给水管网中生物膜及硝化作用控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于各国对饮用水消毒副产物重视程度的提高,相对稳定和消毒副产物生成量较少的氯胺作为二次消毒剂被越来越多的水厂采用。在给水管网中,氯胺能够在一定程度上灭活水中和管壁生物膜中的微生物,但同时可能会与水中及生物膜中的有机物发生反应,释放出一定量的微生物可利用有机物为异养细菌在管网中的再生长提供底物。而氯胺消毒的另一个问题是由于氯胺衰减在水中释放出氨氮而引起氨氧化细菌(AOB)的生长,导致管网中硝化作用的发生,引起异养菌的大量繁殖。本文通过模拟管网系统及实际管网采样测定,系统地研究了氯胺消毒管网中微生物生长现象、硝化作用及管网内余氯衰减的问题,并探讨了氯胺消毒管网水的微生物安全性影响因素及其控制方法,以期为保障氯胺消毒管网微生物安全性提供科学依据。
     利用模拟管网系统RAB反应器,以松花江为水源的哈尔滨某水厂出水为研究对象,研究氯胺消毒对不同管材上生物膜形成的影响及控制效果,并探讨了管材和余氯胺等因素对管壁生物膜形成的影响。结果表明,在不加消毒剂时,生物膜中异养菌浓度明显增加,而在有氯胺情况下运行,可以较好地控制生物膜中细菌的浓度。在有、无氯胺存在条件下,铜质挂片上的异养菌数量明显低于不锈钢挂片;氯胺对管壁生物膜和水中细菌具有一定控制作用,但低浓度的氯胺(0.5~0.75mg/L)不能阻止给水管壁生物膜的形成和水中悬浮菌浓度的增加。
     以大肠杆菌生物膜为研究对象,对比研究了氯和氯胺对该生物膜的灭活,并首次提出两种消毒剂对生物膜的氧化作用溶出物对细菌再生长的影响。在相同CT值,氯浓度的提高对生物膜中细菌的灭活效果明显;而在相同氯胺浓度,氯胺对生物膜细菌灭活效果是由CT值决定的,而氯胺浓度的提高对灭活率的提高不起主要作用。氯和氯胺对生物膜的氧化作用都会造成水中生物可利用有机碳(AOC)、生物可利用磷(MAP)浓度的增加,并增加了水的细菌生长潜能(BRP),因而在管壁生物膜存在的情况下,消毒剂的存在会造成管壁中物质的溶出,促进水中微生物的生长。
     利用模拟管网系统RAB反应器,研究了有机物浓度、氯氨比与硝化生物膜形成的关系,并探讨了pH值、温度、氯胺浓度对管网硝化作用的影响,以及三种消毒剂对硝化作用的控制。结果表明:氯氨比对于硝化作用影响不显著,而有机物水平对硝化作用有显著影响,高有机物较低有机物水平硝化程度高。提高pH值可能改变化合态氯胺的种类和将氯胺能够维持更高的水平,硝化作用也得到了一定程度的控制。在较低水温时(13±2℃),一定浓度氯胺对水和生物膜中AOB灭活后,停止投加氯胺,由于AOB生长速率很低,AOB的浓度增加不显著。但当水温提高到22±2℃后,AOB浓度有回升的趋势,较高的温度会影响AOB的生长速率。氯胺对硝化作用的控制依赖于氯胺的浓度,作用时间和温度。亚氯酸根转而使用氯胺较单纯使用氯胺可以有效的控制管网中的硝化作用。
     对硝化细菌代谢产物与异养菌生长的关系进行研究时发现,硝化细菌产生的溶解性微生物产物和死亡的AOB可以作为异养细菌生长底物的补充,促使异养细菌繁殖。
     对氯胺在管网中的衰减的研究表明,随温度的升高,氯胺自身的分解速度增加;而氯氨比的提高,氯胺趋于不稳定,氯胺的衰减量和衰减速率均高于低氯氨比的情况。在pH值6.0-8.9的范围内,pH值越高,氯胺的稳定性越高,衰减量和衰减速率越低。高氯胺浓度下氯胺的衰减量远大于低浓度氯胺的衰减量,并且高氯氨比下其衰减速度加快。亚硝酸氮可以促进氯胺的衰减,当管网系统中发生硝化作用,产生的亚硝酸氮迅速与氯胺发生反应,导致氯胺的衰减,其与氯胺具有较快的反应速率,促进作用在初始阶段体现得更为明显。有生物膜存在时,氯胺的衰减速率是自来水中的一半左右,也就是说生物膜对氯胺衰减的贡献占氯胺衰减系数的一半左右,可见生物膜是管网系统中造成消毒剂衰减的重要部分。实际管网取样的水质参数和潜能分析,验证了在实验室对硝化作用得到的结果。
     由于消毒剂会与水中及管壁生物膜进行反应以及自身衰减而造成浓度降低,使管网中的微生物大量繁殖和导致硝化作用的发生。因而给水管网中维持一定量的消毒剂余量是保证饮用水微生物安全性的一个重要手段。实际管网水样的水质参数分析,与实验室得到的硝化作用的结果有较好的对应关系。
In response to new limits on disinfection byproducts (DBPs), drinking water utilities in many countries are implementing chloramination for the purpose of distribution system disinfection. Although the use of chloramines resulted in inactivation bacteria, chloramines will react with organic matter in bulk water and biofilm. The chloramines consumed in the bulk and biofilm will release microbial assimilated organic carbon (AOC) which can serve as a source of energy for heterotrophic bacteria localized and reproduced in the bulk water and biofilm. Another significant concern associated with this practice is nitrification caused by the growth of ammonia-oxidizing bacteria (AOB) in the distribution, which is associated with an increase in heterotrophic plate count (HPC) bacteria. In this study, bacteria growth, nitrification, chloramines decay and the controlling method of microbial safety was investigated. The primary objective of this research was to develop scientific basis regarding the microbial safety in model distribution system and site sampling using chloramines for secondary disinfection.
     Two Rotating Annular Bioreactors (RABs) with copper and stainless steel pipe materials were adopted to investigate the effects of these two pipe materials and chloramines disinfection on biofilms formation. The result indicated that the heterotrophic bacteria concentration increased in the absence of chloramines, but the bacteria concentration in biofilm can be controlled in the presence of chloramines. The count of bacteria in copper slide was lower significantly than in steel slide in the absence and presence of chloramines. The control of HPC in bulk water and biofilm was achieved by chloramines, but low level chloramines (0.5-0.75mg/L) cannot prevent the formation of biofilm and bacteria regrowth in bulk water.
     Take Escherichia coli biofilm as the research objective, the comparative study was conducted regarding to the inactivation effect on the biofilm applying chlorine and chloramines. Two kinds of disinfectant oxidation on biofilm were observed for the first time. The released oxidation product from biofilm will stimulate heterotrophic bacteria regrowth. Chlorine inactivation effect on biofilm increased with the chlorine concentration increasing on the same CT value, but chloramines inactivation effect highly depend on CT value on the same chloramines concentration. Using chlorine and chloramines resulted in release AOC and microbial assimilated phosphorus (MAP) from biofilm and increase the bacteria regrowth potential (BRP).
     The study used a bench-scale approach to evaluate the impact of organic matter level and chlorine to ammonia-N ratio on the incidence and potential establishment of nitrifying biofilm within simulated water distribution system. The temperature and pH effect on nitrification also studied insimulated distribution system. The finding from this study clearly indicated that organic matter level influence significantly on nitrification, but chlorine to ammonia ratio is not the factor for nitrification. Obvious symptom of nitrification occurred at high level organic matter. Increasing pH level can stabilize and increase the chloramines concentration, which can control AOB concentration to some extent. Chloramines controlling for nitrification depend on chloramines dosage and temperature.
     Relationship was observed between heterotrophic bacteria growth and metabolic product produced by AOB. The formation of soluble microbial products (SMP) by AOB and dead AOB can provide a supplementary organic substrate for heterotrophic bacteria.
     It was found that auto-decomposition rate of chloramines increased with temperature increasing. Chloramines show unstable at high chlorine to ammonia ratio. Chloramines were more stable at higher pH level. Nitrite is typically found in distribution system due to nitrification. The presence of nitrite accelerates the chloramines decay. The chloramines decay rate caused by biofilm is 50% of total decay rate in simulated distribution system, which indicated that chloramines decay largely attribute to biofilm in distribution system.
     Because of disinfectant can react with organic matter in bulk water and biofilm and auto-decompose. The disinfectant concentration decreased will lead to bacteria growth in distribution system. It is important that maintain appropriate concentration disinfectant to guarantee microbial safety of drinking water.
引文
1何维华.国内部分城市供水管网水质调研分析[J].给水排水. 1993, 19(11): 15~19.
    2杜英林,任立民.浅析配水管网水质污染原因及防止措施[J].山东水利. 2001, 9: 43~44.
    3陈寅,陈国光.上海城市供水管网水质的调查分析[J].中国给水排水. 2002, 18(7): 32~34.
    4 Leila G-L, David D, Jean-Claude J et al. Health risks and parasitical quality of water[J]. American water works Association. Journal. 2003, 95(5): 162~164.
    5 Morteza A, Mark L, Charles G. Occurrence of viruses in US groundwaters[J]. American water works Association. Journal. 2003, 95(9): 107~110.
    6 Gary SL, Orren DS, George CB. Hindsight Is 20/20: Using History to Avoid Waterborne Disease Outbreaks[J]. American water works Association. Journal. 2004, 96(7): 66~72.
    7 Michael HK, Gustav Q, Philippe H et al. Waterborne diseases in Europe--1986-96[J]. American water works Association. Journal. 2001, 93(1): 48~56.
    8 Anne KC, Kristin B, Anne S et al. Effect of distribution system materials on bacterial regrowth[J]. American water works Association. Journal. 2003, 95(7): 107~117.
    9 Marie-Claude B, Vincent G, Pierre S et al. Explaining the occurrence of coliforms in distributions systems[J]. American water works Association. Journal. 2002, 94(8): 95~105.
    10 Marc B, Sylvain F, Sebastien S et al. Organic matter quality and survival of coliforms in low-nutritive waters[J]. American water works Association. Journal. 2003, 95(8): 119~129.
    11 Miao Z, Michael JS, David S et al. Biostability and microbiological quality in a chloraminated distribution system[J]. American water works Association. Journal. 2002, 94(9): 112~123.
    12 Block JC. Biofilms in drinking water distribution systems, Biofilm-Science and technology: Kluwer Academic Publishers, Netherlands; 1992.
    13 LeChevallier MW, Lowry CD, Lee RG. Disinfecting biofilm in a model dsitribution system[J]. American Water Works Association. Journal. 1990, 82(7): 87~99.
    14 LeChevallier MW, Cawthon CD, Lee RG. Factors promoting survival of bacteria in chlorinated water supplies[J]. Appl. Environ. Microbiol. 1988, 54(3): 649~654.
    15 Jegatheesan V, Kastl G, Fisher I et al. Modeling bacterial in drinking water: effect of nutrients[J]. Journal American Water Works Association. 2004, 96(5): 129~141.
    16 Saravanan P, Nancharaiah YV, Venugopalan VP et al. Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine[J]. Biofouling. 2006, 22(6): 371~381.
    17 Bull RJ, Kopfler FC. Health Effect of Disinfectants and Disinfection Byproducts. Denver, Colo: American Water Works Association; 1991.
    18马军.氯化消毒副产物的形成及对饮用水水质的影响[J].中国给水排水. 1997, 13(1): 35~36.
    19 Reckhow DA. Chlorination by-Products in Drinking Waters: from Formaiton Potentials to Finished Water Concentrations[J]. American water works Association. Journal. 1990, 82(4): 173~180.
    20 Seidel. CJ, McGuire. MJ, Summers. RS et al. Have utilities switched to chloramines?[J]. American Water Works Association. Journal. 2005, 97(10): 87~97.
    21 Odell L, H., Kirmeyer GJ, Wilczak A et al. Controlling nitrification in chloraminated systems[J]. American Water Works Association. Journal. 1996, 88(7): 86~98.
    22 Kirmeyer GJ, Odell HJ, Jacangelo AW et al. Nitrification occurrence and control in chloraminated water systems. Denver, CO: The Foundation and American Water Works Association; 1995.
    23 Wilczak. A, Jacangelo. JG, Marcinko. JP et al. Occurrence of nitrification in chloraminated distribution systems[J]. American Water Works Association. Journal. 1996, 88(7): 74~85.
    24 Skadsen J. Effectiveness of high pH in controlling nitrification[J]. American Water Works Association. Journal. 2002, 94(7): 73~84.
    25 DiGiano FA, Carrier RA, Dietrich AM. Nitrification and Nitrisation on the Surface of GAC. [J]. American water works Association. Journal. 1986, 76(8):70~74.
    26 Association. AWWA. Monitoring Ammonia-Oxidizing in chloraminated distribution systems. 1st ed. Denver, CO: American Water Works Association; 2006.
    27 Rehan S, Manuel JR. Disinfection by-product(DBPs)in drinking water and preditive models for their occurrence: a review[J]. Science of the total Environment. 2004, 321: 21~46.
    28 Haas CN. Disinfection. 4th ed. New York: McGraw-Hill; 1990.
    29 Snoeyink VL, Jenkin D. Water Chemistry. New York: John Wiley & Sons, Inc; 1980.
    30 Fair GM, Morris JC, Chang SL. The behavior of chlorine as a water disinfectant[J]. American water works Association. Journal. 1948, 40(7): 1051~1061.
    31 Rook JJ. Headspace analysis in water[J]. H2O. 1971, 4(17): 385~387.
    32 Christman RL, Johnson JD, Norwood DL. Chlorination of Aquantic Humic Substances. Final report of USEPA Project R-804430, EPA 600/2-81-016, NTIS Accession No. PB81-161952. Cincinnati, Ohio: US Enviromental Protection Agency; 1979.
    33 Trehy ML, Bieber TI. Effects of Commonly Used Water Treatment Processes on the Formation of THMs and DHANs. In Proc. In: AWWA Annual Conference; 1980; Denvor, Colo: American Water Works Association; 1980.
    34 Hemming J, Holmbom B, Reunanen M et al. Determination of the strong mutagen3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in chlorinated drinking and humic waters[J]. Chemosphere. 1986, 15(5): 549~556.
    35 USEPA. Alternative Disinfectants and Oxidants Guidance Manual, EPA815- R-99-014. In. Washington DC; 1999.
    36 Race J. Chlorination and Chloramine[J]. American water works Association. Journal. 1918, 5(3): 63~65.
    37 DeBerard HI. Chloramine at Denver Solves Aftergrowth Problem[J]. Engineering News Record. 1917, (79): 210~215.
    38 Gilcreas FW. Chlorine-Ammonia Treatment of Water Committee Report.[J]. American water works Association. Journal. 1941 33(12): 2079~2087.
    39 Means EG, Tanaka TS, Otsuka DJ et al. Effects of Chlorine and Ammonia Application Points on Bactericidal Efficiency. [J]. American water works Association. Journal. 1986, 78(1): 62~69.
    40 White GC. Handbook of Chlorination and Alternative Disinfectants. 4th ed. New York: John Wiley & Sons, Inc.; 1999.
    41 Valentine RL, Jafvert CT. General acid catalysis of monochloramine disproportionton[J]. Environmental Science & Technology. 1988, 22(6): 691~696.
    42 Jafert CT, Valentine RL. Reaction scheme for the chlorination of ammoniacal water[J]. Environmental Science & Technology. 1992, 26(3): 577~586.
    43 Jafert CT, Valentine RL. Dichloramine decompsition in the presence of excess ammonia[J]. Wat. Res. 1987, 21(8): 967~973.
    44 Vikesland PJ, Ozekin K, Valentine RL. Deteremination of chloramine decomposition products [J]. Abstracts of Papers of the American Chemical Society. 1995, 210: 198~ENVR.
    45 Harrington GW, Noguera DR, Bone CC et al. Ammonia from chloramine decay: effects on distribution system nitrification. Denver, Colo.: AWWA Research Foundation; American Water Works Association; 2003.
    46 Valentine RL, Ozekin K, Vikesland PJ et al. Chloramine decomposition in distribution system and model waters. Denver, Colo.: American Water Works Association; 1998.
    47 Liu W, Wu H, Wang Z et al. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system[J]. Water Research. 2002, 36(4): 891~898.
    48 Margerum DW, Schurter LM, Hobson J et al. Water Chlorination Chemistry-Nonmetal Redox Kinetics of Chloramine and Nitrite Ion[J]. Abstracts of Papers of the American Chemical Society. 1993, 206: 26-ENVR.
    49 Valentine RL. Disappearance of monochloramine in the presence of nitrite, in water chlorination: Chemistry,Environmental Impact and Health Effects, 5:975~984: Lesis Publlishers, Chelsea, MI; 1985.
    50 Chick H. An investigation of the laws of disinfection[J]. Journal of Hygiene. 1908, 8: 92~158.
    51 Watson HE. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant[J]. Journal of Hygiene. 1908, 8: 536~542.
    52 Finch GR, Black EK, Labatiuk CW et al. Comparsion of Giardia lamblia and Giardia muris cyst inactivtion by ozone.[J]. Appl. Environ. Microbiol. 1993, 59(11): 3674~3680.
    53 Haas CN, Karra SB. Kinetics of microbial inactivation by chlorine.ⅡKinetics in the presence of chlorine demand.[J]. Wat. Res. 1984, 18: 1451~1454.
    54 Oldenburg PS, Regan JM, Harrington GW et al. Kinetics of Nitrosomonas europaea inactivation by chloramine[J]. American Water Works Association. Journal. 2002, 94(10): 100~111.
    55 Reagan JM. Microbial Ecology of Nitrification in Chloraminated Drinking Water Distribution Systems [PhD. Dissertation]. Madison, Wisc: University of Wisconsin; 2001.
    56 Vikesland PJ, Ozekin K, Valentine RL. Monochloramine decay in model and distribution system waters[J]. Water Research. 2001, 35(7): 1766~1776.
    57 Neden DG, Jones RJ, Smith JR. Comparing chlorination for controlling bacterial regrowth[J]. American water works Association. Journal. 1992, 84(7): 80~88.
    58 Norton CD, LeChevallier MW. Chloramination: its effect on distribution system water quality[J]. American water works Association. Journal. 1997, 89(7): 66~77.
    59 Committee AWQDDS. Committee Report: Disinfection at Large and Medium-size Systems[J]. American water works Association. Journal. 2000, 92(5): 32~43.
    60 M/DBP Stage2 Federal Advisory Committee (FACA2). June 27~28 W, DC.2000.
    61衡正昌,李朝晖,姜维华等.氯胺消毒对饮用水消毒副产物形成和致突变性的影响[J].环境与健康杂志. 2005, 20(3): 134~136.
    62 Symons JM, Speitel GE, Hwang CJ. Factors affecting disinfection by-product formation during chloramination. Denver, Colo.: AWWA: Research Foundation and AWWA; 1998.
    63 Xin Y, Shang C, Huang JC. DBP Formation in Breakpoint Chlorination of Wastewater[J]. Water Research. 2005, 39(8): 4755~4767.
    64 Hong Anh Duonga MB, Minh Hang Hoang, et al. Trihalomethane Formation by Chlorination of Ammonium- and Bromide-containing Groundwater in Water Supplies of Hanoi, Vietnam. Water Research. 2003,37(12): 3242~3252.
    65 Oldenburg PS, Regan JM, Harrington GW et al. Kinetics of Nitrosomonas europaea inactivation by chloramine[J]. Journal American Water Works Association. 2002, 94(10): 100~110.
    66 Harrington. GW, Noguera. DR, Kandou. AI et al. Pilot-scale evaluation of nitrification control strategies[J]. American Water Works Association. Journal. 2002, 94(11): 78~89.
    67 Lieu NI, Wolfe RL, Means EG. Optimizing Chloramine Disinfection for The Control of Nitrification[J]. American water works Association. Journal. 1993, 85(2): 84~90.
    68 Cunliffe DA. Bacterial nitrification in chloraminated water supplies[J]. Applied and Environmental Microbiology. 1991, 57(11): 3399~3402.
    69 Skadsen J. Nitrification in a Distribution System[J]. American water works Association. Journal. 1993, 85(7): 95~103.
    70 Hynes RK, Knowles R. Inhibition of chemoautotriphic nitrification by sodium chlorate and sodium chlorite: a Reexamination. [J]. Appl Environ Microbiol. 1983, 45(4): 1178~1182.
    71 Michael JM, Nancy IL, Marie SP. Using the chlorite ion to control nitrification[J]. American water works Association. Journal. 1999, 91(10): 52~61.
    72 McGuire. MJ, Pearthree. MS, Blute. NK et al. Nitrification control by chlorite ion at pilot scale[J]. American Water Works Association. Journal. 2006, 98(1): 95~105.
    73 Fleming K, Harrington G, Noguera D. Using nitrification potential curves to evaluate full-scale drinking water distribution systems[J]. American water works Association. Journal. 2008, 100(10): 92~103.
    74 Regan JM, Harrington GW, Baribeau H et al. Diversity of nitrifying bacteria in full-scale chloraminated distribution systems[J]. Water Research. 2003, 37(1): 197~205.
    75 Wolfe RL, Lieu NI, Izaguirre G et al. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance[J]. Appl Environ Microbiol. 1990, 56(2): 451~462.
    76 Wilczak A, Joseph G, Jacangelo JP et al. Occurence of nitrification in chloraminated distribution systems[J]. Ammerican water works association. Journal. 1996, 88(7): 74~85.
    77顾夏声,李献文,竺建荣..水处理微生物学(第三版).北京; 1998.
    78 Lehtola MJ, Miettinen IT, Vartiainen T et al. A new sensitive bioassay for determination of microbially available phosphorus in water[J]. Appl Environ Microbiol. 1999, 65(5): 2032~2034.
    79 Soriano S, Walker N. Isolation of Ammonia-Oxidizing autotrophic bacteria.[J]. Jour Appl. Bact. 1968, 31(4): 493~497.
    80 APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC, USA: American Public Health Association 1998.
    81 Debeer D, Srinivasan R, Stewart PS. Direct measurement of chlorine penetration into biofilms during disinfection[J]. Appl Environ Microbiol. 1994, 60(12): 4339~4344.
    82 Niquette P, Servaisim P, Savoir R. Bacterial dynamics in the drinking water distribution system of Brussels[J]. Water Research. 2001, 35(3): 675~682.
    83 Kang MG, Ku YH, Cho YK et al. Variation of dissolved organic matter and microbial regrowth potential through drinking water treatment processes. In: Kroiss H, editor. 5th World Water Congress of the International-Water-Association; 2006 Sep 10-14; Beijing, China; 2006. p. 57-66.
    84 Feng Y, Teo WK, Siow KS et al. The corrosion behaviour of copper in neutral tap water. Part I: corrosion mechanisms[J]. Corros. Sci. 1996, 38(3): 369~385.
    85 LeChevallier MW, Babcock, R.M., Lee, R.G. Examination and characterization of distribution system biofilms[J]. Appl. Env. Microbiol. . 1987, 53 (12): 2714~2724.
    86 Van der W, Characklis WG, Smith BD. Biofilms and bacterial drinking water quality[J]. Water Research. 1989, 23(10): 1313~1322.
    87 Lechevallier MW, Cawthon CD, Lee RG. Inactivation of biofilm bacteria[J]. Appl Environ Microbiol. 1988, 54(10): 2492~2499.
    88 Al-Jasser AO. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect[J]. Water Research. 2007, 41(2): 387~396.
    89 Van der Kooij D, Veenendaal HR, Baars-Lorist C. Biofilm formation on surfaces of glass and teflon exposed to treated wate[J]. Water Research. 1995, 29(7): 1655~1662.
    90 Lehtola MJ, Miettinen IT, Lampola T et al. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems[J]. Water Res. 2005, 39(10): 1962~1971.
    91 Butterfield PW, Camper AK, Ellis BD. Chlorination of model drinking water biofilm: implications for growth and organic carbon removal[J]. Water Research. 2002, 36(17): 4391~4405.
    92 Lomander A, Schreuders P, Russek-Cohen E. Evaluation of chlorines impact on biofilms on scratched stainless steel surfaces[J]. Biores Technol. 2004, 94(3): 275~283.
    93 Chandy JP, Angles ML. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay[J]. Water Research. 2001, 35(11): 2677~2682.
    94 Nagy LA, Power KN. Relationship between bacterial regrowth and some physical and chemical parameters within Sydney's drinking water distribution system[J]. Water Research. 1999, 33(3): 741~750.
    95 Wang Z, Liu Q, Yu J et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods[J]. Appl. Catal. A. 2003, 239(87): 87~94.
    96 Zhang X, Pehkonen SO, Kocherginsky N et al. Copper corrosion in mildly alkaline water with the disinfectant monochloramine. [J]. Corros. Sci. 2002, 44(11): 2507~2528.
    97 Christl I, Metzger A, Heidmann I et al. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding[J]. Environ Sci &Technol. 2005, 39(14): 5319~5326.
    98 Haas CN, Joffe J, Anmangandla U. Water quality and disinfection kinetics[J]. Applied and Environmental Microbiology. 1996, 88(3): 95~103.
    99 Damian EH, Jeanne MV. Free chlorine demand and cell survival of microbial suspensions[J]. Water Research. 2007, 41(19): 4424~4434.
    100 Wiedenmanna A, Brauna M, Botzenhart K. Evaluation of the disinfection potential of low chlorine concentrations in tap water using immobilised enterococcus faecium in a continuous flow device[J]. Water Science and Technology. 1997, 35(11): 77~80.
    101 Mariko T, Masakatsu T, Masahiro M. Evaluation of some halogen biocides using a microbial biofilm system[J]. Water Research. 2005, 39(17): 4126~4132.
    102 Goeres DM, Palys T, Sandel BB. Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model[J]. Water Research. 2004, 38(13): 3103~3109.
    103 Lehtola MJ, Miettinen IT, Vartiainen T et al. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water[J]. Water Research. 2001, 35(7): 1635~1640.
    104 Miettinen IT, Vartiainen T, Martikainen PJ. Microbial growth in drinking waters treated with ozone, ozone/hydrogen peroxide or chlorine[J]. Ozone Sci. Engng. 1998, 20: 303~315
    105 Chu CH, Lu CS, Lee C. Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems[J]. Journal of Environ Management. 2005, 74(3): 255~263.
    106 Markku JL, Ilkka TM, Terttu V. Changes in content of microbially availablephosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes[J]. Water Research. 2002, 36(15): 3681~3690.
    107 Lehtola MJ, Miettinen IT, Vartiainen T et al. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water[J]. Water Res. 2001, 35(7): 1635~1640.
    108 Odell Lee H KGJ, Andrzej Wilczak, Joseph G. Jacangelo, Joseph P. Marcink. Controlling nitrification in chloraminated systems[J]. Ammerican water works association. Journal. 1996, 88(7): 86~98.
    109 Katarina D.M.Pintar WBA, Robin M. Slawson, E. Franklyn Smith and Peter M. Huck. Assessment of a distribution system nitrification critical threshold concept[J]. American water works Association. Journal. 2005, 97(7): 116~129.
    110 Fleming KK, Gregory W Harrington, Daniel R Noguera. Using nitrification potential curves to evaluate full-scale drinking water distribution systems[J]. American Water Works Association. Journal. 2008, 100(10): 92~105.
    111 Sathasivan A, Fisher I, Tam T. Onset of severe nitrification in mildly nitrifying chloraminated bulk waters and its relation to biostability[J]. Water Res. 2008, 42(14): 3623~3632.
    112 Pintar KDM, Slawson RM. Effect of temperature and disinfection strategies on ammonia-oxidizing bacteria in a bench-scale drinking water distribution system[J]. Water Research. 2003, 37(8): 1805~1817.
    113 Jolley RL. Water chlorination: environmental impact and health effects.[J]. 1984, 5.
    114 Grady CPL. Biological wastewater Treatmen. 2 ed. New York: Marcel Dekker Inc; 1999.
    115 Noguera DR. Inactivation of Ammonia-oxidizing bacteria by chloramine: implications for prevention and control of nitrification in distribution systems. In: Proceedings.1999 AWWA WQTC; Tampa, Fla, 1999.
    116 Jafvert CT, Valentine RL. Reaction scheme for the chloramination of ammoniacal water[J]. Environmental Science & Technology. 1992, 26(3): 577~586.
    117 Groeneweg J, Sellner Bt, Tappe W. Ammonia oxidation in Nitrosomonas at ammonia concentrations near Km: effects of pH and temperature[J]. Appl Environ Microbiol. 1994, 28: 2561~3571.
    118 Song DJ, Ali S, Hoover LL et al. Improvement of Chloramine Stability Through pH Control, TOC Reduction and Blending at EBMUD, California. In: In 1999AWWA Annual Conference Proceedings; 1999: Chicago, Ill. AWWA; 1999.
    119 Pintar KD, Slawson RM. Effect of temperature and disinfection strategies on ammonia-oxidizing bacteria in a bench-scale drinking water distribution system[J]. Water Res. 2003, 37(8): 1805-1817.
    120 Lieu NI, Wolfe RL, Means EGI. Optimizing chloramine disinfection for the control of nitrification[J]. American water works Association.Journal 1993, 85(2): 84~90.
    121 Satoshi O, Tomonori K, Tsukasa I. Fate of 14C-Labeled Microbial Products Derived from Nitrifying Bacteria in Autotrophic Nitrifying Biofilms [J]. Applied and environmental microbiology. 2005, 71(7): 3987~3994.
    122 Rittmann BE, Regan JM, Stahl DA. Nitrification as a source of soluble organic substrate in biological treatment[J]. Wat. Sci. Tech. 1994, 30(6): 1~8.
    123 Steward MH, Olson BH. Bacterial Resistance to Potable Water Disinfectants. Modeling Disease Transmission and its Prevention by Disinfection. Cambridge, England: Cambridge Univ. Pres; 1996.
    124 Momba MNB, Kfir R, Venter SN et al. An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. In: Water SA; 2000:59~65.
    125 Michael JM, Marie SP, Nicole KB et al. Nitrification control by chlorite ion at pilot scale[J]. American water works Association. Journal. 2006, 98(1): 95.
    126 Jafvert CT, Valentine RL. Dichloramine decomposition in the presence of excess ammonia[J]. Water Research. 1987, 21(8): 967~973.
    127 Margerum D.W. SLM, Hobson J. and Moore E. E. water chlorination chemistry: nonmetal redox kinetics of chloramine and nitrite ion.[J]. Environ Sci Technol. 1994, 28(2): 331~337.
    128 Christensen BE, Characklis WG. Physical and chemical properties of biofilms. In:Biofilms. W.G. Characklis and K.C. Marshall, John Wiley, New York, 1990.
    129 Flemming HC, Wingender J. Relevance of microbial excellular polymeric substances (EPSs) - part I: structureal and ecological aspects[J]. Wat. Sci. Tech. 2001, 43(6): 1~8.
    130 Nielsen PH, A. J, R. P. Conceptual model for production and composition of exopolymers in biofilms[J]. Wat. Sci. Tech. 1997, 36(1): 11~19.
    131 Fleming KK, Harrington GW, Noguera DR. Nitrification potential curves: a new strategy for nitrification prevention[J]. American Water Works Association. Journal. 2005, 97(8): 90~101.
    132 Yang J, Harrington GW, Noguera DR. Nitrification Modeling in Pilot-Scale Chloraminated Drinking Water Distribution Systems[J]. J. Envir. Engrg. . 2008, 134(9): 731~742
    133 Hall ER, Murphy KL. Estimation of Nitrifying Biomass and Kinetics in Wastewater[J]. Wat. Res. 1980, (14): 44~62.
    134 Stehr G, B?ttcher B, Dittberner P et al. The ammonia-oxidizing nitrifying population of the River Elbe estuary[J]. FEMS Microbiology Ecology. 1995, 17: 177~188.
    135 Fisher I, Sathasivan A, Chuo P et al. Effects of stratification on chloramine decay in distribution system service reservoirs[J]. Water Res. 2009, 43(5): 1403~1413.
    136 Sathasivan A, Fisher I, Kastl G. Simple method for quantifying microbiologically assisted chloramine decay in drinking water[J]. Environ Sci Technol. 2005, 39(14): 5407~5413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700