 2011,332 (6033):1097-1100.
    [110]Berendsen R L, Pieterse C M J ,Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17 (8):478-486.
    [111]Li P, Ma L, Feng Y et al. Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39 (10): 1495-1505.
    [112]Ryan R P. Germaine K, Franks A et al. Bacterial endophytes: recent developments and applications[J]. FEMS Microbiology Letters, 2008, 278 (1):1-9.
    [113]Backman P A ,Sikora R A. Endophytes: An emerging tool for biological control[J]. Biological Control, 2008, 46 (1):1-3.
    [114]Scholthof K B G. The disease triangle: pathogens,the environment and society[J].Nature Reviews Microbiology, 2007, 5 (2):152-156.
    [115]Zhao Q ,Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought[J]? Trends in Plant Science, 2011, 16 (4):227-233.
    [116]何培青,陈靠山,沈继红,等.植物次级代谢产物与植物抗病防御反应[C].海洋生物工程2005年学术年会,2005,140-143.
    [117]Ahuja I, Kissen R ,Bones A M. Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17 (2):73-90.
    [118]Boddu J, Svabek C, Sekhon R et al. Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins[J]. Physiological and Molecular Plant Pathology,2004,65 (2):101-113.
    [119]Enserink M. Biological invaders sweep in [J]. Science,1999,285 (5435):1834-1836.
    [120]Felix G, Duran J D, Volko S et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Journal,1999,18 (3):265-276.
    [121]Boller T,He S Y. Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science,2009,324 (5928):742-744.
    [122]Block A,Alfano J R. Plant targets for Pseudomonas syringae type III effectors:virulence targets or guarded decoys[J]? Current Opinion in Microbiology,2011,14 (1):39-46.
    [123]Yue J-X, Meyers B C, Chen J-Q et al. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes[J]. New Phytologist,2012,193 (4):1049-1063.
    [124]Mauricio R, Stahl E A, Korves T et al. Natural Selection for Polymorphism in the Disease Resistance Gene Rps2 of Arabidopsis thaliana[J]. Genetics,2003,163 (2):735-746.
    [125]Bakker E G, Toomajian C, Kreitman M et al A genome-wide survey of R gene polymorphisms in Arabidopsis[J]. Plant Cell,2006,18 (8):1803-1818.
    [126]Shen J, Araki H, Chen L et al. Unique Evolutionary Mechanism in R-Genes Under the Presence/Absence Polymorphism in Arabidopsis thaliana[J]. Genetics,2006,172 (2):1243-1250.
    [127]Johal G. Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science,1992,258 (6):985-987.
    [128]Martin G,Brommonschenkel S. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science and Technology of Advanced Materials,1993,262 (5138):1432-1436.
    [129]Luo h, Peng J, Li K et al. Contrasting Evolutionary Patterns of the Rp1 Resistance Gene Family in Different Species of Poaceae[J]. Mol. Biol. Evol.,2011,28 (1):313-325.
    [130]毛健民,李俐俐.植物基因分离的图位克隆技术[J].生物学通报,2002,37(4):32-33.
    [131]胡英考.转座子标签法克隆分离植物基因的研究进展[J].生物技术通报,2003,(2):18-21.
    [132]Zhu H, Cannon S B, Young N D et al. Phylogeny and Genomic Organization of the TIR and Non-TIR NBS-LRR Resistance Gene Family in Medicago trucatut[J]. Molecular Plant-Microbe Interactions,2002, 15(6):529-539.
    [133]Miller R N, Bertioli D J, Baurens F C et al. Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acwninata Colla:isolation, RFLP marker development, and physical mapping[J]. BMC Plant Biology,2008, 815.
    [134]Ramachandra S B, Sathyanarayana N R, Subramonium S et al. Isolation, cloning and characterization of resistance gene analogues in pearl millet based on conserved nucleotide-binding sites[J]. Journal of Phytopathology,2011,159 (5):382-389.
    [135]Cheplick G P. Endosymbiosis and population differentiation in wild and cultivated Lolium perenne(Poacsae)[J]. American Journal of Botany,2011,98 (5):829-838.
    [136]Rashid S, Charles T C,Glick B R. Isolation and characterization of new plant growth-promoting bacterial endophytes[J]. Applied Soil Ecology,2011,
    [137]Puente M E, Li C Y,Bashan Y. Rock-degrading endophytic bacteria in cacti[J]. Environmental and Experimental Botany,2009,66 (3):389-401.
    [138]Magnani G, Didonet C, Cruz L et al. Diversity of endophytic bacteria in Brazilian sugarcane[J]. Genetics and Molecular Research,2010,9 (1):250-258.
    [139]Huang W, Cai Y, Hyde K et al. Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants[J]. Fungal diversity,2008,3361-75.
    [140]Shipunov A, Newcombe G, Raghavendra A K H et al. Hidden diversity of endophytic fungi in an invasive plant[J]. American Journal of Botany,2008,95 (9):1096-1108.
    [141]Zhang X, Ren A Z, Wei Y K et al. Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum the Inner Mongolia Steppe of China[J]. FEMS Microbiology Letters,2009,301 (1):12-20.
    [142]Sun X, Guo L D,Hyde K. Community composition of endophytic fungi in Acer truncatum and their role in decomposition[J]. Fungal diversity,2011,47(1):85-95.
    [143]Qin S, Chen H-H, Zhao G-Z et al. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods[J]. Environmental Microbiology Reports,2012, no-no.
    [144]Huang H Y. Lu J, Zhao G Z et al. Diversity and antimicrobial activities of endophytic actinomycetes isolated from Alstonia scholar[J]. Microbiology/Weishengwuxue Tongbao,2011,38 (5):780-785.
    [145]Li J, Zhao G Z, Huang H Y et al. Isolation and characterization of cultuable endophytic actinobacteria associated with Artemisia anmuaL[J]. Antonie van Leeuwenhoek,2012,515-527.
    [146]Hallmann J, Quadt-Hallmann A, Mahaffee W et al. Bacterial endophytes in agricultural crops[J]. Canadian journal of microbiology,1997,43 (10):895-914.
    [147]Bertalan M, Albano R, De Padua V et al. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Ghiconacetobacter d/arotroplicus Pal5[J]. BMC genomics, 2009, 10 (l):450.
    [148]Krause A, Ramakumar A, Bartels D et al. Complete genome of the mutualistic, N2-fixing grass endophyte A-oarci/ssp. strain BH72[J]. Nature biotechnology, 2006, 24 (11): 1384-1390.
    [149]Fouts D E, Tyler H L, DeBoy R T et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice[J]. PLoS Genetics, 2008, 4 (7):e1000141.
    [150]Kaneko T, Minamisawa K, Isawa T et al. Complete genomic structure of the cultivated rice endophyte A-ospirillum sp. B510[J]. DNAresearch, 2010, 17 (l):37-50.
    [151]Yan Y, Yang J, Dou Y e/ al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeh Al 501 [J]. Proceedings of the National Academy of Sciences, 2008, 105(21):7564-7569.
    [152]Pedrosa F O, Monteiro RA, Wassem R et al. Genome of Herbaspirillnm seropedicae strain SmRl, a specialized diazotrophic endophyte of tropical grasses[J]. PLoS Genetics, 2011, 7 (5):el002064.
    [153]Jha P ,Kumar A. Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidamfrom wheat plant. Microbial Ecology, 2009, 58 (1):179-188.
    [154]Ji X, Lu G, Gai Y et al. Colonization of Morns alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lul0-l[J]. BMC Microbiology, 2010, 10 (I):243.
    [155]Feng Y, Shen D ,Song W. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates[J]. Journal of Applied Microbiology, 2006, 100 (5):938-945.
    [156]Ait Barka E, Nowak J ,Clement C. Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderiaphytofirmans Strain PsJN[J]. Applied and Environmental Microbiology, 2006, 72 (11):7246-7252.
    [157]Dong Y-H, Xu J-L, Li X-Z et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proceedings of the National Academy of Sciences, 2000, 97 (7):3526-3531.
    [158]Dong Y-H, Wang L-H, Xu J-L et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase[J]. Nature, 2001,411 (6839):813-817.
    [159]Wang Y ,Dai C C. Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation[J]. Annals of Microbiology, 2011, 61 (2):207-215.
    [160]Doty S L. Enhancing phytoremediation through the use of transgenics and endophytes[J]. New Phytologist, 2008, 179 (2):318-333.
    [161]Weyens N, Van der Lelie D, Taghavi S et al.Phytoremediation: plant-endophyte partnerships take the challenge[J]. Current opinion in biotechnology, 2009, 20 (2):248-254.
    [162]Rajkumar M, AeN ,Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction[J]. Chemosphere, 2009, 77 (2): 153-160.
    [163]Studer S V. Mandel M J ,Ruby E G. AinS Quorum Sensing Regulates the Vibrio fischeri Acetate Switch[J]. Journal of Bacteriology, 2008, 190 (17):5915-5923.
    [164]WilliamsP. Quorumsensing,communicationandcross-kingdomsignallingin the bacterialworld[J]. Microbiology, 2007, 153 (12):3923-3938.
    [165]Liu H, Coulthurst S J, Pritchard L et al. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum[J]. PLoS Pathog, 2008,4 (6):el000093.
    [166]Nealson K, Platt T ,Hastings J. Cellular control of the synthesis and activity of the bacterial luminescent systerm[J]. Journal of Bacteriology, 1970, (104):313-322.
    [167]Brown S P ,Johnstone R A. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria[J]. Proceedingsof the Royal Societyof London Series B-BiologicalSciences, 2001.268 (1470):961-965.
    [168]Manefield M ,Turner S L. Quorum sensing in context: out of molecular biology and into microbial ecology[J]. Microbiology, 2002, 148 (12):3762-3764.
    [169]洪剑明,邱泽生,柴晓清.植物的诱导抗病性[J].植物学通报,1997,14(2):23-29.
    [170]Sutherland I W. The biofilm matrix - an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9 (5):222-227.
    [171]Pumbwe L, Skilbeck C ,Wexler H. Presence of Quorum-sensing Systems Associated with Multidrug Resistance and Biofilm Formation in Bacteroides fragilis[J]. Microbial Ecology, 2008, 56 (3):412-419.
    [172]Popat R, Crusz S A, Messina M et al. Quorum-sensing and cheating in bacterial biofilms. Proceedings of the Royal Society B: Biological Sciences, 2012, 279 (1748):4765-4771.
    [173]Butler M T, Wang Q ,Harshey R M. Cell density and mobility protect swarming bacteria against antibiotics[J]. Proceedings of the National Academy of Sciences, 2010,
    [174]赵龙华,杨维青.细菌群集运动与生物被膜和耐药性的关系[J].国际检验医学杂志,2011,32(17):1986-1988.
    [175]O'may C,TufenkjiN.The Swarming Motility of PseudomonasaeruginosaIsBlockedbyCranberry Proanthocyanidins and Other Tannin-Containing Materials[J]. Applied and Environmental Microbiology, 2011, 77 (9):3061-3067.
    [176]Allison C, Coleman N, Jones P L et al. Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation[J]. Infection and immunity, 1992, 60 (11):4740-4746.
    [177]An D, Danhorn T, Fuqua C et al. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciem in biofilm cocultures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10):3828-3833.
    [178]IUCN/SSC Invasive Species Specialist Group (ISSG). Sphagneticola trilobata.100 of the World's Worst Invasive Alien Species[DB], 2010, 2011 (October 01).
    [179]ThamanRR. Wedeliatrilobata: daisy invader of the Pacific islands[R]. IAS Technical Report, 1999, p.1-10.
    [180]Huang X-S, Jiang R-W ,Ooi V E-C. Trilobolide-6-O-isobutyrate, a eudesmanolide from Wedelia trilobata[J]. Acta Crystallographica Section E, 2003, 59 (6):0771-0772.
    [181]Song L-Y. Li C-H ,Peng S-L. Elevated CO2 increases energy-use efficiency of invasive Wedelia trilobata over its indigenous congener[J]. Biological Invasions, 2010,12 (5):1221-1230.
    [182]Ge X J, Wu W, Zhou R C et al. Development of Microsatellite Loci for the Invasive Weed Wedelia Trilobata (Asteraceae)[J]. American Journal of Botany, 2010, 97 (11):E114-E116.
    [183]Mack R N, Simberloff D, Lonsdale W M et al. Biotic invasions: Causes, epidemiology, global consequences, and control[Jl. Ecological Applications, 2000, 10 (3):689-710.
    [184]Ludsin S A ,Wolfe A D. Biological invasion theory: Darwin's contributions from The Origin of Species[J]. Bioscience, 2001,51 (9):780-789.
    [185]李博,马克平.生物入侵:中国学者面临的转化生态学机遇与挑战[J].生物多样性,2010,18(6):529-532.
    [186]Finckh M R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture[J]. European Journal of Plant Pathology, 2008, 121 (3):399-409.
    [187]Katiyar-Agarwal S, Morgan R, Dahlbeck D et al. A pathogen-inducible endogenous siRNA in plant immunity[J]. Proceedingsof the NationalAcademyof Sciences of theUnited Statesof America, 2006, 103 (47): 18002-18007.
    [188]Truscott A-M, Palmer S C, Soulsby C et al. Consequences of invasion by the alien plant Mimulns guttatus on the species composition and soil properties of riparian plant communities in Scotland[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10 (4):231-240.
    [189]Cipriotti P A, Rauber R B, Collantes M B et al. Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia[J]. Biological Invasions, 2010, 12 (8):2523-2535.
    [190]Collins A R, Jose S, Daneshgar P et al. Elton's hypothesis revisited: an experimental test using cogongrass[J]. Biological Invasions, 2007, 9 (4):433-443.
    [191]Reid A M, Morin L, Downey P O et al. Does invasive plant management aid the restoration of natural ecosystetns[J]? Biological Conservation, 2009, 142 (10):2342-2349.
    [1921 Cushman J ,Gaffney K. Community-level consequences of invasion: impacts of exotic clonal plants on riparian vegetation[J]. Biological Invasions, 2010, 12 (8):2765-2776.
    [193]Pretto F, Celesti-Grapow L, Carli E et al. Influence of past land use and current human disturbance on non-native plant species on small Italian islands[J]. Plant Ecology, 2010, 210 (2):225-239.
    [1941 Lin W, Cheng X Y ,Xu R M. Impact of Different Economic Factors on Biological Invasions on the Global ScaleLT]. Plos One, 2011,6(4):
    [195]Sinkins P ,Otfinowski R. Invasion or retreat? The fate of exotic invaders on the northern prairies, 40 years after cattle grazing[J]. Plant Ecology, 2012, 213 (8):1251-1262.
    [196]McKinney M L. Urbanization as a major cause of biotic homogenization[J]. Biological Conservation, 2006, 127 (3):247-260.
    [197]Goodall J, Witkowski E, McConnachie A et al. Altered growth, population structure and realised niche of the weed Campuloclinium macrocephalum (Asteraceae) after exposure to the naturalised rust <i>Puccinia eupatorii</i> (Pucciniaceae)[J]. Biological Invasions, 2012, 14 (9):1947-1962.
    [198]Schob C, Butterfield B J ,Pugnaire F I. Foundation species influence trait-based community assembly[J]. New Phytologist, 2012.
    [199]方中达.植病研究方法(第三版)[M].1998,8-9.
    [200]Hobbs R J ,Mooney H A. Spatial and temporal variability in California annual grassland: results from a long-term study[J]. Journal of Vegetation Science, 1995, 6 (l):43-56.
    [201]戴志聪.海南岛破碎森林斑块中的青皮种群的遗传多样性研究[D].2008,31.
    [2021 McArt S, Cook-Patton S ,Thaler J. Relationships between arthropod richness, evenness, and diversity are altered by complementarity among plant genotypes[J]. Oecologia, 2012, 168 (4): 1013-1021.
    [2031 Peru N ,Doledec S. From compositional to functional biodiversity metrics in bioassessment: A case study using stream macroinvertebrate communities[J]. Ecological Indicators, 2010, 10 (5):1025-l036.
    [204]Gonzalez-Sanson G ,Aguilar C. Reef fish diversity components as indicators of cumulative effects in a highly impacted fringe reef[J]. Ecological Indicators, 2010, 10 (3):766-772.
    [205]Hamilton A J. Species diversity or biodiversity[J]? Journal of Environmental Management,2005,75 (1):89-92.
    [206]Sklenar P. Presence of cushion plants increases community diversity in the high equatorial Andes[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2009,204 (4):270-277.
    [207]Jost L. Entropy and diversity. Oikos,2006,113 (2):363-375.
    [208]海南省统计局,国家统计局海南调查总队.海南省2006年各县市农业、林业、畜牧业和渔业的总产出[EB].海南省2007年统计年鉴,2007.
    [209]宋小玲,曹飞,何云核,等.广东省鼎湖山国家级自然保护区外来入侵植物调查[J].浙江林学院学报,2009,26(4):538-543.
    [210]Jayakumar D, Mary S J,Santhi R J. Antioxidant and Antimicrobial Activities of Wedelia trilobata and Morinda pubescens[J]. Asian Journal of Chemistry,2011,23 (1):305-308.
    [211]Qiang Y, Du D L, Chen Y J et al. ent-Kaurane Diterpenes and Further Constituents from Wedelia trilobata[J]. Helvetica Chimica Acta,2011,94 (5):817-823.
    [212]Steudel B, Hector A, Friedl T et al. Biodiversity effects on ecosystem functioning change along environmental stress gradients[J]. Ecology Letters,2012, n/a-n/a.
    [213]Kolb A, Alpert P, Enters D et al. Patterns of invasion within a grassland community[J]. Journal of Ecology,2002, 90(5):871-881.
    [214]Wu J R, Peng S L, Zhao H B et al. Allelopathic effects of Wedelia trilobata residues on lettuce germination and seedling growth[J]. Allelopathy Journal,2008,22 (1):197-203.
    [215]Wang R L, Staehelin C, Dayan F E et al. Simulated Acid Rain Accelerates Litter Decomposition and Enhances the Allelopathic Potential of the Invasive Plant Wedelia trilobata (Creeping Daisy)[J]. Weed Science,2012, 60 (3):462-467.
    [216]Zhai D-L, Cannon C H, Slik J W F et al. Rubber and pulp plantations represent a double threat to Hainan's natural tropical forests[J]. Journal of Environmental Management,2012,96 (1):64-73.
    [217]Zhang M X, Fellowes J R, Jiang X L et al. Degradation of tropical forest in Hainan, China,1991-2008: Conservation implications for Hainan Gibbon(Nomascus hainanus)[J]. Biological Conservation,2010,143 (6):1397-1404.
    [218]郭艳玲,张鹏英,郭漠然,等.次生代谢产物与植物抗病防御反应[J].植物生理学报,2012,48(5):429-434.
    [219]高微微,佟建明,郭顺星.植物次生代谢产物的生态学功能研究进展[J].中国药学杂志,2006,41(13):961-963.
    [220]Dixon R A. Natural products and plant disease resistance[J]. Nature,2001, (411):834-847.
    [221]Hou Y P. Peng S L, Chen B M et al. Inhibition of an invasive plant(Mikania micrantha H.B.K.) by soils of three different forests in lower subtropical China[J]. Biological Invasions,2011,13 (2):381-391.
    [222]戴志聪,杜道林,司春灿,等.用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J].广西植物,2009,(03):342-347.
    [223]Chatterjee A, Cui Y, Yang H et al. GacA, the Response Regulator of a Two-Component System, Acts as a Master Regulator in Pseudomonas syringae pv. tomato DC3000 by Controlling Regulatory RNA, Transcriptional Activators, and Alternate Sigma Factors[J]. Molecular Plant-Microbe Interactions,2003,16 (12):1106-1117.
    [224]McCarthy Y, Dow J M,Ryan R P. The Ax21 Protein Is a Cell-Cell Signal That Regulates Virulence in the Nosocomial Pathogen Stenotrophomonas maltophilia[J]. Journal of bacteriology,2011,193 (22):6375-6378.
    [225]Baker C M,. O S U P S. Strain Typing and Characterization of Sigma54-dependent Transcriptional Activator Mutants in Pseudomonas syringae pv.Tomato[EB]. Oklahoma State University,2008.
    [226]Saldias M S, Lamothe J, Wu R et al. Burkholderia cenocepacia Requires the RpoN Sigma Factor for Biofilm Formation and Intracellular Trafficking within Macrophages[J]. Infection and Immunity,2008,76 (3):1059-1067.
    [227]曲媛,杨梦华,郑会明,等.中华根瘤菌Sinorhizobium sp.1128自体诱导物合成酶基因的克隆及对生理功能的影响[J].微生物学报,2008,48(10):1314-1318.
    [228]JOAN M. NICOLLS, J. BIRNER,FORSELL P. Passicol, an Antibacterial and Antifungal Agent Produced by Passiflora Plant Species:Qualitative and Quantitative Range of Activity[J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAY,1973,3 (1):110-117.
    [229]Giang P.M., Son P.T.. Matsunami K. et al. Anti-staphylococcal activity of ent-kaurane-type diterpenoids from Croton tonkinensis[J].Journal of Natural Medicines,2006,60 (1):93-95.
    [230]Fried J, Krakower G W. Rosenthal D et al. Structure-Activity Relationships in the Field of Antibacterial Steroid Acids[J]. J Med Chem,1965,8279-282.
    [231]李玲,宋旭敏,李凡,等.6种植物提取物对非洲菊疫病病菌的抑菌活性筛选[J].农药,2009,48(5):371-373.
    [232]Flory S L, Kleczewski N,Clay K. Ecological consequences of pathogen accumulation on an invasive grass[J]. Ecosphere,2011,2(10):art120.
    [233]Rudrappa T, Czymmek K J, Pare P W et al. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria[J]. Plant Physiology,2008,148 (3):1547-1556.
    [234]Dangl J L Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature,2001,411 (6839):826-833.
    [235]Luo S, Peng J, Li K et al. Contrasting evolutionary patterns of the Rpl resistance gene family in different species of Poaceae[J]. Molecular Biology and Evolution,2011,28 (1):313-325.
    [236]DeYoung B J,Innes R W. Plant NBS-LRR proteins in pathogen sensing and host defense[J]. Nature Immunology,2006,7 (12):1243-1249.
    [237]Lin F, Chen S, Que Z et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics,2007,177 (3):1871-1880.
    [238]Tameling W I, Elzinga S D, Darmin P S et al. The tomato R gene products 1-2 and MI-1 are functional ATP binding proteins with ATPase activity[J]. The Plant Cell,2002,14 (11):2929-2939.
    [239]Meyers B C, Dickerman A W, Michelmore R W et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily[J]. The Plant Journal,1999,20 (3):317-332.
    [240]Reddy I, Srinivas Reddy D, Lakshmi Narasu M et al. Characterization of disease resistance gene homologues isolated from finger millet(Eleusine coracana L. Gaertn)[J]. Molecular Breeding,2011,27 (3):315-328.
    [241]Madsen L H, Collins N C, Rakwalska M et al. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping[J]. Molecular Genetics and Genomics,2003,269 (1):150-161.
    [242]Shen K A, Meyers B C, Islam-Faridi M N et al. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce[J]. Molecular Plant-Microbe Interactions,1998,11 (8):815-823.
    [243]Stewart C N, Jr.,Via L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications[J]. Biotechniques,1993,14 (5):748-750.
    [244]Kanazin V, Marek L F,Shoemaker R C. Resistance gene analogs are conserved and clustered in soybean[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93 (21):11746-11750.
    [245]Larkin M A, Blackshields G, Brown N P et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics,2007,23 (21):2947-2948.
    [246]Sanseverino W, Roma G, De Simone M et al. PRGdb:a bioinformatics platform for plant resistance gene analysis[J]. Nucleic Acids Research,2010,38 (Database issue):D814-D821.
    [247]Tatusova T A,Madden T L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences[J]. FEMS Microbiology Letters,1999,174 (2):247-250.
    [248]Tamura K P D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5:Molecular evolutionary genetics analysis using Maximum likelihood, evolutionary distance, and Maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28 (10):2731-2739.
    [249]Guindon S, Dufayard J F, Lefort V et al. New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0[J]. Systermatic Biology,2010,59 (3):307-321.
    [250]Stover B C,Muller K F. TreeGraph 2:combining and visualizing evidence from different phylogenetic analyses[J]. BMC Bioinformatics,2010,117.
    [251]Kryazhimskiy S,Plotkin J B. The population genetics of dN/dS[J]. PLoS Genetics,2008,4 (12):e1000304.
    [252]Wang D P, Wan H L, Zhang S et al. gamma-MYN:a new algorithm for estimating Ka and Ks with consideration of variable substitution rates[J]. Biology Direct,2009,4
    [253]Buschiazzo E, Ritland C, Bohlmann J et al. Slow but not low:genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms[J]. BMC Evolutionary Biology,2012,12
    [254]Yang Z,Bielawski J P. Statistical methods for detecting molecular adaptation[J]. Trends in Ecology & Evolution, 2000,15 (12):496-503.
    [255]Rocha E P C, Smith J M, Hurst L D et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes[J]. Journal of Theoretical Biology,2006,239 (2):226-235.
    [256]Liu X, Wu J, Wang J et al. WebLab:a data-centric, knowledge-sharing bioinformatic platform[J]. Nucleic Acids Research,2009,37 (Web Server issue):W33-39.
    [257]Suyama M, Torrents D,Bork P. PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments[J]. Nucleic Acids Research,2006,34 (Web Server issue):W609-612.
    [258]Yu H, Yu F-H, Miao S-L et al. Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery[J]. Biological Conservation,2008,141 (10):2653-2661.
    [259]Baldi P, Patocchi A, Zini E et al. Cloning and linkage mapping of resistance gene homologues in apple[J]. Theoretical and Applied Genetics,2004,109 (1):231-239.
    [260]Ellis J, Dodds P,Pryor T. Structure, function and evolution of plant disease resistance genes[J]. Current Opinion in Plant Biology,2000,3 (4):278-284.
    [261]Yu Y G, Buss G R,Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93 (21):11751-11756.
    [262]Aarts M G M, Lintel Hekkert B t, Holub E B et al. Identification of.R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 1998,11 (4):251-258.
    [263]Michelmore R W,Meyers B C. Clusters of resistance genes in plants evolve by divergent selection and a Birth-and-Death process[J]. Genome Research,1998,8 (11):1113-1130.
    [264]Durrant W E,Dong X. Systemic acquired resistance. Annual Review of Phytopathology,2004,42185-209.
    [265]Liu J J,Ekramoddoullah A K. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine(pinns monticola Dougl. ex. D. Don.)[J]. Molecular Genetics and Genomics, 2003,270 (5):432-441. Epub 2003 Oct 2028.
    [266]Cannon S B, Zhu H Y. Baumgarten A M el al. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies[J]. Journal of Molecular Evolution,2002,54 (4):548-562.
    [267]Meyers B C, Kozik A, Griego A et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J]. Plant Cell,2003,15 (4):809-834.
    [268]Luck J E, Lawrence G J, Dodds P N el al. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination[J]. The Plant Cell,2000,12 (8):1367-1377.
    [269]Ellis J G, Lawrence G J, Luck J E et al. Identification of regions in alleles of the flax rust resistance gene L that determine differences in Gene-for-Gene specificity[J]. The Plant Cell,1999,11 (3):495-506.
    [270]Collier S M,Moffett P. NB-LRRs work a "bait and switch" on pathogens[J]. Trends in Plant Science,2009,14 (10):521-529.
    [271]Martin G B, Bogdanove A J,Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annual Review of Plant Biology,2003,54 23-61.
    [272]Rafiqi M, Bernoux M, Ellis J G et al. In the trenches of plant pathogen recognition:Role of NB-LRR proteins[J]. Seminars in Cell & Developmental Biology,2009,20 (9):1017-1024.
    [273]Crawford K M,Whitney K D. Population genetic diversity influences colonization success[J]. Molecular Ecology,2010,19 (6):1253-1263.
    [274]Lindholm A K, Breden F. Alexander H J et al. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia[J]. Molecular Ecology,2005,14 (12):3671-3682.
    [275]Huenneke L F. Ecological implications of genetic variation in plant populations[J]. Genetics and Conservation of Rare Plants,1991,31-44.
    [276]Ayala F J. The Mechanisms of Evolution [J]. Scientific American,1978,239 (3):56-59.
    [277]Brasier C M. Rapid evolution of introduced plant pathogens via interspecific hybridization[J]. BioScience,2001, 51 (2):123-133.
    [278]Dlugosch K M,Parker I M. Founding events in species invasions:genetic variation, adaptive evolution, and the role of multiple introductions[J]. Molecular Ecology,2008,17 (1):431-449.
    [279]Ossowski S, Schwab R,Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs[J]. The Plant Journal,2008,53 (4):674-690.
    [280]Wilkinson H H, Siegel M R, Blankenship J D et al. Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism[J]. Molecular Plant-Microbe Interactions,2000,13 (10):1027-1033.
    [281]Taghavi S, Garafola C, Monchy S et al. Genome Survey and Characterization of Endophytic Bacteria Exhibiting a Beneficial Effect on Growth and Development of Poplar Trees[J]. Applied and Environmental Microbiology,2009,75 (3):748-757.
    [282]Berg G, Krechel A, Ditz M et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi[J]. Ferns Microbiology Ecology,2005,51 (2):215-229.
    [283]Dalton D A, Kramer S, Azios N et al. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon[J]. Ferns Microbiology Ecology,2004,49 (3):469-479.
    [284]Ting A S Y, Meon S, Kadir J et al. Endophytic microorganisms as potential growth promoters of banana[J]. BioControl,2008,53 (3):541-553.
    [285]Minamisawa K, Nishioka K, Miyaki T et al. Anaerobic Nitrogen-Fixing Consortia Consisting of Clostridia Isolated from Gramineous Plants[J]. Applied and Environmental Microbiology,2004,70 (5):3096-3102.
    [286]Aschehoug E T, Metlen K L, Callaway R M et al. Fungal endophytes directly increase the competitive effects of an invasive forb[J]. Ecology,2011,93 (1):3-8.
    [287]Taghavi S, Garafola C, Monchy S et al Genome Survey and Characterization of Endophytic Bacteria Exhibiting a Beneficial Effect on Growth and Development of Poplar Trees[J]. Applied and Environmental Microbiology,2008,75 (3):748-757.
    [288]Felske A, Wolterink A, Lis R et al. Searching for predominant soil bacteria:16S rDNA cloning versus strain cultivation[J]. FEMS Microbiology Ecology, 1999, 30 (2):137-145.
    [289]Sun L, Qiu F, Zhang X et al. Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis[J]. Microbial Ecology, 2007, 55 (3):415-424.
    [290]Zhang Z, Schwartz S, Wagner L et al. A greedy algorithm for aligning DNA sequences[J]. J Comput Biol, 2000, 7(1-2):203-214.
    [291]Kai M, Effinert U, Berg G et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctoniasolant[J]. Archives of Microbiology, 2006, 187 (5):351-360.
    [292]Vespermann A, Kai M ,Piechulla B. Rhizobacterial Volatiles Affect the Growth of Fungi and Arabidopsis thaliana[J]. Applied and Environmental Microbiology, 2007, 73 (17):5639-5641.
    [293]Pagola M, Ortiz R, Irigoyen I et al. New method to assess barley nitrogen nutrition status based on image colour analysis[Jl. Computers and Electronics in Agriculture, 2009, 65 (2):213-218.
    [294]Zelicourt A, Letousey P, Thoiron S et al. Ha-DEFl, a sunflower defensin, induces cell death in Orobanche parasitic plants[J]. Planta, 2007, 226 (3):591-600.
    [295]Sessitsch A, Reiter B, Pfeifer U et al. Cultivation - independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes - specific PCR of 16S rRNA genes[J]. FEMS Microbiology Ecology, 2002, 39 (l):23-32.
    [296]Compant S, Duffy B, Nowak J et al. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects[J]. Applied and Environmental Microbiology, 2005a, 71 (9):4951-4959.
    [297]Hardoim P R, van Overbeek L S ,Elsas J D v. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends in Microbiology, 2008, 16 (10):463-471.
    [298]Igarashi Y, Ogawa M, Sato Y et al. Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Altemaria brassicicola, from Streptomyces sp TP-A0569[J]. Journal of Antibiotics, 2000, 53 (10):l 117-1122.
    [299]Velazhahan R S R. Relationship between antagonistic activities of Pseudomonas fluorescent isolates against Rhizoctonia solani and their production of lytic enzymes[J]. J plant Dasease and Protection, 1999, 106 (3):244-250.
    [300]田新莉,蔡爱群,曹理想,等.水稻内生真菌类群分析及其颉抗病原菌活性研究[J].中山大学学报(自然科学版),2005,44(2):69-73.
    [301]Lu Hong Z W X, Meng Jun Cai, et al. Newbioactivemetabolitesproduced by Colletotrichum sp., an endophytic fungus in Artemisia anmia[J]. Plant Science, 2000, 151 67-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700