硫化铜矿浸矿细菌超微结构与吸附机理及SFORase的纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨细菌浸矿机理,促进提高工业实践中生物浸矿的效率,本文对城门山难浸铜矿石的细菌浸出、主要浸矿细菌的形态和超微结构、细菌吸附机理以及T.f中的硫化氢-三价铁氧化还原酶(SFORase)的分离与纯化进行了研究。
     在对城门山难浸铜矿的细菌浸出可行性研究中,对含铜褐铁矿,氧化铜-硫化铜混合矿和含泥氧化矿进行了物相分析、多元素分析后,又进行了酸耗试验,摇瓶试验,柱浸试验,并比较了不同的工艺条件对浸出过程的影响。结果表明含铜褐铁矿和含泥氧化矿宜于酸浸,而氧化铜一硫化铜混合矿(次生硫化铜占铜品位的94.97%)适宜于细菌浸出。此外还运用紫外诱变育种方法,将经适当紫外诱变处理的T,f正突变菌株用于浸矿,可提高细菌的亚铁氧化能力,使铜浸出率提高10%左右。
     运用透射电镜(TEM)和扫描电镜(SEM)对最常见的浸矿细菌如T.f(Thiobacillus ferrooxidans)、T.t(Thiobacillusferrooxidans)和L.f(Leptosprillum ferrooxidans)等的形态和超微结构进行了研究。结果表明,亚铁培养基培养或硫培养基培养细菌的排列形式有单生,对生、链状和单层细菌成群排列。L.f单个存在,T.f和T.t大多以单个形式存在;可见到T.t的对生;T.t比T.f更多的以链状形式存在,T.f和T.t都能见到单层细菌成群排列的形式。在外形大小上,T.t略大于T.f,且T.t的两端比T.f略为尖锐;
    用磷钨酸染色,大t两端一般各有一脂粒存在。在超薄切片观察中,分别在德兴大f和大宝山大f中观察到了具有较宽胞周隙的菌株,这些菌株在样品中所占比例小,它们应具有较强的贮存和分泌蛋白质(酶)的能力。在德兴Tf中观察到了PHB颗粒,它们是碳源和能源的储存体。在江西德兴、城门山、广东大宝山等矿区的厂f中均观察到球状体,尽管目前还不明了其生理功能。 在研究不同培养基培养的浸矿细菌的形态差别时,发现以元素硫为能源的培养基培养的细菌可观察到外膜泡,而用亚铁培养基培养的细菌却观察不到这种结构,外膜泡的形成与否与培养基质中能源物质的存在状态(固态或液态)密切相关。另外还观察到外膜泡的形成具有方向性,即仅在细菌的吸附面才形成外膜泡,外膜泡中含有丰富的与吸附功能等有关的大分子物质。在大宝山T.f观察中,还观察到了接合过程的早期现象,一个大f通过性菌毛与另一个大f相连接;在另一观察中还发现,在两个端部靠近的大f之间有一管状物从一个细菌端部穿入相邻细菌的端部,这种现象是否与细菌的DNA转移有关还有待研究。在观察从大宝山堆浸场积液库中原始菌(未经分离,直接用gK培养)中,还观察到了真菌、异养菌等,有些细菌存在荚膜或粘膜,表明了浸矿微生物的生态多样性。 浸矿细菌的吸附是一个研究得较多的领域,细菌与矿物表面的作用涉及许多物理的和生物一化学的参数。运用扫描电镜(带能谱)、透射电镜、FTIR透射光谱、FTIR反射光谱、以及电镜细胞化学等技术,对浸矿细菌吸附至矿物的复杂界面作用进行了研究。细菌与矿物相互 作用后既改变了细菌表面的化学性质,也改变了矿物表面的化学性 质。 黄铜矿和黄铁矿细菌浸出的扫描电镜及能谱分析表明,与无菌对照相比较,黄铜矿细菌浸出的金属溶解率更高且铜浸出率随着吸附菌数的增加而增加。细菌吸附至黄铜矿和黄铁矿都表现出首先吸附至矿物的缺陷位点及裂缝处。从黄铜矿、黄铁矿的细菌浸出过程的能谱分析可以看出,黄铁矿的溶解速率明显慢于黄铜矿,说明黄铁矿的电化学高电位对细菌浸出产生不利影响。 采用电镜细胞化学方法证实了大f表面存在的脂类,多糖及蛋白质等物质。浸矿细菌表面的多聚物(EPS)介导了细菌与硫化矿物的接触,在它们的界面作用中起着重要作用。由细菌表面的多糖一蛋白质复合物构成的多糖纤维大部分带负电,能与二价阳离子形成极性键,促进细菌吸附至矿物。EPS对细菌还有保护作用,在营养缺乏时可供给细菌营养。EPS在细菌吸附至矿物过程中以及细菌生物膜形成过程中起着关键作用。 铁离子电镜细胞化学实验证明厂f外膜上存在Fe2+,为铁离子在细菌及细菌生物膜中的循环提供了实验证据。 黄铜矿浸出过程的扫描电镜观察表明,浸出3天时,大f还是零星地分布于矿物表面’;浸出10天时,大部分细菌成群聚集,分泌物增多,形成的微菌落逐渐向周边扩展;浸出第17天时,大面积的矿物表面已初步形成生物膜。浸出20天时,试样表面基本被细菌生物膜覆盖,己形成较完整的细菌生物膜。细菌在生物膜内可以创造它们自己的微环境,在这个微环境中亚铁和三价铁离子的浓度都得以增加,铁细菌通过自身的铁氧化系统氧化更多的亚铁而获得更多的能量,致使细菌的生长率和硫化矿的溶解率都得以增加。 0 }} 傅立叶变换红外光谱实验证明,浸矿细菌表面存在一CeeNH一、0H、CH3、CHZ等基团。硫培养细菌和铁培养细菌的红外透射光谱在指纹区存在差异,表明同种细菌生长在不同环境时,由于环境胁迫作用使其表面成分有所不同。红外反射光谱也证实了以上主要表面基团的存在。这些表面基团的存在以及随不同环境而变化的事实反映了浸矿细菌吸附至矿物过程中界面作用的复杂性。多经基肚键、C一O键和氢键等也在吸附过程中起着重要作用。 硫化氢一三价铁氧化还原酶是浸矿过程中硫氧化的关键酶。在从大?
In order to investigate the bioleaching mechanism and increase the bioleaching rate in the process of production, the following studies have been worked on: 1. Bioleaching of copper sulfide ores of Chengmen Mountain, Jiangxi; 2.The shapes and the microstructures of the bioldaching bacteria; 3. The attachment of bioleaching bacteria; and 4.The purification of Hydrogen SulfiderFerric ion Oxidoreductase from Thiobacillus ferrooxidans .
    The shape and the ultrastructure of major organisms in bioleaching field such as T.f(Thiobacillus ferrooxidans), T.t(Thiobacillus ihiooxidans) and L.j[Leptospirillum ferrooxidans} have been studied by Transmission Electronic Microscope(TEM) and Scanning Electronic Microscope(SEM). The results show that the bacteria raised in ferrous ion medium or sulfur medium have the form of solitary, oppositeness, chain and thick growth. L.f exists in solitary; most of T.fand T.t exist in solitary; some of T.t in oppositeness; the number of T.t in the form of chain is more than that of T.f; both T.f and T.t can be seen in thick growth. The size of T.t is a slightly bigger than that of T.f, the ends of T.f is somewhat blunt, while the ends of T.t is sharp-pointed. Both ends of T.t can be seen a lipid granule respectively when dyed with phosphotungstic acid. Observing the super-cut section of T.f of Dexing and Dabao Mountain, there are a few of bacteria with the widen periplasmic space. General speaking, they would
    
    
    have a stonger ability of storing and secreting proteins. In the ultrastructures of Dexing's T.f, some of PHB granule can be seen. They are the storing bodies of Carbon resource and energy. The bacteria raised in sulfur medium possess globular and/or tubular outer-membrane vesicles, but the bacteria raised in iron medium have not. The formation of outer-membrane vesicles are closely be related to the state S(solid) /L(liquid) of energy resource substance. Moreover, there is an orientation during its forming, the vesicles can be formed only on the attachment side of the cell, and it contains plenty macromolecular substances that are related to attachment. The early phase's conjugation of Dabao Mountain T.f was observed, a T.f is in touch with another by sex pili. Also, a tube-like object on one cell's end pierced through another near cell's end. If this phenomenon be related to diverting the genetic factor? It isn't clear now. There are fungus and heterotrophic bacteria and so on in the accumulating solution pool of Dabao Mountain dump leaching site, some of bacteria possess capsule or the layer of mucus. They exhibit the diversity of leaching organisms in ecological system.
    In the research of bioleaching feasibility on difficultly dissolved copper ores of Chengmen Mountain, mineralogic analysis and multi-element analysis have been carried out, and then a series of tests such as acid-consume, leaching by rocking bottles, column leaching were also carried out. The leaching rate under different technological
    
    conditions were checked respectively. The results demonstrate that coppery limonite and mud-bearing copper oxide ore are suitable for acid leaching while copper oxide and copper sulfide mixed ores are suitable for bioleaching. In addition, an UV-mutagenesis T.f-cms (Chengmenshan T.f) for bioleaching , by which copper leaching rate has raised about 10%, has been ultilized in this paper.
    The attachment of bioleaching microorganisms is a field that has been studied extensively. The author has studied on the attachment of bacteria by SEM(with EDAX),TEM, FTIR, especially by the method of electronic microscope cytochemistry. The interactions between the bacteria and the mineral involve a lot of physical, biological and chemical parameter. Both the bacteria and the mineral surface' chemical character were changed after their interactions.
    The results of SEM and ED AX show that, comparing with asepsis condition, the metal dissolved rate of bioleaching for chalcopyrite is higher than that of pyrite, and leaching rate of copper increases as the number of bacteria of attachment increases. When
引文
[1] 魏鹏,龚文琪,雷绍民.微生物技术在低品位矿物资源开发与综合回收中的应用[J],有色金属,2000,52(4):188-190.
    [2] 阮仁满.温健康,车小奎.紫金山铜矿细菌浸出研究[J],有色金属,2000,52(4):159-161.
    [3] Murr L.E. Theory and practice of Copper Srlphide Leaching in Dumps and In-Situ[J]. Mine. Sci. Eng., 1980,12(3): 121-189.
    [4] Rudolfs W. Oxidation of Pyrites by Microoganisms and Their Use for Making Mineral Phosphates Available[J]. Soil Sci., 1922,14:135-147.
    [5] Rudolfs W. and Helbronner A. Oxidation of Zinc Sulfides by Microorganisms[J].Soil Sci., 1922,14:459-464.
    [6] Colmer A. R. and Hinckle M. E. The Role of Microorganisms in Acid Mine Drainage[J]. A Preliminary Report, Science, 1947, 106:253-256.
    [7] Templle K. L. and Delchamps E. W. Autotrophic Bacteria and the Formation of Acid in Bituminous Coal Mines[J]. Applied Microbiology, 1953, 1: 255-258.
    [8] Leathen W. W, Kinsel N. A. and Braley S. A. Ferrobacillus ferrooxidans: Achemosynthetic Autotrophic BacteriumEJ].Bacterial., 1956, 72:700-704.
    [9] Silverman M. P. Mechanism of Bacterial Pyrite Oxidation[J]. Bacteriol., 1967, 94: 1046-1051.
    [10] 裘荣庆.微生物冶金的研究和应用现状[J],微生物学通报,1995,22(3):180-183.
    [11] 王淀佐等.矿物生物提取技术的研究与进展[A].铜镍湿法冶金技术交流及应用推广会论文集[C].2001:2-9.
    [12] Gary Kordosky.国外一些L-SX-EW厂简要介绍[A].’99铜萃取技术交流会[C].1999.9:1-12.
    [13] 刘大星.中国铜湿法冶金技术的进展[A].铜镍湿法冶金技术交流及应用推广会论文集[C].2001:35-41.
    [14] Naoki Hiroyoshi, Hajime Mikik, Tsuyoshi Hirajima, Masami Tsunekawa. A modle for ferrous-promoted chalcopyrite leaching[J]. Hydrometallurgy, 2000, 57,31-38.
    [15] 方兆珩.硫化矿细菌氧化浸出机理[J].黄金科学技术,2002,10(5):26-30.
    [16] Henry A. Schnell. Bioleaching of Copper[M]. Biomining: Theory, Microbes and Industrial Processes, edited by Douglas E. Rawlings. Springer-Verlag and Landes Bioscience 1997.
    [17] Bryner LC, Beck JV et al. Microorganisms in leaching sulfide minerals[J], Industrial and Engineering Chemistry, 1954, Vo146.
    [18] Scott D.J. The mineralogy of copper leaching: concentrates and heaps. Copper' 91, Copper Hydrometallurgy Short Course. Ottawa, June 1991.
    [19] Scott D.J. The mineralogy of copper leaching: concentrates and heaps. Copper' 95, Copper Hydrometallurgy Short Course. Santiago, November
    
    1995.
    [20] 杨显万,邱定藩.湿法冶金[M].北京:冶金工业出版社,1998:282-371.
    [21] 童雄,孙永贵.微生物浸出难浸黄铜矿的研究[J],矿产综合利用,1999,4:6-9.
    [22] Zhang Yi, Yang Zaixian, He Wei et al. Method for manufacture of electrolytic copper from sulfide ores by bioleaching(P),CN 1197120 A 28 Oct. 1998,5pp.
    [23] Winby, Richard: Miller, Paul: Rhodes, Mike. Et al. Bioleaching process for copper recovery from chalcopyrite or sulfide ores(P), WO 2000023629 A1 27 Apr 2000,28pp.
    [24] Kohr, William J.,Shrader, Vandy, Johansson, Chris. Heap bioleaching of copper from chalcopyritic ore concentrates using thermophilic bacteria for increased process temperature(P),WO 2000036168 A1 22 Jun 2000,70pp.
    [25] 柯家骏.难浸金矿氰化提金的现状与问题[J],黄金科学技术,1998,6(1):32-39.
    [26] 丁育清,卢寿慈,安蓉.难处理金矿石的细菌氧化提金技术及工业应用[J],黄金,1996,17(6):32-36.
    [27] 杨遇春.用生物氧化法处理难浸金矿[J],现代化工,1997,1:36-38.
    [28] 张兴仁.难处理金矿微生物氧化工艺现状与前景[J],矿产综合利用,1996,2:25-31.
    [29] Fan, Shoulong; Wang, Jinxiang. Technology of heap leaching of gold ore with microbial preoxidation and apparatus for bacteria culture(P), CN 112116A24 Apr 1996,19pp.
    [30] Douglas E. Rawlings (Ed.). Biomining: Theory, Microbes and Industrial Processes [M]. Springer-Verlag and Landes Bioscience 1997: 19-244.
    [31] Buchanaa R.E.Gibbons N.E..中国科学院微生物研究所译,伯杰细菌鉴定手册(第8版)[M],Beijin:Metallurgical Industry Press,1984,633.
    [32] Blake R.C, McGinness S. Electron-transfer proteins of bacteria that respire on iron. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol Ⅱ.Warrendale, Pennsylvania: TMS Press. 1993; 616-628.
    [33] Pronk J.T, Meulenberg R, Hazeu W. et al. Oxidation of reduced sulfur compounds by acidophilic thiobacilli[J]. FEMS Microbiol Rev 1990; 75:293-306.
    [34] Garcia A, Jerez C.A. Changes of the solid-adhered populationed of Thiobacillus ferrooxidans, Leptospirillum ferrooxidans and Thiobacillus thiooxidsans in leaching ores as determined by immunological analysis[J]. In: Jerez CA, argas T, Toledo H,Wiertz JV, eds. Biohydrometallurgical Processing. Vol Ⅱ. Santiago: University of Chile Press, 1995:19-30.
    [35] 姜成林,徐丽华.微生物资源学(M),北京:科学出版社,1977,166-167.
    [36] 王敖全.细菌适应突变研究进展(J),(年份)39,3,282-285.
    [37] Henry L, Ehrlich, Corale L. Brierley. Microbisl mineral recovery(M),
    
    Newyork: McGraw-Hill Publishing Company Professional and Reference Division composition unit, 1990. Part Ⅰ:Bioleaching and biobene-ficiation. 29-35.
    [38] 张在海,王淀佐,邱冠周等.氧化亚铁硫杆菌亚铁氧化活性诱变育种理论探讨,铜业工程,2001,1,12-15.
    [39] 张玉静.分子遗传学[M].北京:科学出版社,2000:405-437.
    [40] 林建群,彭基斌,颜望明.氧化亚铁硫杆菌基因转移系统研究进展[J].应用与环境生物学报,2001,7(2):193-196.
    [41] Holmes D.S, Lobos J.H, Bopp L.H, Welch, G.C. Cloning of a Thiobacillus ferrooxidans plasmids in Escherichia coli[J]. J Bacteriol. 1984, 157(1):324-326.
    [42] Rawlings D. E, Pretorius I. M, Woods D.R. Expression of a Thiobacillus ferrooxidans origin of replication in Escherichia coli[J]. J bacteriol. 1984,158(2): 737-738
    [43] Liu Z.Y, Yah W.M. Restriction Mapping of Plasmid-52 from Fhiobacillus ferrooxidans and Construction of Chimeric Plasmid Psdi-1[J]. Chin J Shandong Univ(山东大学学报), 1990, 25(3): 389-394.
    [44] Barros M.E.C, Rawlings D.E, Woods D.R. Cloning and expression of the Thiobacillus ferrooxidans glutamine syntbetase gene in Escherichia coli[J]. J Bactenol. 1985,164(3):1386-1389
    [45] UK Patent Application GB2148300A, 1985.
    [46] Peng J. B, Yah W.M, Bao X.Z. Plasmid and transposon transfer to Thiobacillus ferrooxidans[J].J. Bacteriol. 1994,176(10):2892-2897.
    [47] 田克力,林建群,张长铠等.氧化亚铁硫杆菌铁氧化系统分子生物学研究进展[J].微生物学报,2002,29(1):85-88.
    [48] 杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998.286-291.
    [49] 《浸矿技术》编委会,浸矿技术[M],北京:原子能出版社,1994,431-496.
    [50] Lasse Ahomen, Olih Tuovinen. Hydrometallurgy[J],1990,24:219-236.
    [51] Comez E, ballester A, Blazquez M.L, et al. Hydrometallurgy [J], 1999, 51:37-46.
    [52] 邱冠周,王军,钟康年等.铜矿石银催化研究(J),矿冶工程,1998,3:22-25.
    [53] 胡岳华,张在海,邱冠周等.Ag~+在细菌浸出中的催化作用研究(J),矿冶工程,2001,21(1):24-28.
    [54] Young, Sharon; Dreisinger, David Bruce; Munoz, Jesus. Silver-catalyzed process for bioleaching of copper from chalcopyrite ore heap (P), W020000 37690A129 Jun 2000,46pp.
    [55] King, James A. U.S. Heap bioleaching of sulfide ores with a partial recycling initiation (P). US6207443 B127 Mar 2001,8.
    [56] Sharp, James E.; Karlage, Kelly L.; Young, Tom. Bioleaching of sulfide ore concentrates precoated on ball-shaped performs for increased surface contact in acidic slurry(P),W09851828 A119 Nov 1998,28 pp.
    [57] Norton, Alan; Batty, John De Klerk; Dew, David Willian et al. Concentration of precious metal in ore residue by bioleaching of
    
    sulfides in slurry with oxygen injection(P). W020001018267 A1115 Mar 2001, 39 pp.
    [58] Dew, David William; Basson, Petrus. Bioleaching of sulfide ores and minerals in a slurry using thermophilic bacteria and oxygen injection (P), W02001018262 A215 Mar 2001,29 pp.
    [59] 杨鸿英.难处理金矿中硫化矿物细菌氧化过程的研究.[博士学位论文].沈阳:东北大学,2000
    [60] 李英堂,田淑艳,汪美风.应用矿物学[M].北京:科学出版社.1995
    [61] Vavghan D.J., Becker U., Wright K, Sulphide mineral surface: Theory and experiment. Int. Miner. Process. 1997, No. 5, P:1-14.
    [62] 张世柏,谢先得.黄铁矿表面及其Au(HS)_2溶液作用STM研究.矿物学报.1996,No.1,P:28-32.
    [63] 李雅芹,蔡文六,陈秀珠等.低品位黄铜矿生物氧化的研究[J].微生物学报,1983,23(2):156-162.
    [64] 谢念铭.医学细菌电镜图谱[M].北京:人民卫生出版社,1994年8月.
    [65] 徐建国.分子医学细菌学[M].北京:科学出版社,2000年2月.
    [66] Schaeffer W. I., Holbert, P.E. and Umbreit W.W., Attachment of Thiobacillus thiooxidans to Sulfur Crystals[J]. Journal Bacteriology, 1963,85: 137-140.
    [67] Golovacheva, R.S., Attachment of Suifobaciilus thermosulfidooxidans Cells to the Surface of Sulfide Minerals[J]. Translated from Mikrobiologiya, 1979, 48(3),pp 528-533.
    [68] Free, M. L., Oolman, T., Nagpal, S. and Dahlstrom, D.A., Bioleaching of Sulfide Ores-Distinguishing Between Indirect and Direct Mechanisms. Mineral Bioprocessing, Edited by Smith, R.W. and Misra, M.,1991: 76-89.
    [69] Murthy, K.. S. N. and Natarajan, K. A., The Role of Surface Attachment of Thiobacillus ferooxidans on the Biooxidation of Pyrite[J]. Minerals & Metallurgical Processing, 1992, February: 24-29.
    [70] Ohmura, N., Tsugita, K., Koizumi, J. and Saiki, H., Sulfur-Binding Protein of Flagella of Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1996,178 (19): 5776-5780.
    [71] Ohmura, N. and Blake Ⅱ,R.C, Aporusticyanin Midiates the Adhesion of Thiobacillrs ferrooxidans to Pyrite. In International Biohydrometallurgy Symposium IBS97, Biomine 97, Sydney, Australia, 1997, Australia, 1997, PBI. 1-PB1. 9.
    [72] Sampson, M.I. and Blake Ⅱ,R.C.,Cell Attachment and Oxygen Consumption of Two Strains of Thiobaclllus ferrooxidans[J]. Minerals Engineering, 1999, 12(6): 671-686.
    [73] Sampson, M. I., Phillips, C. V. and Blake Ⅱ,R.C., Influence of the Attachment of Acidophilic Bacteria during the Oxidation of Mineral Sulfides[J]. Minerals Engineering , 2000, 13(4):373-389.
    [74] 孙伟,胡岳华,邱冠周,徐竟.闪锌矿(110)表面离子吸附的动力学模型[J],中国有色金属学报,2002,12(1):187-190.
    
    
    [75] 李秀艳,魏德洲,郑龙熙.含砷金精矿生物预氧化过程中细菌吸附的作用[J],东北大学学报(自然科学版),2000,21(6):641-643.
    [76] M.布叶罗帕乌里克.氢键在提高分选效率的药剂吸附中的作用[J],国外金属矿选矿,2001,6:36-39.
    [77] Busscher, H. J. and Weerkamp, A.H., Specific and Non-Spcific Interactions in Bacterial Adhesion to Solid Substrata[J].FEMS Microbiology Reviews, 1987,46: 165-173.
    [78] Devasia, P., Natarajan, K.A., Sathyanarayana, D. N. and Ramananda Rao, G., Surface Chemistry of Thiobscillus ferrooxidans Relevant to Adhesion on Mineral Surfaces[J]. Applied and Environmental Microbiology, 1993,59(12),pp 4051-4055.
    [79] 杨显万邱定蕃.湿法冶金[M].冶金工业出版社,1998:299-300.
    [80] Van loosdrecht M.C.M, Zehnder A.J.B. Energetics of bacterial adhesion[J]. Experimentia 1990; 46:817-822.
    [81] Preston Devasia, K.A. Natarajan, D.N. Sathyanarayana, et al. Surface Chemistry of Thiobacillus ferrooxidans Relevant to Adhesion on Mineral Surfaces. Appliec and Environmental Microbiology[J], 1993,59(12): 4051-4055.
    [82] Naoya Ohmura, Keiko Kitamura, and Hiroshi Saiki. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite. Applied and Environmental Microbiology[J], 1993,59(12): 4044-4050.
    [83] Marshall, K. C. 1976. Interfaces in microbial ecology [M].Harvard University Press, Cambridge, Mass.
    [84] Fowler. P. R. Crundwell T. A. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans[J]. Appl. Environ, Microbiol. 1999,65(7): 2987-2993.
    [85] Van Loosdrecht, M. C. M., J. Lyklema, W. Norde, and A. J. B. Zehnder. Influence of interfaces on microbisl activity[J].Microbiol. 1990, rev. 54:75-87.
    [86] Verkleih, AH, et al. Biochem. Biophys[J]. Acta. 1978, 515: 303-327,.
    [87] Braun, V, et al. J. Bacterial. 1973, 114:1246-1270.
    [88] 翟中和.细胞生物学[M].高等教育出版社,2000.
    [89] 谢念铭等.中国微生态学杂志[J],2(2):13-16,1990.
    [90] 汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001:29-34.
    [91] 沈萍主编.微生物学[M].高等教育出版社,215-217,2000年7月.
    [92] Peng JB, Yan WM, Bao XZ.. Plasmid and transposon transfer to Thiobacillus forrooxidans[J]. J. bacteriol. 1994,176(10): 2892-2897.
    [93] Tuovinen OH, Kelly BC, Groudev SN. Mixed cultures in biological leaching processes and mineral biotechnology. In: Zeikus JG, Hohnson EA, eds. Mixed Cultures in Biotechnology. New York: McGraw-Hill, 1991:373-427.
    [94] Johnson DB, Macvicar JHM, Rolfe S. A new solid medium for the isolation and enumeration of TMobacillus ferrooxidans and acidophilic
    
    heterotrophic bacteria[J]. J. Microbiol Methods 1987, 7:9-18.
    [95] Goebel B.M, Stackebrand E. Cultural and phylogenetic analysis of mixed microbial poprlations found in natural and commercial bioleaching environments[J]. Appl Envir Microbiol 1994; 60:1614-1621.
    [96] 何正国,李雅芹,周培瑾.氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传学[J].微生物学报,2000,40(5):563-565.
    [97] Rodriguez-Leiva, M. And Tributsch, H., Morphology of Bacterial Leaching Patterns by Thfobacillus ferrooxidans on Synthetic Pyrite[J].Archives of Microbiology, 1988,149:401-405.
    [98] Sampson, M. I. and Blake Ⅱ, R. C., Cell Attachment and Oxygen Consumption of Two Strains of Thiobacillus ferrooxidans[J]. 1999, Minerals Engineering 12(6): 671-686.
    [99] Santhiya, D. S. Subramanlan and K.A. Natarajan. Surface Chemical Studies on Galena and Sphalerite in the Presence of Thiobacillus Thiooxidans with Reference to Mineral Beneficiation[J]. Minerals Engineering. 2000,13(7): 747-763.
    [100] P.德瓦西亚.细菌生长条件和细菌吸附在氧化铁硫杆菌生物浸出黄铜矿中的作用[J].国外金属矿选矿,1992,2:28-30.
    [101] M.布叶罗帕乌里克.氢键在提高分选效率的药剂吸附中的作用[J].国外金属矿选矿,2001,6:36-39.
    [102] 卞江,陈志达,吴瑾光.氢键和质子传递研究进展[J].化学通报,1997,4:12-18.
    [103] Tilman Gehrke, Judit Telegdi, Dominique Thierry and Wolfgang Sand. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching[J]. Appl Environ Microbiol. 1998(64): 2743-2747.
    [104] Letcher, M. (ed.).Bacterial adhesion: molecular and ecological diversity[M]. Wiley-Liss, New York. 1996:1-24.
    [105] Sand, W., Gehrke, T. Hallmann, R. and A. Schippers. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaluation of bacterial leaching[J]. Appl. Microbiol. Biotechnol. 1995(43): 961-966.
    [106] Rodriguez, M.; Campos, S.; Gomez-Silva, B. Studies on native strains of Thiobacillus ferrooxidans.Ⅲ. Studies on the outer membrane o Thiobacillud ferrooxidans. Characterization of the lipopolysaccharide and some proteins[J]. Biotchnol. Appl. biochem. 1986(8): 292-297.
    [107] Nicolas Guiliani and Carlos A. Jerez. Molecular Cloning, Sequencing, and the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus[J]. Applied and Environmental Microbiology. 2000(66):2318-2324
    [108] Michael Lehman R. and Se (?)n P.O' Connell'. Comparison of Extracellular Enzyme Activities and Community Composition of
    
    Attached and Free-Living Bacteria in Porous Medium Columns[J]. Applied and Environmental Microbiology 2002,68(4):1569-1575.
    [109] Dazzo, F. B., and Brill W.J.. Bacterial polysaccharide which binds Rhiizobium trifolii to clover root hairs[J]. J. Bacteriol. 1979, 137: 1362-1373.
    [110] Lzbischinski, H., Barnickel, G., Bradaczek, H. Naumann, D. E. Rietschel, T. and Giesbrecht, P. High state of order of isolated bacterial lipopolusaccharide and its possible contribution to the permeation barrier property of the outer membrane[J]. J. Bacteriol. 1985,162:9-20.
    [111] Sansonetti, P.H., Hale, T.L. Kopecko, D.J. Hauteville, H.d' and Formal. S. B.. Genetic studies on Shigella invasiveness. UCLA Symp. Mol. Cell. Biol. (New Ser.)1984, 13:331-336.
    [112] DiSpirito, A. A., Dugan, P.R. and Tuovinen O. H.. Sorption of Thiobacillus ferrooxidans to particulate material[J]. Biotechnol. Bioeng. 1983,25:1163-1168.
    [113] Forsberg, C. W., J.W. Costerton, and MacLeod. R.A. Separation and localization of cell wall layers of a gram negative bacterium[J].1970,104:1338-1353.
    [114] Renato Arredondo, Alberto garcia and Carlos A. Jerez. Partisl Removal of Lipopolysaccharide from Thiobacillus ferrooxidans Affects Its Adhesion to Solids. Applied and Environmental Microbiology. 1994:2846-2851.
    [115] Rossi G. Biohydrometallurgy[M]. New York: McGraw-Hill, 1990.
    [116] 贲长恩 李叔庚 主编.组织化学.人民卫生出版社,2001:611-612.
    [117] Douglas E. Rawlings. Biomining: Theory, Microbes and Industrial Processes[M].South Africa: Springer-Verlag and Landes Bioscience 1997; 177-200.
    [118] Crundwe11F. K. Formation of biofilms of iron-oxidizing bacteria on pyrite[J]. Minerals Engineering, 1996, 9:1081-1089.
    [119] 郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2000,128.
    [120] 邹清华,张建中.蛋白质组学的相关技术及运用[J].生物技术通讯,2003,14 (3):210-213.
    [121] Blackstock W.P, Weir M.P. Proteomics: quantitative and physical mapping of cellular proteins[J]. Tibtech March, 1999,17:121.
    [122] Fey S.J, Larsen P.M. 2D or not 2D[J]. Cur Opin Chemical Biol, 2001,5:26.
    [123] Van Wi jk K.J. Challenges and prospects of plant proteomics[J]. Plant Physiol, 2001, 126:501.
    [124] Suzuki H, Tanaka T, Tano T et al. Existence of sulfide binding protein in iron-oxidizing bacteria. In: Torma AE, Apel ML, Brierley CL, eds. Biohydrometallurgical Technologies. Vol Ⅱ.Warrendale, Pennsylvania; TMS Processing, 1993:423-431.
    
    
    [125] Suzuki, I.. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans[J]. Biochim. Biophys. Acta 1965, 104:359-371.
    [126] Sugio T, Domatsu C, Munakata O et al. Role of a ferric ion-reducing system in sulfur oxidation of Thiobadillus ferrooxidans[J]. Appl Environ Microbiol 1985; 49:1401-1406.
    [127] Rawlings, D.E Tributsch, H and Hansford G.S. Reasons why 'Leptospirillum' -like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology, Jan 1999;145:5-13.
    [128] Suzuki, I., and Silver, M.. The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli[J]. Biochem. Biophys. Acta 1966,122:22-33.
    [129] Sugio T., Katagiri, T. Inagaki, and T. Tano. Actual substrate for elemental sulfu. oxidation by sulfur: ferric ion oxidoreductase purified from Thiobacillus ferrooxidnns[J]. Biodhim. Biophys. Acta 1989, 973:250-256.
    [130] Sugio, T.T. Hirose, L,Z Ye and T. Tano. Purification and some properties of sulfite: ferric ion oxidoreductase from Thiobacillus ferrooxidans[J]. J. Bacteriol., 1992, 174(12): 4189-4192.
    [131] Santiago. Processing[M]. University of Chile Press, 1995, 19-30.
    [132] 马歇克D,R,门永J,T,布格斯R,R等.蛋白质纯化与鉴定实验指南[M].朱厚础等译.北京:科学出版社,2000:5-6.
    [133] 陈石根,周润琦.酶学[M].长沙:湖南科学技术出版社,1987,2-3.
    [134] Enzyme Nomenclature Recommendation of The Nomenclature Committee of The International Union of Biochemistry on The Nomanclture and Classification of Enzymes[M]New York:Acad. Press, 1979
    [135] E.A. Dawes, QuantitativeProblems in Biochemistry[M],5th ed. Churchill-Livingstone, 1972.
    [136] Morris, J.G.A Biologists' Physical Chemistry 2nd ed, Arnold, 1974.
    [137] 清水样一.酵素分析法——原理应用[M],东京:讲谈社,1971.
    [138] 山根恒夫.生物反應工学[M].東京:產業囡書株式会社,1982.
    [139] Creighton, T.E., Proteins:Structures and Molecular Properties [M], San Francisco:2nd edition. W.H. Freeman, 1993.
    [140] T. Sugio, Wataru Mizunashi, Kenji Inagaki et al. Purification and Some Properties of Sulfur: Ferric Ion Oxidoreductase from Thiobacillus ferrooxldans[J].Journal of Bacteriology, 1987, 169(11): 4916-4922.
    [141] T. Sugio, W. Mizunashi, T. Tano, and K. Imal. Production of ferrous ions as intermediates during aerobic srlfur oxidation in Thiobacillus ferrooxidans. Agric. Biol. Chem. 1986,50:2755-2761.
    [142] Sugio, T. Katagiri, and M. Moriyama et al. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor
    
    in Thiobacillus ferrooxidans[J].Appl. Environ. Mictobiol. 1988, 54:153-157.
    [143] Sugio, T. K. Wada andMori M. et al. Synthesis of an iron-oxidizing system during growth of fhiobacillus ferrooxidans on sulfur-basal salts medium[J]. Appl. Environ. Mictobiol. 1988, 54:150-152.
    [144] Scopes, R.K.,Protein purification:Principles and Practice, [M],3rd edition. New York:Springer-verlag, 1994.
    [145] Scopes, R.K.,Protein Purification. Prindiples and Practice[M],New York:Springer-Verlag, 1982.
    [146] Schleif. R.F. and P.C. Wensink. Practice Methods in Molecular Biology[M],New York:Springer-Verlag, 1981.
    [147] Blackshear, P.J. System for Polyacrylamide Gel Electrophoresis[J]. Meth. Enzymol.,1984,104:237-255.
    [148] Laemmle, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. [J]. Nature, 1970,227:680-685.
    [149] 汪家政,范明.蛋白质技术手册[M],北京:科学出版社,2001,1-19.
    [150] Figeys D, McBroom LD, Moran MF. Mass Spectry for the study of protein-interactions[J]. Methods, 2001,24:230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700