铜溶剂萃取界面乳化机理及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为优化德兴铜矿生物浸出—溶剂萃取—电积(BL—SX—EW)提铜技术,系统研究了铜溶剂萃取界面乳化成因、形成和稳定机制及其预防措施,考察了界面乳化、萃余液夹带等乳化现象对生物浸矿过程的危害。
     含有复杂毒性和表面活性物质的萃取有机相由于夹带流失于萃余液中,通过循环造成细菌浸矿系统污染,使细菌的生长周期延长4天,浸出24天的铜浸出量降低20%。界面乳化液的富集作用使浸矿细菌浓度不断降低。本文提出了改善细菌浸矿效率的相应措施。
     运用气质联用分析、扫描电镜、X—射线衍射、原子吸收光谱等手段分析研究了界面乳化物的成因。结果表明,铜溶剂萃取界面乳化物形成的主要诱因是有机相中表面活性物质和体系中固体微粒。循环有机相中积累了大量稠环芳烃类杂质和含有羰基、羧基、羟基、酰胺基的两亲性降解产物。Lix84有效成分和壬基酚在长期循环过程中由于发生贝克曼重排、水解、氧化、磺化等反应而严重降解,它们的化学稳定性比Lix86ON差。固体微粒主要由未分解矿石微粒(如硅酸盐粘土、SiO_2)、萃原液中水解产生的胶体微粒(如Fe(OH)_3、SiO_2胶体)和萃取过程中产生的饱和硫酸盐沉淀(如CaSO_4·2H_2O)等组成。
     研究了Lix984N、稀释剂性质、有机相中杂质和降解产物、固体微粒等对萃取分相,性能和界面乳化行为的影响。随Lix984N浓度增加,有机相粘度增加,界面张力和两相密度差降低。由Shinner理论推导出的液滴附着能与体系物性的关系A(h_0)=[c·γ~(0.6)ρ_c~(-0.108)Δρ~(-0.117)ν~(-0.05]_3~8证明,体系物理性质随Lix984N的改变促使相分离速度降低,液滴聚结阻力增加。用基团法算出Lix984N的HLB值为1.29,它利于W/O型乳化液的稳定,在O/W型界面乳化物形成过程中起协同乳化作用。在本实验条件下Lix984N体积分数为5%左右为界面乳化液转型区。
     固体微粒是诱发界面乳化的决定性因素。随萃原液中固体微粒含量增加,界面乳化程度加重,乳化液滴粒度减小,分布变窄,乳化液变得更稳定。固体微粒除形成坚固致密的界面膜稳定乳化液滴外,还形成微粒絮团在液滴间隙中填充,隔离分散相液滴,使其难以运动、聚结。
     研究发现,液滴间静电斥力和水化斥力的稳定效应、乳化液中三维网状结构对液滴聚结的机械障碍作用以及多相复合界面膜的稳定作用是界面乳化液稳定的
    
    中南大学博士论文 铜溶剂举取界面乳化机理及防治研究
    三个主要因素。本文详析了多相复合界面膜的结构特征和稳定机理,描述了界面
    乳化液聚结破坏的横向位移模型和极限聚结现象。指出固体膜稳定的乳化液滴间
    的相互作用力需用扩展的DLVO理论才能正确描述。
     针对界面乳化液的成因、稳定机理和体系特点,设计研究了过量硫酸磺化法
    和添加低分子极性有机物DA的防乳化措施,分别取得了良好效果。如一定条件下
    加入最佳用量的DA后,分相时间缩短了27.3%,乳化液滞留分率减少了86.7%,静
    置5小时的自然破乳率增加了近3倍。
In order to optimize the performance of copper bioleaching- solvent Extraction-electrowinning process (BL-SX-EW) at DeXing Copper Mine in Jiangxi Province, the bacteriostasis of organic phase entrained in the aqueous raffinate and the aspects of interfacial emulsions (also called interfacial crud) in copper-SX circuit, such as causes and mechanisms of stable emulsion formation and methods used to prevent emulsification are studied systematically.
    The entrainment of organic phase in the aqueous raffinate of copper-SX results in pollution in bioleaching system through circle performance. The activity and leaching ability of bacteria is deteriorated seriously because there are more kinds of bactericides and surfactants in organic phases, such as phenol and naphthalene. As a result, growing period of bacteria is delayed by 4 days and leaching copper concentration in 24 days decreased by 20%. The concentration of bacteria declines constantly as a result of collection by interfacial emulsion. Some effective ways to enhance bioleaching efficiency are suggested.
    A lot of analyze and examination results, such as GOMS, XRD, SEM and AAS reveal that impurities and surfactants in organic phase and solid particles in copper-SX system can be mostly related to 0/W type of interfacial emulsions formation. Many kinds of amphiphiles containing such hydrophilic group as carbonyl, carboxyl, hydroxyl or acylamine produced in the reagent degradations and dense-aromatic impurities originated from diluent are accumulated in organic phase, being as one kind of emulsifying agent stabilizing droplets. The effective compositions of Lix84 and nonylphenol are degraded almost completely after long term circulation by Beckmann rearrange, hydrolyzing, oxidizing and sulfonating reactions, so they are less stable then the effective compositions of Lix860N. Another kind of emulsifying agent is the solid particles that consist of mineral particles suspended in the aqueous feed (for example silicate or quartz
    
    
    
    particles), Fe(OH)3 and Si02 colloids in the aqueous feed and sulfate precipitated in the extraction operation.
    The effects of Lix984N, diluent, circulating organic phase, solid particles on disengagement properties and interfacial emulsion performance are studied respectively. With increase of Lix984N concentration, the viscosity of organic phase increases and interfacial tension and density difference between two immiscible liquids decreases. The relationship between adhesion force of two equal droplets separated by a distance h() and physical properties of system can be described as
    , which is deduced from Shinner theory. This
    equation infers that the changes of physical properties of organic phase with Lix984N concentration make the disengagement of two phases slower and the resistance to droplets coalescence stronger. The HLB value of Lix984N calculated by Davies' incremental approach is 1.29 in favor of the stability of W/0 type emulsion. Lix984N play a cooperating role during 0/W type interfacial emulsion formation in copper-SX. Interfacial emulsion tends to transform type from 0/W to W/0 when the volume factor of Lix984N is at about 5% under our experimental conditions.
    Among two kinds of: the emulsifying agents, solid particles in the system are believed to be the predominating one for emulsion formation and stability. Experimental results show that the higher of solid particle content in aqueous feed the more interfacial emulsion come into being with smaller diameter and narrower distribution of droplets, as a result interfacial emulsion becomes more stable. In addition to forming compact solid skins stabilizing emulsion droplets, the particle floccules will fill spaces between droplets so that droplets are separated and protected against moving and coalescence.
    According to experimental results we believe the interfacial emulsion stability depends on three primary factors: one is the repulsion effect of electrostatic and hydration forces, the second-is the mechanical barrier of three-dimensional network structure in
引文
[1] 王成彦,詹惠芳,陈枫.我国低品位铜矿浸出-萃取-电积铜厂投资概况及效益分析.矿冶,1999,8(1):45~49
    [2] Nathaniel Arbiter and Archie W. Fietcher. Copper Hydrometallurgy-Evolution and Milestones. Mining Engineering. 1994,46(2):118~123
    [3] Keith R. Suttill. SX Copper Burns Bright. Eng. Min. J, 1993,194(12):24~28
    [4] Charles R. merigold. Solvent Extraction Recovery of Copper with LIX Reagents. Proceedings of the Second International Conference on Hydrometallurgy (ICHM'92) Vol. 2, International Academic Publishers, Changsha, Chine, 1992.625~628
    [5] David Readett and Brian Townson.从酸浸溶液萃取铜实际状况.ZENECA'97深圳会议文集.第三部分,Paper 4.
    [6] 曹异生,张宪.世界铜浸出、萃取、电积技术最新进展及在我国推广应用前景.世界有色金属,1998,(8):4~10
    [7] 史有高摘译.世界最大的堆浸-溶剂萃取-电积铜生产厂在智利建成投产.有色冶炼,1997,27(1):1~2
    [8] 方金渭,黎维中.浸出-溶剂萃取-电积提铜技术的发展及应用前景.有色冶炼,1999,28(2):30~32
    [9] 杨佼庸.中国铜湿法冶金现状.有色金属(冶炼部分),1996,(4):8~11
    [10] 杨佼庸,刘大星.萃取.北京:冶金工业出版社,1988.456~468
    [11] G.M. Ritcey and A.W. Ashbrook. Solvent Extraction Principles and Applications to Process Metallurgy. Elsevier Science publishers B.V, Netherlands, 1984.210~271
    [12] 何南林.浅谈离心萃铟过程中结晶乳化和有机相老化问题及其处理.有色冶炼,1999,28(1):17~21
    [13] 肖华利,夏永生.溶剂萃取锗过程中的乳化及其消除.有色冶炼,1999,28(4):8~19
    [14] Bruce Mcyer.叔胺溶剂萃取铀工厂中含钼界面污物的研究.湿法冶金,1985,(4):10-19
    
    
    [15] D.N. Smith, M.A. Hughes and H.G.M. Edwards et al. Odorless kerosene Degradation and the Formation of Interfacial Deposits During the Alkaline Solvent Wash in the PUREX Process. Separation Science and Technology,1997,32(17):2821~2849
    [16] 余江,赵博欣,刘会洲.青霉素发酵液中可溶性蛋白质的沉降及其在溶剂萃取中的乳化作用.化工冶金,1999,20(4):423~427
    [17] 张裕平,周春山,熊兴安等.仲辛醇对萃钨有机相分离的影响.中南工业大学学报,1997,28(2):195~197
    [18] 马荣骏.湿法冶金新研究—溶剂萃取中的乳化及三相问题.长沙:湖南科学技术出版社,1999,60~68
    [19] G.M. Ritcey. The Cause and Treatment of Crud in Solvent Extraction Processes. Hydrometallurgy. 1980, 5(2-3): 97~107.
    [20] 付子忠.溶剂萃取过程中的乳化.湿法冶金,1988,(1):56~61
    [21] Charles R.merigold.铜溶剂萃取工厂中污物的特性以及减少其影响的方法.汉高矿产工业部技术研讨年会论文,1996年5月,中国昆明.
    [22] N.T. Bailey and P. Mahi. The Effect of Diluents on the Metal Extracted and Phase Separation in the Extraction of Aluminium with Monononyl Phosphoric Acid. Hydrometallurgy, 1987,18(3):351~365
    [23] Junji Shibata and Sanji Nishimura. The Role of Diluent in Metal Extraction Process.日本金属学会会报,1990,29(6):453~456
    [24] Madhusree Roy Chowdhury and Shyamal K. Sanyal. Diluent effect on Extraction of Tellurium(Ⅳ) and Selenium(Ⅳ) by Tri-n Butyl Phosphate. Hydrometallurgy, 1994,34(3):319~330
    [25] 唐培堃.精细有机合成化学及工艺学.天津:天津大学出版社,1993.52~53
    [26] Masakazu Niinae, Shigeki Koyanaka and Yoshi taka Nakahiro et al.AStudy of Interfacial Properties in Solvent Extraction.水曜会誌,1992,2l(8):572~579
    [27] J.W. Young and G.P. Fawdry. Experimental Study of the Influence of Diluent Characteristics on Performance in Metal Extraction. Proceedings of ISEC'90, Elsevier Science publishers B.V.,1992.327~332
    [28] 罗爱平,张启修.稀释剂对铜萃取剂动力学及相分离性能的影响.矿冶工程,
    
    1998, 18(2) :57-60
    [29] A. Boualia, A.Mellah and A.Silem. The Effects of Raw and Sulfonated Kerosene-type Diluent on the Solvent Extraction of Uranium and Co-Extractable Impurities from Solution. Part 1. Uranyl Nitrate Solution. Hydrometallurgy, 1990, 24(1) : 1?
    [30] A. J. Van Der Zeeuw. Selective Copper Extractants of 5-alkyl-2-hydroxy-phenyl Alkyl Ketone Oxime. Hydrometallurgy, I. CHEM. SYMPOSIUM SERIES NO. 42, Ed. By G.A.Davis and J.B.Seuffham, 1. CHEM. E. Services, london, 1975, 16. 1-16. 7
    [31] R. V. Calabrese, T. P. K. Chang and P. T. Dang. Drop Breakup in Turbulent Stirred-Tank Contactors, Part I :Effect of Dispersed-phase Viscosity. AIChE Journal, 1986, 32(4) :657?66
    [32] C.Y.Wang and R. V. Calabrese. Drop Breakup in Turbulent Stirred-Tank Contactors, Part II :Relative Influence of Viscosity and interfacial tension. AIChE Journal, 1986, 32(4) :667?76
    [33] Wolfgang Rommel, Walter Meon and Eckhart Blass. Hydrodynamic Modeling of Droplet Coalescence at Liquid-Liquid Interfaces. Separation Science and Technology, 1992, 27(2) : 129-159
    [36] S. Hartland and S.A.K.Jeelani. Coalescence in Liquid/Liquid Dispersions. Proceedings of the First International Conference on Hydrometallurgy (ICHM 88) ,International Academic Publishers, Peking, 1988, 254?58
    [35] G. V. Jeffreys and J. L. Hawksley. Coalescence of Liquid Droplets in Twe-Component-Twe-Phase Systems: Part 1. Effect of Physic.al Properties on the rate of Coalescence. A. I. Ch. E. Journal. 1965, 11 (3) : 414?17.
    [36] G. A. Davies, G.V.Jeffreys and D. V. Smith. Coalescence of Liquid Droplets-Correlation of Coalescence times. Proceedings of ISEC'71, Int. Solvent Extraction Conf., Hague, 1971. 385?99
    [37] E. Barnea. Liquid-Liquid Contacting-Art or Science? Part I : Characterization of Liquid-Liquid Systems. Hydrometallurgy, 1979,5(1) :15 ?28
    [38] R. J. Whewell, H. J.Foakes and.M. A. Hughes. Degradation in Hydroxyoxime
    
    Solvent Extraction Systems. Hydrometallurgy, 1981,7(1):7~26
    [39] R.P. Sperling, Y. Song and E. Ma et al. Organic constituents of cruds in Cu solvent extraction circuits. Ⅰ. Separation and identification of diluent-soluble compouds. Hydrometallurgy. 1998,50(1): 1~12.
    [40] R.P. Sperling, Y. Song and E. Ma et al. Organic constituents of cruds in Cu solvent extraction circuits. Ⅱ. Photochemical and acid hydrolytic reactions of alkaryl hydroxyoxime reagents.Hydrometallurgy. 1998,50(1): 23~38.
    [41] A. 01szanowski and E. Krzyzanowska. Photostability of Hydroxyoxime Extratants of Metals. 1. Photo-isomerization and Photo-degradation of 2-hydroxy-5-methylbenzophenone(E)-oxime. Hydrometallurgy, 1994,35(1):79~89
    [42] J.P. Ferris and F.R. Antonucci. Photochemistry of Ortho-Substituted Benzene Derivatives and Related Heterocycles. J. Am. Chem. Soc.,1974,96(7):2010~2014
    [43] M. F. Haley and K. Yates. The Photochemistry of Carbon-nitrogen Multiple Baonds in Aqueous Solution. 1. Aromatic Oximes, Oximer Ethers and Nitriles. J. Org. Chem. 1987,52(9):1817~1824
    [44] M. F. Hatey and K. Yates. The Photochemistry of Carbon-nitrogen Multiple Baonds in Aqueous Solution. 2. o-Hydroxy-Substituented Aromatic Oximes and Oximer Ethers. J. Org. Chem. 1987,52(9):1825~1830
    [45] P.贝歇尔.乳状液理论与实践.付鹰译.北京:科学出版社,1964.77~150
    [46] 鄢捷年,王富华,范维庆等.固体微粒对油水体系的乳化稳定作用.油田化学,1995,12(3):191~196
    [47] 鄢捷年,王富华,蒋官澄等.固体微粒与表面活性剂的协同乳化作用.石油大学学报,1996,20(3):36~40
    [48] V.B. Menon and D.T. Wasan. A Review of the Factors Affecting the Stability of Solids-Stabilized Emulsions. Separation Science and Technology, 1988,23(12&13):2131~2142
    [49] T. Burniston, J.N. Greenshields and P.E. Tetlow. Crud Control in Copper SX Plants:Addition of Wetting Agents to Pregnant Leach Solutions Substantially Reduces Crud Formation. E&MJ, 1992,193(1):32~35
    
    
    [50] B.A. Moyer and W.J. Mcdowell. Factors Influencing Phase Disengagement Rates in Solvent Extraction Systems Employing Tertiary Amine Extraction. Separation Science and Technology, 1981,16(9):1261~1289
    [51] G.M.Ritcey.离子交换、活性炭矿浆法吸附过程中硅中毒以及溶剂萃取过程中硅所引起的乳化(Ⅰ).湿法冶金,1988,(1):50~55
    [52] G.M.Ritcey.离子交换、活性炭矿浆法吸附过程中硅中毒以及溶剂萃取过程中硅所引起的乳化(Ⅱ).湿法冶金,1988,(2):37~45
    [53] O.A.Singribova, S.V. Chizhevskaya and A.Y. Bobyrenko et al. Nature of Stable Dispersions Appeared During Solvent Extraction of Inorganic Substances. Proceedings of the First International Conference on Hydrometallurgy(ICHM 88),International Academic Publishers,Peking, 1988,259~262
    [54] G.M. Miller, D.J. Readett and P. Hutchinson. Experience in Operation the GIRILAMBONE Copper SX-EW Plant in Changing Chemical Environments. Minerals Engineering, 1997,10(5):467~481
    [55] Domenico C Cupertino.在铜溶剂萃取工厂萃取剂、改质剂和絮凝物.ZENECA'97 深圳会议文集.第二部分,Paper 5.
    [56] 刘谟禧.湿法冶金过程硅的化学.矿冶工程,1989,9(2):61~65
    [57] B. Terry. The Acid Decomposition of Silicate Minerals. PartⅡ.Hydrometallurgical Applications. Hydrometallurgy, 1983,10(1):151~171
    [58] 郝润蓉,方锡义,钮少冲.无机化学丛书第三卷--碳、硅、锗分族.北京:科学出版社,1998,221~227
    [59] G.M.Ritcey.阳离子对铀萃取回路中界面污物生成的影响.湿法冶金,1986,(4):65~69
    [60] 李祥人.堆浸-萃取-电积工艺在银山铜矿的应用.湿法冶金,1998,68(4):20~22
    [61] Armand Davister and Andre Dubreucq.从湿法磷酸中提铀过程的界面现象.ISEC'83国际溶剂萃取会议译文集.北京:湿法冶金编辑部编,1986.19~22
    [62] Chen Yude, Wu Fengchin and Zhang Keping. Influence of Humic Acids in Solution on Uranium Solvent Extraction Process. Proceedings of the First international Conference on Hydrometallurgy(ICHM 88),International Academic Publishers, Peking,1988,198~202
    
    
    
    [63]Z. Kolarik and N. Pipkin. Drop Size Distribution in Stirring Tanks Using the Uranyl Nitrate/Tributyl Phosphate Extraction System.Hydrometallurgy, 1983,9(3):371~379
    [64]G.A. Rowden, J.B. Scuffham and G.C.I. Warwick et al. Consideration of Ambivalence Rang and Phase Inversion in Hydrometallugical Solvent Extraction Processes. Hydrometallurgy, I. CHEM. SYMPOSIUM NO. 42, Ed By G.A. Davis and J.B. Seuffham, I. CHEM. E. Services, london, 1975, 17.1~17.17
    [65]N. L. Eckert and L.S. Gormely. Phase Separation in an Experimental Mixer-Setter. Chem. Eng. Res. Des, 1989,67(2):175~184
    [66]S.L. Ross, F.H. Verhoff and R.L. Curl. Doplet Breakage and Coalescence Processes in an Agitated Dispersion, 2. Measurement and Interpretation of Mixing Experiments. Ind. Eng. Chem. Fundam. 1978,17(2):101~106
    [67]P.贝歇尔.乳状液理论与实践.付鹰译.北京:科学出版社,1964.41~68
    [68][日]永田进治.马继舜等译.混合原理与应用.北京:化学工业出版社,1984,298~312
    [69]N.Charkraborti, J.D. Miller and C.M. Meire. A Transport Analysis of Copper Solvent Extraction in a Continuus Stirred-Tank Reactor. Solvent Extraction and Ion Exchange, 1993,11(5):923~942
    [70]T. Tobin, D and Ramkrishna. Coalescence of Charged Droplets in Agitated Liquid-Liquid Dispersions. AIChE Journal, 1992,38(8):1199~1205
    [71]G.V. Jeffreys and G.B. Lawson. Effect of Mass Transfer on the Rate of Coalescence of Single Drops at a Plane Interface. Trans. Instn. Chem. Engrs., 1965,43(2):T294~T298
    [72]杨佼庸,刘大星.萃取.北京:冶金工业出版社,1988,260~272
    [73]裘炳毅.乳化作用及其在化妆品工业的应用(二)乳化液的稳定性及影响因素.日用化学工业,1999,(2):48~53
    [74]崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,1999,10~22
    [75]郑忠.胶体科学导论.北京:高等教育出版社,1989,444~458
    [76]Eli Ruckenstein. Microemulsions, Macroemulsions, and the Bancraft Rule. Langmuir, 1996,12:6351~6355
    
    
    [77]Jozef Stachurski and Mieczyslaw Michalek. The Effect of the Potential on the Stability of a Non-Polar Oil-in-Water Emulsion. J. colloid. Interf. Sci.,1996,184(2):433~436
    [78]Erkki Paatero and Johan Sj(?) blom. Phase Behaviour in Metal Extaction Systems. Hytrometallurgy, 1990,25(2):231~256
    [79]Stig Friberg and Per 01of Jansson. Surfactant Association Structure and Emulsion Stability. J. Colloid. Interf. Sci.,1976,55(3):614~623
    [80]David E. Tambe and Mukul M. Sharma. Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅰ.An Experimental Investigation. J. Colloid. Interf. Sci.,1993,157(1): 244~253
    [81]E.Jaaskelainen, E. Paatero and B. Nyman. Adsorption of Hydroxyoxime-Based Extractants on Silic and Mica Particles in Copper Extraction Processes. Hydrometallurgy, 1998,49(1):151~160
    [82]E.H. Lucassen-Reynders and M. van den Tempel. Stabilization of Water-in-Oil Emulsion by Solid Particle. J. Phys. Chem.,1963,67(3):731~734
    [83]J. Mizrahi and E. Barnea. The Effects of Solid Additives on the Formation and Separation of Emulsions. Br. Chem Eng.,1970,15(4):497~501
    [84]W.H. Howell. Beach-Scale Mixer-Settle Study of the Extraction and Stripping of Uranium from Solution. Hydrometallurgy, 1988,20(1):11~30
    [85]W.Howell.G.M.Ritcey and J.A.Golding.从硫酸浸出液中萃取铀和用硫酸铵反萃取的物理化学特性.ISEC'83国际溶剂萃取会议译文集.北京:湿法冶金编辑部编,1986.50~55
    [86]A.W.Fletcher.溶剂萃取中含硅污物的处理.湿法冶金,1986,56(2):49~50
    [87]刘谟禧.湿法冶金过程控制硅的技术.矿冶工程,1989,9(3):61~65
    [88]J.N. Greenshields and P.E. Tetlow. Solvent Extraction Process. US Patent: 5024821,1991
    [89]H. Reinhardt and B.T.Troeng. Method of Eliminating the Influence of Surfactants on the Separation Properties in Liquid Extraction Systems. US Patent:4151076,1979
    
    
    [90]P.L. Mattison, G.A. Kordosky and W.H. Champion. Enhancement of Solvent Extraction by Clay Treatment of Contaminated Circuit Organis. Hydrometallurgy: Research, Development and Plant Practice, Ed by K. Osseo-Asare and J.D. Miller, A Publication of the Metallurgical Society of AIME, New York, 1982, 617~628
    [91]李祥人.德兴铜矿堆浸厂萃取工艺生产现状及展望.湿法冶金,1998,68(4):24~28
    [92]吴西.德兴铜矿堆浸厂萃取过程第三相影响因素及减缓措施研究.有色冶炼,1999,28(2):35~37
    [93]崔宏志,彭琴秀,王瑞梅.控制萃取过程中三相污物的产生和处理法方法的研究.德兴铜矿试验报告,1998.
    [94]德兴铜矿堆浸厂,铜萃取过程中第三相处理的试验报告.1997.
    [95]王书礼.铜萃取过程中第三相的形成及防治.中南大学学士论文,1999.
    [96]沈钟,王果庭.胶体与表面化学(第二版).北京:化学工业出版社,1997,P389
    [97]方启学.微细粒弱磁性铁矿分散与复合聚团理论及分选工艺研究.中南工业大学博士论文,1996.10~12
    [98]罗廉明.粉矿接触角的测定.化工矿山技术,1989,18(4):25~26
    [99]J. Szymanowski and C. Tondre. Kinetics and Interfacial Phenomena in Classical and Miceliar Extraction Systems. Solvent Extraction and Ion Extrange, 1994,12(4):837~905
    [100]王笃金,吴瑾光,李彦等.萃取剂流失机理的研究.Ⅰ.皂化酸性有机磷酸酯类萃取剂从有机相向水相的转移及其在水相的聚集状态.中国科学(B辑),1995,25(5):449~453
    [101]焦杰英,姜健准,高宏成.关于中性磷类萃取体系微乳现象的研究.北京大学学报,1999,35(6):745~749
    [102]M.A. Hughes, P.D. Middlebrook. Studies of the Stability of Haze Generated in the Aqueous Phase on Contact with Hydroxyoximes. Proceedings of ISEC'80, Public. Elsevier Science, 1982, V. 1, Paper80~24
    [103]J.C. Godfrey and J. Gledhill. Lix64N-ESCAID和水相接触时连续相类型的转变及夹带特性.ISEC 83国际溶剂萃取会议译文集.北京:湿法冶金编辑部编,1986.219~223
    
    
    [104]Kazuharu Yoshizuka, Hiroshi Arita and Yoshinari Baba el at.Equilibrium of Solvent Extraction of Copper(Ⅱ) with 5-Dodecylsalicylaldoxime. Hydrometallurgy, 1990,23(2):247~261
    [105]裘炳毅.乳化作用及其在化妆品工业的应用(一)乳化液的形成及其特征.日用化学工业,1999,(1):47~51
    [106]郑忠.胶体科学导论.北京:高等教育出版社,1989,74~75
    [107]金相灿,程振华,徐南妮等.有机化合物污染化学—有毒有机物污染化学.北京:清华大学出版社,1990.P250
    [108]胡家俊,周群英.环境工程微生物学.北京:高等教育出版社,1988.97~102
    [109]童雄.微生物浸矿的理论与实践.北京:冶金工业出版社,1995,28~30
    [110]邢其毅,徐瑞秋,周政等.基础有机化学(第二版).北京:高等教育出版社,1993.458~459
    [111]R.T.莫里森,R.N.博伊德.有机化学(下册),复旦大学化学系译,北京:科学出版社,1983.655~671
    [112]王军.低品位铜矿细菌浸出理论与工艺研究.中南工业大学博士论文,1999,P64.
    [113]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南工业大学出版社,1986.80~98
    [114]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与应用.北京:冶金工业出版社,1991,5~81
    [115]E. Kusaka, Y. Kamata and Y. Fukunaka et al. The Role of Hydrolyzed Metal Cations in the Liquid-Liquid Extraction of Ultrafine Silia with Dodecyl Sulfate. Mineral Engineering, 1997,10(2): 155~162
    [116]李伯骥.化学化工实验师手册,大连:大连理工大学出版社,1996.80~86
    [117]D. Stepniak, J. Szymanowski and K. Alejski et al. Interfacial Activity of 2-Hydroxy-5-Alkylbenzaldehyde Oximes and Mechanism and Kinetics of Copper Extraction. Solvent Extraction and Ion Extrange, 1990,8(3):425~444
    [118]徐元植,陈德全,李晓平等.二(2-羟基苯乙酮肟)-铜(Ⅱ)配合物的ESR波谱研究.中国科学(B),1987,17(5):477~483
    [119]J. Szymanowski, M. Cox and C.G. Hirons. The Determination of Hydrophilic Lipophilic Balance Values for Some Hydroxyoximes and Their Correlation with Rates of Copper Extraction. J. Chem. Biotechol. 1984,34A: 218~226
    
    
    [120]R.B. Keey. Interpreting Mixing with Isotropic Turbulence Theory. British Chemical Engineering, 1967,12(7):1081~1085
    [121]冯伯华主编.化学工程手册(2).北京:化学工业出版社,1989.5-54
    [122]S.A.K. Jeelani and S. Hartland. Prediction of Steady State Dispersion Hight from Batch Settling Data. AlChE Journal, 1985,31(5):711~720
    [123]W. Dalingaros, S.A.K. Jeelani and S. Hartland. Prediction of Steady-State Dispersion Hight in the Disengaging Section of an Extraction Column from Batch Settling Data. Can. J. Chem. Eng.,1987,65(2):210~213
    [124]杨佼庸,刘大星.萃取.北京:冶金工业出版社,1988,460~468
    [125]E.Y.O. Paatero. Study of the Electrophoretic Mobility of Oil Droplets Containing Some α-and β-Hydroxyoxime Extractants. Hydrometallurgy, 1986,17(1):39~50
    [126]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选.长沙:中南工业大学出版社,1993.26~86
    [127]李以圭.金属溶剂萃取热力学.北京:清华大学出版社,1988.109~110
    [128]郑忠.胶体科学导论.北京:高等教育出版社,1989,390~432
    [129]Eric Dickinson and Matt Golding. Influence of Alcohol on Stability of Oil-in-Water Emulsions Containing Sodium Caseinate.J. Colloid. Interf. Sci.,1998,197(1): 133~141
    [130][日]中垣正幸,严忠等译.膜物理化学.北京:科学出版社,1997,8~40
    [131]G.A. Yagodin, V.V. Tarsov and S. Yu. Ivakhno. Condensed Interfacial Films in Metal Extraction System. Hydrometallurgy, 1982,8:293~305
    [132]David E. Tambe and Mukul M. Sharma. Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅱ.A Model for the Rheological Properties of Colloid-Laden Interfaces. J. Colloid. Interf. Sci.,1994,162(1):1~10
    [133]Akira Tsugita, Shizume Takemoto and Kenji Mori et al. Studies on O/W Emulsions Stabilized with Insoluble Montmorillonite-Organic Complexes. J. Colloid. Interf. Sci.,1983, 95 (2): 551~560
    
    
    [134]邢其毅,徐瑞秋,周政等.基础有机化学(第二版).北京:高等教育出版社,1993.299~304
    [135]唐培堃.精细有机合成化学及工艺学.天津:天津大学出版社,1993.121~128
    [136]徐光宪,王文清,吴瑾光等.萃取化学原理.上海:上海科学技术出版社,1984.87~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700