木聚糖酶产生菌的培养条件优化及部分酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对本实验室保藏的绿色木霉(Trichoderma viride)菌株。进行液态发酵,并对产酶发酵条件作了优化。优化的液态发酵条件如下:以10%玉米芯粉为碳源,0.5%的蛋白胨为氮源,100mL三角瓶20%装液量,2%接种量,培养基初始pH为4.0,30℃,180rpm条件下培养72h。
     将在此条件下培养得到的发酵液离心,加入50%饱和度的(NH_4)_2SO_4盐析,得到粗酶液。经测定,酶活为449U/mL,比活184.9U/mg。对此酶液进行部分基本酶学性质研究。测得该酶的最适反应温度为60℃;最适pH为4.0;有一定的热稳定性,40℃下能较长时间地保持较高活性,当高于40℃时,酶活迅速下降,作用20min后,相对酶活仅为4.5%;此酶在酸性环境下有较强的稳定性,但随着pH值的上升,酶的稳定性迅速下降,当pH值达到6.0时几乎检测不到酶活。考察了部分金属离子对该酶酶活的影响:当加入较低浓度金属离子时,Cu~(2+)对木聚糖酶有较强的抑制作用,其抑制率达到了41%。Al~(3+)次之,此外CO~(2+)、Cr~(3+)在此浓度对酶也有不同程度的抑制作用。随着金属离子浓度的增加,先前起抑制作用的金属离子对酶活力的抑制减弱,其中Cu~(2+)对木聚糖酶的抑制率从41%降低到8%。Al~(3+)、CO~(2+)、Cr~(3+)对木聚糖酶的抑制率也有不同程度的降低。其它金属离子K~+、Ba~(2+)、Ca~(2+)、Mn~(2+)、Fe~(3+)、Mg~(2+)等对酶活力无明显影响。
     此外,考察了将木聚糖酶与不同浓度保护剂:蔗糖、麦芽糖和葡萄糖作用后,木聚糖酶热稳定性和酸稳定性的变化。发现木聚糖酶与蔗糖和麦芽糖作用后,其热稳定性和酸稳定性均有不同程度的提高。其中,蔗糖的效果相对较好,当蔗糖浓度达到3%时,木聚糖酶的残余酶活达到最大值。此后。保护剂浓度的增大对酶活影响己不明显。葡萄糖对酶的保护作用极小。
Optimized the fermentation conditions of the Trichoderma viride collected in our lab.The optimization result through experiment is described as below: 10%corncob-powder of total medium volume as the carbon source, 0.5% peptone asthe nitrogen source, 20% triangle flask bulk for medium volume, 2% inoculatingvolume, initializing medium pH to 4.0, 30℃, 180 rpm to ferment for 72 hours.The fermentation broth was purified through centrifuging and salting out with 50%ammonium sulfate. The activity and the specific activity of the obtained crudxylanase is 449U/mL and 184.9U/mg respectively. Basic enzymatic characteristicsof obtained enzyme were studied. The optimal temperature is 60℃, and it showsrelatively good thermal stability under 40℃; The optimal pH condition is 4.0, andit is stable under acid environment but as the ascensus of pH value its stabilitydecrease quickly. The influences of some metal ions on xylanase activity were alsostudied. Lower concentration of the ions such as Cu~(2+)、Al~(3+)、Co~(2+) and Cr~(3+) inhibitthe enzyme activity. Especially the Cu~(2+), it has a relatively strong inhibit on theenzyme and it inhibited 41% of the activity. As the ascensus of the concentration,the inhibition attenuated. The inhibition of 2mmol/L Cu~(2+) degraded to 8 %. Theinfluences of other metal ions such as K~+、Ba~(2+)、Ca~(2+)、Mn~(2+)、Fe~(3+)、Mg~(2+)on xylanaseare not obvious Besides, we investigated the thermal and acid stability of xylanase after itsincubation with different concentration of protecttive solute(sucrose、maltose andglucose). The protective solute can improve the thermal and acid stability ofxylanase. The effects of sucrose are the best, it can retain most of the activity at theconcentration of 3%. At higher concentration the effects are not obvious any more.
引文
[1] 连惠芗,汪世华.木聚糖酶的研究与应用.武汉工业学院学报,2006,25(1):42~45
    [2] 李丹,黑曲霉木聚糖酶的发酵、性质及其应用研究,2004,东北师范大学硕士学位论文
    [3] 江正强,李里特,李颖.耐热木聚糖酶研究进展.中国生物工程杂志,2003,23(8):47~51
    [4] Pins J., Schmidt O. and Granzow, C.. Glucuronidase in two microbial xylanolytic systems, Enzyme Microb. Technol, 1987, 9, 83~88.
    [5] Biely P., Microbial xylanolytic systems, Trends Biotechnol, 1985, 3, 286~290
    [6] Subramaniyan S. and Prema P., Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol., 2002, 22, 33~64
    [7] 曹钰,陆健,李胤.酸性木聚糖酶的研究进展.工业微生物,2005,35(4):41~44
    [8] Henrissat B.. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemi. J. 1991, 280: 309-316
    [9] Beg Q K, Kapoor L, Mahajan L. Microbial Xylanases and Their Industril Application: a Review[J]. App lMicrobiolBiotechnol, 2001, 56:326-338.
    [10] 孙迅,王宜磊,邓振旭,半纤维素生物转化研究进展,微生物学杂志,1997,17(1),50-55
    [11] Johnson, K. G., Ross, N. W., Enzyme Microbial. Technol., 1990, 12, 960~964
    [12] Wont;, K.K.Y., Tan, L.U.L., Saddler, J.N., Enzyrne Microbiol. Technol., 1986, 8, 617-622
    [13] Sundberg, M., Poutanen, K., Biotechnol. and applied Biochem., 1991, 12, 1~11
    [14] 王雪鹏,高产木聚糖酶芽孢杆菌的选育及产酶的研究,2004,中国海洋大学
    [15] 张龙翔,张庭芳,李令媛.生化实验方法与技术.高等教育出版社,1997.137~138
    [16] Bailey, M.J., Biely, P., Poutanen, K.,.Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992, 23, 257-270.
    [17] 李秀婷,李里特,江正强.嗜热真菌耐热木聚糖酶的产酶条件和酶谱分忻[J].微生物学通报,2004,31(2):49-54.
    [18] 汪世华,胡开辉,余文英.木聚糖酶液体发酵条件的试验.河南科技大学学报(自然科学 版),2005,26(4):89-91
    [19] 肖舸.绿色木霉的筛选与产纤维素酶发酵条件优化及部分酶学性质研究,2004,四川大学硕士学位论文
    [20] Hrmova M, Bieley P, Vrsannaka M. Cellulose and xylandegrading enzymes of Aspergillus terreus and Aspergillus niger[J]. Enzyme MicrobiaITechnol, 1989, 11(9): 610-616.
    [21] 毛连山,余世袁.低聚木糖生产用里氏木霉木聚糖酶选择性合成的研究现状.现代化工,2007,27(2):17-21
    [22] 杨洁彬.食品微生物学.第2版.北京:北京农业大学出版社,1995.131
    [23] 罗贵民.酶工程[M].北京:化学工业出版社,2002:17.
    [24] 贾楠,牟光庆.豆豉纤溶酶冻干保护剂的研究.中国造,2007,1:17~19
    [25] 祝彦忠,贾英民,于宏伟等.黑曲霉(Aspergillus niger)Uγ-2菊粉酶保护剂的研究.微生物学通报,2005,32(5):67~71
    [26] 吴燕雯,吴瑛,徐斐.提高鸡肝酯酶稳定性的保护剂选择.食品工业科技,2005,26(6):84~85
    [27] 艾桂萍,徐建平,李铮铮等.酶保护剂对提高酶稳定性的作用.现代检验医学杂志,2003,18(3):18~19
    [1] 江正强,李里特,李颖.耐热木聚糖酶研究进展.中国生物工程杂志,2003,23(8):47~51
    [2] 连惠芗,汪世华.木聚糖酶的研究与应用.武汉工业学院学报,2006,25(1):42~45
    [3] Georis J, Giannotta F, Lamotte2Brasseur J, et al. Sequence, overproduction and purification of family 11 endo-β-1, 4-xylanase edcoded by the xyll gene of St reptomyces sp. S38 [J]. Gene, 1999, 237: 123-133.
    [4] Fukusaki E, Panbangred W, Shinmyo A, et al. The complete nucleotide sequence of the xylanase gene (xynA) of Bacill uspumilus [J]. FEBS Lett, 1984, 171:197-201.
    [5] 胡沂淮.草菇木聚糖酶的纯化提取和酶学性质.无锡轻工大学学报,2004,23(5):86~90
    [6] Ko EP, Akatsuka H, Moriyama H et al. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem J, 1992, 288:117-121
    [7] Poon DK, Webster P, Withers SG et al. Characterizing the pH-dependent stability and catalytic mechanism of the family 11 xylanase from the alkalophilic Bacillus agaradhaerens. Carbohydr Res, 2003, 338(5):415-421
    [8] Teplitsky A, Mechaly A, Stojanoff V et al. Structure determination of the extracellular xylanase from Geobaciilus stearothermophilus by selenomethionyl MAD phasing. Acta Crystallogr D Biol Crystallogr.2004, 60(Pt 5): 836-48
    [9] Chen YL, Tang TY, Cheng KJ. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol, 2001, 47: 1088-1094
    [10] Moreau A, Roberge M, Martin C et al. Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans. Biochem J.1994.302:291-295
    [11] Roberge M, Shareck F, Morosoli R et al. Characterization of two important histidine residues in the active site of xylanase A from Streptomyces lividans a family 10 glycanase. Biochemistry. 1997. 36(25):7769-7775
    [12] Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev, 1999, 23 (4):411-456
    [13] 胡沂淮,邵蔚蓝.木聚糖酶.生命的化学,2002,24(3):281~285
    [14] Lee YE , Lowe SE , Henrissat B et al. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaer obacterium saccharolyticum B6A-RI. J Bacteriol, 1993 , 175 (18): 5890- 5898
    [15] Winterhalter C , Hinrich P , Candussio A et al. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol. 1995, 15(3) :431 - 444
    [16] Luthi E , Reif K, Jasmat NB et al. In vitro mutagenesis of a xylanase from the extreme thermophile Caldocellum saccharolyticum.Appl Microbiol Biotechnol, 1992, 36 : 503 - 506
    [17] Tomazic SJ, Klibanov AM. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another. J Bio Chem, 1988, 263(7) :3092 - 3096
    
    [18] Wakarchuk WW, Campbell RL.Sung WL et al. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci, 1994 , 3(3) :467 - 475
    [19] Wakarchuk WW, Sung WL, Campbell RL et al. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Engineerin, 1994 ,7(11): 1379-1386
    [20] Georis J, De Lemos, Estteres F et al. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase : structural basis and molecular study .Protein Science .2000, 9 :466 - 475
    [21] Turunen O, Vuorio M, Fenel F et al. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1 , 4-Beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Engineering , 2002 , 15 (2) :141- 145
    [22] Moreau A, Shareck F, Kluepfel D et al. Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis. Enzyme Microb Technol , 1994 , 16 (5) :420-424
    [23] Lo Leggio L, Kalogiannis S, Bhat MK et al. High resolution structure and sequence of T. aurantiacus xylanase Ⅰ: implications for the evolution of thermostability in family 10 xylanases and enzymes with(beta) alpha-barrel architecture. PROTEINS: Structure, Function and Geneties, 1999, 36:295-306
    [24] Sapag A, Wonters J, Lambert C et al. The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol, 2002, 95(2):109-131
    [25] Kumar S, Tsai CJ, Nussinov R. Factors enhancing protein thermostability. Protein Eng, 2000, 13 (3):179-191
    [26] Lehmann M, Wyss M. Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol, 2001, 12(4):371-375
    [27] Roberge M, Dupont C, Morosoli R et al. Asparagine2127 ofxylanase A from Streptomyces lividans, a key residue in glycosyl hydrolases ofsuperfamity 4P7: kinetic evidence for its involvement in stabilization of the catalytic intermediate. Protein Engineering, 1997, 10 (4): 399-403
    [28] KunoA, Shimizu D, Kaneko S et al. Significant enhancement in the binding of p-nitrophenyl-beta-D2xylobioside by the E128H mutant F/10 xylanase from Streptomyces olivaceoviridis E2861 FEBS Lett, 1999, 450(3): 299-305
    [29] Roberge M, Shareck F, Morosoli R et al. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividan. Protein Eng, 1999, 12 (3):251-257
    [30] 刘明启,孙建义,许英蕾.木聚糖酶分子进化的研究进展.中国生物工程杂志,2003,23(10):62~66
    [31] Magnuson TS, Crawford DL, CooperA, et al. Purification and characterization of an alkaline xylanase from Streptomyces viridosporus T7A. Enzyme Microbioll Technol, 1997, 21, 160~164
    [32] Lee J M, Hu Y, Zhu H, et al. Can. J. Microbiol., 1993, 39: 134-139
    [33] Teather R M, Wood P J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 1982, 43: 777-780
    [34] Bemier R Jr, Driguez H, Desrochers M. Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coil. Gene, 1983, 26: 59-65
    [35] Hamamoto T, Horikoshi K. Agri. Biol. Chem., 1987, 51 (11): 3133-3135
    [36] Yang R C, MacKenzie C R, Bilous D, et al. Identification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coll. Appl. Environ. Microbiol., 1989, 55:568-572
    [37] Honda H, Kuto T, horikoshi K. Molecular cloning and expression of the xylanase gene of alkalophilic Bacillus sp. strain C-125 in Escherichia coli. J. Bacteriology, 1985, 161(2):784-785
    [38] Trembi L, Archibald F. Can. J. Microbiol. 1993, 39:853-860
    [39] Ko EP, AkatsukaH, Moriyama H et al. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem J, 1992, 288:117-121
    [40] Moreau A, Shareck F, Kluepfel D, et al Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis. Enzyme Microb. Technol., 1994, 16 (5):420-424
    [41] Wakarchuk W W, Sung WL, Campbell R L, et al.Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Eng., 1994, 7 (11):1379-1386
    [42] Fushinobu S, Ito K, Konno M, et al. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eing., 1998, 11 (12):1121-1128
    [43] Jurasek, L. and Paice, M. Pulp, paperand biotechnology [J]. Chemtechnology, 1986, 16: 360-365.
    [44] Viikari, L., Ranua, M., Kantelinen, A., et al Bleaching with enzymes. In: Biotechnology in the Pulp and Paper Industry [J]. Proc. 3rd Int. Conf, Stockholm, 1986: 67-69.
    [45] 陆健,曹钰,陈坚,等.木聚糖酶的产生、性质和应用[J].酿酒,200l,128(6): 30-34.
    [46] 侯炳炎.木聚糖酶及其应用[J].动物科学与动物医学,2002,19(4):52-53.
    [47] Ogasawara H, Takahashi K, litsuka K, et al, Contribution of He micellulase in Shochu koji to the Resolution of Barler in the Shochu Mash [J]. Brew.Soc. Japan, 1991, 86 (4): 304-307.
    [48] 吴建忠,李绿雄.木聚糖酶在畜禽营养中的应用研究进展.广东畜牧兽医科技,2005,30(2):14~16
    [49] Ravi Ravindran.饲料酶制剂在动物营养中的应用—最新动态及展望.中国家禽,2005,27(17):1~5.
    [50] 张晓晖,郭春华,衡文娜等.饲用木聚糖酶存在的问题及菌种选育研究进展.饲料研究,2006,8:56~59
    [51] Steenfeld S, MullertzA, Jensen J F. Enzyme supplementation of wheat-based diets for broiler. Ⅰ Effect on growth performance and intestinal viscosity [J]. Animal Feed Science and Technology, 1998, 75: 27~43
    [52] 于修启.小麦中的抗营养因子及木聚糖酶提高小麦日粮利用效率的作用机理研究[D].南京:南京农业大学博士论文,2003
    [53] 于旭华.真菌性和细菌性木聚糖酶对肉鸡生长性能的影响及机理研究[D].广州:华南农业大学博士学位论文,2004
    [54] Hew L I, Ravindran V, Mollah Y, et al. Influence of exogenous xylanase supplementation on apparent metabolisable energy and amino acid digestibility in wheat for broiler chickens [J]. Animal Feed Science and Technology, 1998, 75: 83~92
    [55] Steenfeld S, Hammershj M, MullertzA, et al. Enzyme supplementation of wheatbased diets for broiler. Ⅱ Effect on apparent metabolisable energy content and nutrient digestibility [J]. Animal Feed Science and Technology, 1998b, 75: 45~64
    [56] 谭会泽.肉鸡肠道碱性氨基酸转运载体mRNA表达的发育性变化及营养调控[D].广州:华南农业大学博士学位论文,2006
    [57] 黄金秀,张克英,陈代文.仔猪饲粮木聚糖水平与添加木聚糖酶对养分消化率的影响.中国畜牧杂志,2006,42(7):25~29
    [58] 高春生,刘忠虎,肖传斌.木聚糖酶对草鱼生长性能和消化率的影响.饲料研究,2006, 8:48~49
    [59] 张玲,聂国兴,周洪琪.木聚糖酶对鲫鱼生长性能利小肠绒毛的影响.浙江海洋学院学报(自然科学版),2006,25(2):133~137
    [60] 明红,刘涌涛,杜习翔等.木聚糖酶对尼罗罗非鱼生长及血脂血糖水平的影响.新乡医学院学报,2006,23(6):556~558
    [61] 程会昌,霍军,宋予振等.木聚糖酶在黄河鲤鱼饲料中的应用.安徽农业科学,2006,34(13):3077,3079
    [62] 冯俊荣,吕永红,曲慧等.饲用酶制剂在水产养殖中的应用.水产科学,2005,24 (3):40~41
    [63] 聂国兴,王俊丽,朱命炜等.小麦基础饲料添加木聚糖酶对尼罗罗非鱼肠道食糜粘度和绒毛、微绒毛发育的影响.水产学报,2007,31(1):54~61
    [64] 奚刚,许梓荣,钱利纯等.添加外源性酶对猪、鸡内源消化酶活性的影响.中国兽医学报,1999,19(3):286~289
    [65] 陈永平,廖建和,王志贤.木薯淀粉、纤维素接枝共聚物的合成及生物降解性能的研究[J].热带农业科学,1993(3):19-24.
    [66] Wong K K Y, Saddler J N. Applications ofhemicellulases in the food, feed, and pulp and paper industries.; in coughlen PP, hazlewood GP (eds): Hemicellulases and hemicellulases[M]. London: Portland Press, 1992, 127-143.
    [67] Maat J, Roza M, Verbakel J. Xylanases and their application in bakery[M]. Amsterdam: Elsevier, 1992. 349-360.
    [68] Courtin C M, Roelants A, Delcour J A. Fractionation-reconstitution experiments provide Insight into the role of endoxylanases in bread-making [J]. J Agric Food Chem, 1999, 47: 1870-1877.
    [69] Christophersen C, Anderson E, Jokobsen T S. Xylanases in wheat separation [J]. Starch/Staerke, 1997, 49: 5-12.
    [70] 邓伟,李秀婷,江正强等,橄榄绿链霉菌木聚糖酶组对面包品质的改善.中国粮油学报,2005,20(1):1~5
    [71] 张勤良,王璋,许时婴.中性木聚糖酶在面包制作中的应用.食品与发酵工业.2004,30(7):21~25
    [72] 岳晓禹,杨文领,刘相东等.木聚糖酶的应用研究进展.农产品加工·学刊,2007,1:48~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700