用户名: 密码: 验证码:
中国陆架海挥发性卤代烃的分布、来源与海—气通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性卤代烃(VHCs, Volatile halocarbons)是大气中一类重要的痕量温室气体,在全球气候变化和大气环境方面起着重要作用。大气中VHCs既有人为来源,也有天然来源。海洋在挥发性卤代烃的生物地球化学循环中起着重要作用,海-气界面层是VHCs交换的重要场所之一,因此,海洋是大气中挥发性卤代烃的主要的源汇区。而近岸海域海洋环境比较复杂,可能是大气中VHCs的源区。研究这些海洋环境中VHCs的生物地球化学循环过程,对在全球尺度上准确估算海洋对大气中VHCs的贡献和对未来气候的影响具有重要意义。
     本文以中国陆架海—东海、黄海和渤海为研究目标,从海水和大气两方面入手,对海水中VHCs的浓度分布特征、时空变化、影响因素、海-气交换通量进行了较为系统的研究,同时对近海大气中VHCs的浓度水平进行了研究。主要研究结果如下:
     1.参考国内外文献,基于大气采样罐和三级预浓缩仪-气相色谱-质谱分析系统在实验室改进了海洋大气中VHCs的分析方法,其方法检出限为0.5-4.2pptv,精密度为1-6%,准确度为4-10%。该方法与国外同类方法相当,为中国近海海洋大气中VHCs的分析测定工作打下了坚实的基础。
     2.于2011年3月至4月(春季)、7月(夏季)、10月至11月(秋季)和2011年12月至2012年1月(冬季)对东海、南黄海海域5种VHCs浓度分布和海-气通量的时空变化进行了研究。结果表明:春季东海、南黄海表层海水中CHCl3、C2HCl3、C2Cl_4、CHBr2Cl和CHBr_3浓度平均值及范围分别为62.45(24.6-361.2)、29.67(5.22-72.04)、14.55(1.71-38.90)、44.29(1.44-242.81)和134.62(57.46-512.37)pmol L~(-1);夏季浓度平均值及范围分别为51.96(15.85-129.04)、10.85(1.70-78.30)、9.47(3.15-29.45)、27.11(6.94-90.20)和57.63(28.46-90.41)pmol L~(-1);秋季浓度平均值及范围分别为63.91(24.63-361.23)、28.46(1.82-85.77)、21.04(9.85-89.3)、20.92(7.98-59.89)和75.91(0.04-537.04)pmol L~(-1);冬季浓度平均值及范围分别为33.50(6.77-275.58)、35.06(5.30-83.15)、9.86(0.96-40.06)、16.10(10.18-65.22)和19.84(2.99-80.61)pmol L~(-1)。由此看出,东海、南黄海5种VHCs浓度呈现明显的季节变化,除C2HCl3外,其他4种VHCs浓度春秋高、冬季最低。这与长江径流的输入、海洋浮游植物的季节性消长以及东海、南黄海海域复杂的水团变化有关。东海、南黄海5种VHCs的空间分布明显受到沿岸径流(如长江冲淡水)和高温高盐黑潮水系及其分支的影响,各季节5种VHCs的浓度水平分布特征大致相似,即东海、南黄海5种VHCs的浓度分布总体表现出近岸高、外海低的趋势,但是每一个季节每一种VHCs又呈现出各自一定的特征。春秋季节垂直断面的分布研究表明,不同VHCs浓度垂直分布不同,同种VHCs在不同季节其垂直分布不同,总体上最大浓度均出现在上层混合层。另外,春季和秋季东海海水中5种VHCs的浓度均表现出明显的周日变化,呈现双峰特征。5种VHCs浓度最髙值出现在中午前后,可能与生物生产和光化学来源有关,而在夜间的较髙值可能是呼吸作用、浮游动物摄食及潮汐作用共同作用的结果。根据现场的风速和表层海水的VHCs浓度,利用Liss&Merlivat公式(LM86)和Wanninkhof公式(W92)分别计算了5种VHCs的海-气通量。受到地理位置、气象条件(如风速)的影响,东海、南黄海5种VHCs海-气通量表现出明显的季节差异,春季较高的VHCs浓度和冬季较大的风速对VHCs海-气通量贡献较大。海-气的计算结果表明:春夏秋冬季节调查期间东海、南黄海是大气中CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3的源。
     3.于2009年12月23日-2010年1月5日对中国东海表层海水和PN断面不同深度海水中4种VHCs进行了测定,并对其来源进行了分析。结果表明,表层海水中CHCl_3、C_2HCl_3、C_2Cl_4和CHBr_3浓度平均值及范围分别为23.04(6.04-107.81)、18.18(10.67-32.35)、3.72(0.39-9.77)和24.33(13.44-33.01)pmol L~(-1)。4种VHCs浓度水平分布总体呈现近岸高、外海低的趋势;PN断面4种VHCs的浓度最大值出现在上混合层(50m以浅)。4种VHCs浓度的分布总体上受到长江冲淡水、黑潮水及生物活动的共同影响。相关性分析结果表明:C_2HCl_3与C_2Cl_4浓度呈现显著正相关,推测二者存在相似的来源;CHBr_3浓度与叶绿素a浓度呈现一定的正相关性,推测CHBr_3分布受到浮游植物生物量的影响,在调查区内CHBr_3可能主要来源于浮游植物。海-气通量估算表明冬季调查海域是大气中CHCl_3、C_2HCl_3和CHBr_3的源。
     4.于2010年11月27日-12月10日对中国东海表层海水和PN断面不同深度海水中6种VHCs浓度分布、来源和海-气通量进行了研究。研究结果表明,表层海水中CHCl_3、C_2HCl_3、C_2Cl_4、CCl_4、CH3CCl_3和CHBr_3浓度平均值及范围分别为16.90(0.40-62.92)、16.27(2.78-83.33)、2.40(0.39-9.33)、32.29(19.72-57.68)、1.70(0.39-8.73)和17.11(4.33-34.46)pmol L~(-1)。除C_2HCl_3外,其他5种VHCs浓度分布大致呈现出近岸高、外海低的趋势。研究发现CCl_4和CH_3CCl_3主要受陆源输入的影响,而CHCl_3、C_2HCl_3、C_2Cl_4和CHBr_3主要受陆源输入和生物释放的共同作用。6种VHCs浓度垂直分布比较复杂,最大值均出现在0-100m水体。调查期间CHCl_3、C_2HCl_3、C_2Cl_4和CHBr_3海-气通量分别为21.08、29.94、2.05和35.50nmolm-2d-1,表明东海是大气中CHCl_3、C_2HCl_3、C_2Cl_4和CHBr_3的源。
     5.于2012年5月对南黄海大气中8种VHCs的浓度分布进行了调查。结果表明,南黄海大气中CH_3Cl、CH_3Br、C_2HCl_3、C_2Cl_4、CH_3CCl_3、CCl_3F (CFC-11)、CCl2FCClF2(CFC-113)和CCl2FCF3(CFC-114)的大气浓度平均值及范围分别为606.1(412.0-870.6)pptv、16.0(9.9-22.1)pptv、27.3(9.5-52.6)pptv、29.5(10.7-49.0)pptv、9.1(5.8-14.3)pptv、225.1(213.5-233.7)pptv、77.1(69.0-87.9)pptv和18.8(16.7-24.2)pptv。近岸陆源污染物的扩散和输送是南黄海大气中VHCs的重要来源。我们的结果表明CH_3Cl、CH_3Br和CFCs在山东半岛海域存在较强的来源。CH_3CCl_3、CFC-11和CFC-113浓度显著低于全球大气浓度平均值,表明目前三种化合物的利用逐渐被废除;而C_2HCl_3和C_2Cl_4浓度显著高于全球大气浓度平均值,表明二者仍被大量使用。
     6.于2012年5月和11月对北黄海、渤海表层海水中5种VHCs浓度分布和季节变化特征进行了研究。研究表明:春季北黄海、渤海表层海水中CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3浓度平均值及范围分别为402.62(63.06-926.72)、18.99(3.65-34.21)、12.61(0.84-28.29)、4.00(0.96-11.28)和20.62(3.29-79.87)pmolL~(-1);秋季浓度平均值及范围分别为189.13(11.31-310.99)、55.69(17.46-136.54)、41.11(2.67-78.00)、20.35(5.12-53.65)和46.18(15.86-94.54)pmol L~(-1)。由此可见,北黄海、渤海表层海水中5种VHCs的浓度呈现明显的季节变化,CHCl_3浓度春季高于秋季,C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3浓度则是秋季高于春季,VHCs的季节性变化主要与陆源径流和浮游植物释放的相对贡献有关。研究表明,春季CHCl_3的来源主要为陆地径流输入;而秋季C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3的来源主要为陆地径流输入和生物释放的共同作用。春秋季节北黄海、渤海表层海水5种VHCs浓度空间分布呈现出不同的分布特征。由于调查海域为封闭和半封闭海域,受人类活动的影响严重,加上不同VHCs来源强度不同,因此没有表现出一致的分布特征。如春秋季,5种VHCs浓度髙值区出现在辽东半岛西南侧海域、黄河口海域和山东半岛西北部及东部海域等。原因可能是近岸地区经济和工业发达,人口密集,海上交通及人类活动频繁。相关性研究表明,秋季CHBr_2Cl与叶绿素a有显著的相关关系,其他VHCs与叶绿素a不存在相关关系,说明春秋季节浮游植物生物量不是控制北黄海、渤海VHCs浓度的主要因素。春季CHBr_2Cl与温度的相关关系表明其分布与温度有关。C_2HCl_3和C_2Cl_4以及CHBr_2Cl和CHBr_3之间的显著相关关系表明它们分别存在相似的来源或者去除途径。根据现场的风速和表层海水VHCs浓度,利用Liss&Merlivat公式(LM86)和Wanninkhof公式(W92)分别计算了海水5种VHCs海-气通量。结果表明:春秋季节北黄海、渤海是大气中CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3的源。5种VHCs海-气通量受到表层海水VHCs浓度以及风速的影响。
     7.东海、黄海和渤海海区所处的地理位置和环境不同,特别在初级生产力、水团变化、陆源影响等方面存在明显差异。渤海、北黄海CHCl_3、C_2HCl_3和C_2Cl_4的年平均浓度高于东海、南黄海的年平均值;而CHBr_2Cl和CHBr_3的年平均浓度低于东海、南黄海的年平均值。VHCs海-气通量的计算结果表明,东海、南黄海、北黄海及渤海海域VHCs的海-气通量变化较大,存在明显的空间和季节性差异。根据VHCs年平均通量和东海、南黄海的海域面积,初步估算出东海、南黄海CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3释放量分别为0.45Gg Cl yr~(-1),0.17Gg Cl yr~(-1),0.12Gg Cl yr~(-1),0.23Gg Br yr~(-1)和0.71Gg Br yr~(-1)。虽然东海、南黄海只占到全球海洋面积的0.27%,而其向大气中释放的CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3却分别占全球海洋CHCl_3、C_2HCl_3、C_2Cl_4、CHBr_2Cl和CHBr_3年释放总量的1.4%,8.5%,6%,5%和0.8%。当然由于各种不确定因素的存在,该释放量与实际释放量之间可能存在较大的误差。由于东海和黄海是全球最有代表性的陆架区之一,此研究结果表明陆架、近岸海域虽然只占到全球海洋面积的一小部分,但对全球海洋释放的Cl和Br贡献很大。
Volatile halocarbons (VHCs) with both natural and anthropogenic sources areimportant atmospheric trace gases, which play significant role in the global warmingand atmospheric chemistry. The ocean plays important and complex roles in theglobal biogeochemical cycles of these VHCs, and the marine boundary layer is one ofthe most important places for gas exchange between water/atmosphere. Therefore,Oceans may act as a sink or source of these compounds. Coastal and shelf regions,with the complex marine environment, may be the sources of the VHCs. Anunderstanding of the biogeochemistry of the VHCs in the shelf seas is important inorder to estimate the contribution of oceanic emission to the atmospheric VHCs on theglobal scale, and to predict the influence of oceanic emission to the global climate.
     The research presented in this dissertation focused on the spatial and temporalvariations of distributions, sources and sea-to-air fluxes of the VHCs in the Chinashelf seas—the East China Sea, the Yellow Sea and Bohai Sea. The main conclusionsare drawn as follows:
     1. An analytical method for measurement of marine atmospheric volatile halocarbonshas been developed based on canister sampling and an automated preconcentrationgas chromatography-mass spectrometer system. The method detection limit of thegases of interest was in the range of0.5-4.2pptv. The accuracy of the method was inthe range of4-10%with the precision of1-6%.
     2. The distributions and sea-to-air fluxes of five kinds of VHCs in the East China Seaand the South Yellow Sea during spring, summer, autumn and winter2011areinvestigated. The results showed that the mean (range) concentrations of CHCl_3,C_2HCl_3, C_2Cl_4, CHBr_2Cl and CHBr_3were62.45(10.33-250.50),29.67(5.22-72.04),14.55(1.71-38.90),44.29(1.44-242.81) and134.62(57.36-512.37) pmol L~(-1)in spring,respectively. Summer concentrations are51.96(15.85-129.04),10.85(1.70-78.30),9.47(3.15-29.45),27.11(6.94-90.20) and57.63(28.46-90.41) pmol L~(-1), respectively.Autumn concentrations are63.91(24.63-361.23),28.46(1.82-85.77),21.04(9.85-89.3),20.92(7.98-59.89) and75.91(0.04-537.04) pmol L~(-1), respectively, and winter concentration are33.50(6.77-275.58),35.06(5.30-83.15),9.86(0.96-40.06),16.10(10.18-65.22) and19.84(2.99-80.61) pmol L~(-1), respectively. In general, withthe exceptions of C_2HCl_3, the mean concentrations of other four kinds of VHCs in thesurface water of the East China Sea and the South Yellow Sea showed a notableseasonal variation with high values in spring and autumn and lowest ones in winter.The spatial distributions of VHCs in the East China Sea and the South Yellow Sea areobvious influenced by the Yangtze River effluent and the oligotrophic Kuroshiowaters as well as the biogenic release. When the distribution patterns are comparedwith each other in different seasons, they are nearly synoptic and generally exhibited adecreasing trend with distant from the coast, with being strongly biased by temporalchange. The vertical distributions of five kinds of VHCs during the spring and antumnare studied. The results showed that the vertical profiles of the five VHCs differamong stations, and the vertical distributions of VHCs were different from each otherduring different seasons, with maxima generally appearing in the mixed layer. Inaddition, the VHCs concentrations exhibited obvious diurnal variation in the surfaceseawater. The highest concentrations of VHCs appearing around noon time may beassociated with biogenic production and photosynthesis of the algae, while therelatively high concentration in the night may be attributed to algal respiration andtidal frequency. Liss and Merlivat relationship (LM86) and Wanninkhof relationship(W92) are employed to calculate the sea-to-air fluxes of VHCs based on the in-situwind speeds and the measured VHCs concentrations in the surface waters. Thesea-to-air fluxes of VHCs showed obvious seasonal variations duo to the influence ofwind speeds and concentrations of the VHCs. For example, the higher VHCsconcentrations in spring and large wind speeds in winter contribute to the large fluxesof VHCs. Sea-to-air fluxes indicated that the East China Sea and the South YellowSea was a source for the fiver VHCs in the atmosphere during the study periods.
     3. The concentrations of four kinds of VHCs including CHCl_3, C_2HCl_3, C_2Cl_4andCHBr_3in seawater were determined in the East China Sea during23December2009-5January2010, and the sources of the VHCs were studied. The result showedthat the means (ranges) of the concentrations of CHCl_3, C_2HCl_3, C_2Cl_4and CHBr_3inthe surface waters were23.04(6.04-107.81),18.81(10.67-32.35),3.72(0.39-9.77)and24.33(13.44-33.01) pmol L~(-1), respectively. The concentrations of VHCs nearshore were higher than those in the open sea. In the PN section the verticaldistribution of VHCs had a common feature with the maxima in the upper mixed layer. The distributions of four kinds of VHCs were clearly influenced by the Yangtze Rivereffluent, the Kuroshio water and biological activity. A marked correlation between theC_2HCl_3and C_2Cl_4concentrations was observed in the surface waters, suggesting thatthey might have some common sources. Besides, a positive correlation was foundbetween chlorophyll a and CHBr_3concentrations in the surface seawater, indicatingthat phytoplankton biomass might play an important role in determining thedistribution of CHBr_3in the study area. Our data indicated that the entire East ChinaSea shelf acted as a source for atmospheric CHCl_3, C_2HCl_3and CHBr_3during thestudy period.
     4. The concentrations of six VHCs in the East China Sea were measured in Novemberand December2010. Mean (range) concentrations of CHCl_3, C_2HCl_3, C_2Cl_4, CH_3CCl_3,CCl_4and CHBr_3in the surface water were16.90(0.40-62.92),16.27(2.78-83.33),2.40(0.39-9.33),32.29(19.72-57.68),1.70(0.39-8.73) and17.11(4.33-34.46) pmolL~(-1), respectively. With the exception of C_2HCl_3, the concentrations of other five kindsof VHCs generally exhibited a decreasing trend with distance from the coast, with thelow values found in the open sea. The anthropogenic sources contributed to theelevated levels of CCl_4and CH_3CCl_3, whereas a combination of the anthropogenicand biogenic sources might be responsible for the elevated levels of CHCl_3, C_2HCl_3,C_2Cl_4and CHBr_3. In the depth profiles, vertical distributions of the six VHCs in thewater column were complicated, with the maxima occurring at0-100m depths. Themean sea-to-air fluxes of CHCl_3, C_2HCl_3, C_2Cl_4and CHBr_3were estimated to be21.08,29.94,2.05and35.50nmol m-2d-1, respectively, indicating that the East ChinaSea was a source for the four VHCs in the atmosphere.
     5. The concentrations of8VHCs, including methyl chloride (CH_3Cl), methyl bromide(CH_3Br), trichloroethene (C_2HCl_3), tetrachloroethene (C_2Cl_4), methyl chloroform(CH_3CCl_3) and three chlorofluorocarbibons (CCl_3F (CFC-11), CCl2FCClF2(CFC-113)and CCl2FCF3(CFC-114)), were measured using canister sampling technique and anautomated preconcentration gas chromatography-mass spectrometer system in themarine atmosphere of the South Yellow Sea in May2012. The mean (range) marineatmospheric mixing ratios for CH_3Cl, CH_3Br, C_2HCl_3, C_2Cl_4, CH_3CCl_3, CFC-11,CFC-113and CFC-114were606.1(412.0-870.6) pptv,16.0(9.9-22.1) pptv,27.3(9.5-52.6) pptv,29.5(10.7-49.0) pptv,9.1(5.8-14.3) pptv,225.1(213.5-233.7) pptv,77.1(69.0-87.9) pptv and18.8(16.7-24.2) pptv, respectively. The diffusion andtransportation of terrestrial pollutants from the coastal area play an important role in the source of selected halocarbons over the South Yellow Sea. Our data indicated thatCH_3Cl, CH_3Br and CFCs had strong local sources from the Shandong Peninsula. Thebackward trajectory analysis suggested that enrichment of CH_3CCl_3in the south of thestudy area might be caused by the long-range transportation of air-masses from theChina mainland. Our results implied the signs of successful phase-out of CFCs andCH_3CCl_3, but substantial releases of C_2HCl_3and C_2Cl_4. The sea-to-air fluxes ofCH_3Cl, CH_3Br and C_2HCl_3were estimated based upon the simultaneous measurementof atmospheric and seawater concentrations of these three gases and the resultsconfirmed that coastal and shelf waters constitute important sources of atmosphericCH_3Cl, CH_3Br and C_2HCl_3.
     6. The distributions and sea-to-air fluxes of the five kinds VHCs are investigated inthe North Yellow Sea and Bohai Sea in May and Nov.2012. The mean (range)concentrations in the surface water of CHCl_3, C_2HCl_3, C_2Cl_4, CHBr_2Cl and CHBr_3inspring are402.62(63.06-926.72),18.99(3.65-34.21),12.61(0.84-28.29),4.00(0.96-11.28) and20.62(3.29-79.87) pmol L~(-1), respectively, whereas those in theautumn are189.13(11.31-310.99),55.69(17.46-136.54),41.11(2.67-78.00),20.35(5.12-53.65) and46.18(15.86-94.54) pmol L~(-1), respectively. The results show the fiveVHCs concentrations show obvious seasonal variations. The concentrations of CHCl_3in spring are higher than that in autumn, while the concentrations of C_2HCl_3, C_2Cl_4,CHBr_2Cl and CHBr_3in autumn are higher than that in spring. The anthropogenicsource as well as biogenic source may contribute to the seasonal variations of the fiveVHCs. The high concentrations of CHCl_3in the spring may be related toanthropogenic input, whereas the high concentrations of C_2HCl_3, C_2Cl_4, CHBr_2Cl andCHBr_3may be associated with a combination impact of biogenic release andanthropogenic input. Overall, the distributions of the five VHCs in the surface waterin the North Yellow Sea and Bohai Sea during spring and autumn show significantspatial variations, with high concentrations appearing in the Yellow River estuary,southwest of the Liaodong Peninsula as well as the northwest and east of theShandong Peninsula. Elevated concentrations of the VHCs might be associated withterrestrial input such as Yellow River runoff, biological production as well as thecomplex water masses. Correlation analyses have been used to investigate possiblecontrols on the concentrations of these gases. The CHBr_2Cl concentrations appearedto be significantly correlated with chlorophyll a levels in the study area duringautumn, while other VHCs show no relationship with chlorophyll a during both seasons, suggesting that biological production are not the dominant source of theVHCs. For the physical parameters, sea surface temperature was positively correlatedwith CHBr_2Cl during spring, indicating that the distributions of CHBr_2Cl may beinfluenced by sea surface temperature. A significant correlation was observedbetween C_2HCl_3and C_2Cl_4as well as between CHBr_2Cl and CHBr_3, implied that thesource and sink patterns of C_2HCl_3and C_2Cl_4as well as CHBr_2Cl and CHBr_3in thesurface water were similar. The spatial variability in the sea-to-air fluxes of the fiveVHCs was largely controlled not only by the wind speed, but also by their surfaceconcentrations. Sea-to-air fluxes indicated that the North Yellow Sea and Bohai Seawas a source for the fiver VHCs in the atmosphere during the study periods.
     7. The temporal and spatial distributions of these compounds vary significantly in theEast China Sea, Yellow Sea and Bohai Sea. The mean annual concentrations of CHCl_3,C_2HCl_3and C_2Cl_4in the East China Sea and South Yellow Sea are higher than thosein the North Yellow Sea and Bohai Sea, while the mean annual concentrations ofCHBr_2Cl and CHBr_3in the East China Sea and South Yellow Sea are lower than thosein the North Yellow Sea and Bohai Sea. These variations are attributable to thedifference of these areas in latitude and longitude and environment, especially in theaspects of primary productivity and the variations of water masses and the influenceof anthropogenic activity. Based on the average fluxes of VHCs and the area of theEast China Sea and the South Yellow Sea, the annual oceanic emissions of CHCl_3,C_2HCl_3, C_2Cl_4, CHBr_2Cl and CHBr_3are estimated to be0.45Gg Cl yr~(-1),0.17Gg Clyr~(-1),0.12Gg Cl yr~(-1),0.23Gg Br yr~(-1)and0.71Gg Br yr~(-1)by LM86, respectively.Although the East China Sea and the South Yellow Sea occupies only0.27%of thetotal world ocean area, the contribution of the East China Sea and the South YellowSea to the global oceanic emissions of CHCl_3, C_2HCl_3, C_2Cl_4, CHBr_2Cl and CHBr_3isestimated to be1.4%,8.5%,6%,5%and0.8%, respectively, which means that thecoastal shelf regions may contribute significant amount to the global oceanicemissions of these gases.
引文
[1] Abrahamsson K, Bertilsson S, Chierici, M, Fransson, A., et al. Variations of biochemicalparameters along a transect in the Southern Ocean, with special emphasis on volatilehalogenated organic compounds. Deep-Sea ResearchⅡ,2004b,51:2745-2756
    [2] Abrahamsson K, Ekdahl A,1996. Volatile halogenated compounds and chlorophenols in theSkagerrak. Journal of Sea Research,1996,35(1-3):73-79
    [3] Abrahamsson K, Ekdahl A, Collen J, et al. Marine algae–a source of trichloroethylene andperchloroethylene. Limnology and Oceanography,1995,40(7):1321-1326
    [4] Abrahamsson K, Ekdahl A. Gas chromatographic determination of halogenated organiccmpounds in water and sediment in the Skagerrak. Journal of Chromatography,1993,643:239-248
    [5] Abrahamsson K, Klick S. Determination of biogenic and an-thropogenic volatilehalocarbons in sea water by liquid-liquid extraction and capillary gas chromatography.Journal of Chromatography,1990,513:39-45
    [6] Abrahamsson K, Klick S. Determination of biogenic and an-thropogenic volatilehalocarbons in sea water by liquid-liquid extraction and capillary gas chromatography.Journal of Chromatography,1990,513:39-45
    [7] Abrahamsson K, Lorén A, Wulff A, et al. Air-sea exchange of halocarbons: the influence ofdiurnal and regional variations and distribution of pigments. Deep-Sea Research II,2004a,51(22-24):2789-2805
    [8] Abrahamsson K, Lorén A, Wulff A, et al. Air-sea exchange of halocarbons: the influence ofdiurnal and regional variations and distribution of pigments. Deep-Sea Research II,2004a,51(22-24):2789-2805
    [9] Allonier A S, Khalanski M, Camel V. Characterization of chlorination by-products incooling effluents of coastal nuclear power stations. Marine Pollution Bulletin.1999,38:1232-1241
    [10] Anbar A D, Yung Y L, Chavez F P. Methyl bromide: Ocean sources, ocean sinks and climatesensitivity. Global Biogeochemistry Cycles,1996,10:175–190
    [11] Atlas E, Pollock W, Greenberg J, et al. Alkyl nitrates, nonmethane hydrocarbons andhalocarbon gases over the equatorial Pacific Ocean during Saga3. Journal of GeophysicalResearch,1993,98:16933–16947
    [12] Baker J M, Reeves C E, Nightingale P D, et al. Biological production of methyl bromide inthe coastal waters of the North Sea and open ocean of the northeast Atlantic. MarineChemistry,1999,64:267–285
    [13] Bakierowska A M, Trzeszczynski J. Graphical method for the determination of water/gaspartition coefficients of volatil organic compounds by a headspace gas chromatographytechnique. Fluid Phase Equilibria,2003,213(1-2):139-146
    [14] Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marineenvironment: biogenic formation of organohalogens. Chemosphere,2003,52:313-324
    [15] Baykut G, Voigt A. Spray Extraction of Volatile Organic Compounds from Aqueous Systemsinto the Gas Phase for Gas Chromatography/Mass Spectrometry. Analytical chemistry,1992,64(6):677-681
    [16] Biziuk M, Przyjazny A. Methods of isolation and determination of volatile organohalogencompounds in natural and treated waters. Journal of Chromatography A,1996,733:417-448
    [17] Blake D R, Blake N J, Smith T W J, et al. Nonmethane hydrocarbon and halocarbondistributions during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and GasExchange, June1992, Journal of Geophysical Research,1996,101:4501–4514
    [18] Blake N J, Blake D R, Simpson I J, et al. NMHCs and halocarbons in Asian continentaloutflow during the transport and chemical evolution over the Pacific (TRACE-P) filedcampaign: comparison with PEM-West B. Journal of Geophysical Research,2003,108, doi:10.1029/2002JD003367
    [19] Bravo-Linares C M, Mudge S M, Loyola-Sepulveda R H. Occurrence of volatile organiccompound (VOCs) in Liver pool bay, Irish Sea. Marine pollution bulletin,2007,54(11):1742-1753
    [20] Bravo-Linares C M, Mudge S M. Temporal and identifaction of the sources of volatileorganic compounds in coastal seawater. Journal of Enviomental Monitoring,2009,11:628-641
    [21] Butler J H, Elkins J W, Thompson T M, et al. Oceanic consumption of CH3CCl3:Implication for tropospheric OH. Journal of Geophysical Research,1991,96(D12):22347-22355
    [22] Butler J H. Atmospheric chemistry-Better budgets for methyl halides? Nuture,2000,403:260-261
    [23] Carpenter L J, Jones C E, Dunk R M, et al. Air-sea fluxes of biogenic bromine from thetropical and North Atlantic Ocean. Atmospheric Chemistry Physics,2009,9:1805-1816
    [24] Carpenter L J, Liss P S, Penkett S A. Marine organohalogens in the atmosphere over theAtlantic and Southern oceans, Journal of Geophysical Research,2003,108(D9),4256,doi:10.1029/2002JD002769
    [25] Carpenter L J, Liss P S. On temperate sources of bromoform and other reactive organicbromine gases. Journal of Geophysical Research,2000,105:20539-20547
    [26] Carpenter L J, Sturges W T, S. A. Penkett S A, et al. Short-lived alkyl iodides and bromidesat Mace Head, Ireland: Links to biogenic sources and halogen oxide production, Journal ofGeophysical Research,1999,104:1679–1689
    [27] Carpenter L J, Wevill D J, Palmer C J, et al. Depth profiles of volatile iodine andbromine-containing halocarbons in coastal Antarctic waters. Marine Chemistry,2007,103(3-4):227-236
    [28] Chan C Y, Tang J H, Li Y S, et al. Mixing ratios and sources of halocarbons in urban,semi-urban and rural sites of the Pearl River Delta, South China. Atmospheric Environment,2006,40:7331-7345
    [29] Chan L Y, Chu K W. Halocarbons in the atmosphere of the industrial-related Pear RiverDelta regions of China. Journal of Geophysical Research,2007,112, D04305, doi:10.1029/2006JD007097
    [30] Chen C T A, Liu C T, Chuang W S, et al. Enhanced buoyancy and hence upwelling ofsubsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal ofMarine Systerm,2003,42:67-79
    [31] Chen C T A, Ruo R, Pai S, et al. Exchange of water masses between the East China Sea andthe Kuroshio off northeastern Taiwan. Continental Shelf Research,1995,15:19-39
    [32] Chiba K. Haraguchi H. Determinations of halogenated organic compounds in water by gaschromatography/atmospheric pressuer helium microwave-inducted plasma emissionspectrometry with a heated discharge tube for pyrolysis. Analytical Chemistry,1983,55:1504-1508
    [33] Ching K P, Chou Y H, Chang J, et al. Winter distribution of diatom assemblages in the EastChina Sea. Journal of Geophysical Research,2004,60(6):1053-1062
    [34] Christof O, Seifert R, Michaelis W. Volatile halogenated organic compounds in EuropeanEstuaries. Biogeochemistry,2002,59:143–160
    [35] Chuck A L, Turner S M, Liss P S. Oceanic distributions and air-sea fluxes of biogenichalocarbons in the open ocean. Journal of Geophysical Research,2005,110, C10022, doi:10.1029/2004JC002741
    [36] Cincinelli A, Pieri F, Zhang Y, et al. Compound Specific Isotope Analysis (CSIA) forchlorine and bromine: A review of techniques and applications to elucidate environmentalsources and processes. Environmental Pollution,2012,169:112-127
    [37] Class T Ballschmiter K. Evidence of natural marine sources for chloroform in regions ofhigh primary production. Fresenius Zeitschrift fur Analytische Chemie,1987a,327:40-41
    [38] Class T, Ballschmiter K. Chemistry of organic traces in air IX*: evidence of natural marinesources for chloroform in regions of high primary production. Fresenius Zeitschrift furAnalytische Chemie,1987b,327:39-41
    [39] Class T, Ballschmiter K. Chemistry of organic traces in air, V, Determination of halogenatedC1–C2hydrocarbons in clean marine air and ambient continental air and rain by highresolution gas chromatography using different stationary phases. Fresenius Zeitschrift furAnalytische Chemie,1986a,325:1–7
    [40] Class T, Ballschmiter K. Chemistry of organic traces in air, VI, Distribution of chlorinatedC1–C4hydrocarbons in air over the northern and southern Atlantic Ocean. Chemosphere,1986b,15:413–427
    [41] Class T, Ballschmiter K. Chemistry of organic traces in air, VIII, Sources and distribution ofbromo-and bromochloromethanes in marine air and surface water of the Atlantic Ocean,Journal of Atmospheric Chemistry,1988,6:35–46
    [42] Class T, Ballschmiter K. Evidence of natural marine sources for chloroform in regions ofhigh primary production. Fresenius Zeitschrift fur Analytische Chemie,1987a,327:40-41
    [43] Colomb A, Yassaa N, Williams J, et al. Screening volatile organic compounds (VOCs)emissions from five marine phytoplankton species by head space gas chromatography/massspectrometry (HS-GC/MS). Journal of Environmental Monitoring,2008,10:325-330
    [44] Dewulf J, Huybrechts T, Langenhove H V. Developments in the analysis of volatilehalogenated compounds. Trends in Analytical Chemistry,2006,25(4):300-309
    [45] Drssen D, Fogelqvist E. Bromoform concentrations of the Arctic Ocean in the Svalbard area.Oceanol. Acta,1981,4:313-317
    [46] Ekdahl A, Abrahamsson K. A simple and sensitive method for the determination of volatilehalogenated organic compounds in sea water in amol L-1to pmol L-1range. AnalyticaChimica Acta,1997,357:197-209
    [47] Ekdahl A, Pedersén M, Abrahamsson K. A study of the diurnal variation of biogenic volatilehalocarbons. Marine Chemistry,1998,63(1-2):1-8
    [48] Eklund G, Josefsson B, Ross C. High Resolut. Chromatogr. ChromatographyCommunications,1978,1:34-40
    [49] Elliot S, Rowland F S, Nucleophilic substitution rates and solubilities for methyl halides inseawater, Geophysical of Research Letter,1993,20:1043–1046
    [50] Erikson O J. A stability dependant theory for air-sea gas exchange. Journal of GeophysicalResearch,1993,98:8471-8488
    [51] Fischer R, Weller R, Jacobi H W, et al. Levels and pattern of volatile organic nitrates andhalocarbons in the air at Neumayer Station (70°S), Antarctic. Chemosphere,2002,48:981-992
    [52] Fogelqvist E, Krysell M. The anthropogenic and biogenic origin of low molecular weighthalocarbons in a polluted fjord, the Idefjorden. Marine Pollutution Bulletin,1986,17:379-382
    [53] Fogelqvist E, Tanhua T, Basturk O, et al. The distribution of man-made and naturallyproduced halocarbons in a double layer flow strait system. Continental Shelf Research,1996,9:1185-1199
    [54] Fogelqvist E. Carbon tetrachloride, tetrachloroethylene,1,1,1-trichloroethsne andbromoform in Arctic seawater. Journal of Geophysical Research,1985,90:9181-9193
    [55] Fogelqvist E. Low molecular weight chlorinated and brominated hydrocarbons in seawater.PhD thesis, Chalmers University of Technology, G teborg,1984, Sweden
    [56] Fogelqvlst E, Josefsson B, Roos C. Halocarbons as tracer substances in studies of thedistribution patterns of chlorinated water in coastal areas. Environmental Science andTechnology,1982,16:479-482
    [57] Gong G C, Chen Y L, Liu K K. Chemical hydrography and chlorophyll-a distribution in theEast China Sea in summer: implications in nutrient dynamics. Continental Shelf Research,1996,16:1561-1590
    [58] Gong G C, Wen Y H, Wang B W, et al. Seasonal variation of chlorophyll a concentrations,primary production and environment condition in the subtropical East China Sea. Deep-seaResearchⅡ,2003,50:1219-1236
    [59] Goodwin K, Lidstrom M, Oremland R. Marine bacterial degradation of brominatedmethanes. Environ. Sci. Technol.1997,31:3188-3192
    [60] Gribble G W. Source of halogenated alkanes.1992, C&CN70-45:3
    [61] Gschwend P M, Macfarlane J K, Newman K A. Volatile halogenated organic compoundsreleased to sea water from temperate marine macroalgae. Science,1985,227:1033-1036
    [62] Hense I, Quack B. Modelling the vertical distribution of bromoform in the upper watercolumn of the tropical Atlantic Ocean. Biogeosciences,2009,6:535-544
    [63] Hopkins F E, Kimmance S A, Stephens J A, et al. Response of halocarons to oceanacidification in the Arctic. Biogeosciences Disscuss,2012,9:8199-8239
    [64] Hu L, Yvon-Lewis S A, Liu Y, et al. Coastal emissions of methyl bromide and methylchloride along the eastern Gulf of Mexico and the east coast of U.S. GlobalBiogeochemistry Cycles,2010,24, GB1007, doi:10.1029/2009GB003514
    [65] Hughes C, Chuck A L, Rossetti H, et al. Seasonal cycle of seawater bromoform anddibromomethane concentrations in the coastal bay on the western Antarctic Peninsula.Global Biogeochemistry Cycles,2009,23, GB2024, dio:10.1029/2008GB003268
    [66] Hughes C, Malin G, Turley C M, et al. The production of volatile iodocarbons by biogenicmarine aggregates. Limnology and Oceanography,2008,53:867-872
    [67] Huybrechts T, Dewulf J, Moerman O, et al. Evaluation of purge-and-trap-high-resolutiongas chromatography-mass spectrometry for the determination of27volatile organiccompounds in marine water at the ngl-1concentration level. Journal of Chromatography A,2000,893:367-382
    [68] Huybrechts T, Dewulf J, Van Langenhove H. Priority volatile organic compounds in thesurface waters of the southern North Sea. Environmental Pollution,2005,133:255-264.
    [69] Jones C E, Hornasby K E, Dunk R M, et al. Coastal measurement of short-lived reactiveiodocarbons and bromocarbons at Roscoff, Brittany during the RHaMBLe campaign.Atmospheric Chemistry Physics,2009,9:8757-8769
    [70] Kato S, Watari M, Nagao I, et al. Atmospheric trace gas measurements during SEEDS-IIover the northwestern pacific. Deep-Sea Research II,2009,56:2918-2917
    [71] Keppler F, Eiden R, Niedan V, et al. Halocarbons produced by natural oxidation processesduring degradation of organic matter, Nature,2000,403:298–301
    [72] Khalil M A K, Rasmussen R A, Hoyt S D. Atmospheric chloroform (CHCl3): ocean-airexchange and global mass balance. Tellus35B,1983,35B(4):266-274
    [73] Khalil M A K, Moore R M, Harper D B, et al. Natural emissions of chlorine-containinggases: Reactive Chlorine Emissions Inventory. Journal of Geophysical Research,1999,104:8333-8346
    [74] Kim D, Shim J H, Yoo S. Seasonal variations in nutrients and chlorophyll a concentrationsin the north East China Sea. Ocean Science Journal,2006,41(3):125-137
    [75] Klick S. Seasonal variations of biogenic and anthropogenic halocarbons in seawater from acoastal site. Limnology Oceanography,1992,37:1579-1585
    [76] Kolb B, Auer M, Pospisil P. Methods for the quantitative analysis of volatile halocarbonsfrom aqueous samples by equilibrium headspace gas chromatography with capillarycolumns. Journal of Chromatography,1983,279:341-348
    [77] Koppmann R, Johnen F G, Plass-Dulmer C. Distribution of methyl chloride,dichloromethane, trichloroethene and tetrachloroethene over the North and South Atlantic,Journal of Geophysical Research,1993,98:20517-20526
    [78] Krysell M, Fogelqvist E, Tanhua T. Apparent removal of the transient tracer carbontetrachloride from anoxic seawater. Geophysical Research Letter,1994,21(23):251I-2514
    [79] Krysell M, Nightingale P D. Low molecular weight halocarbons in the Humber and Rhineestuaries determined using a new purge-and-trap gas chromatographic method. ContinentalShelf Research,1994,14(12):1311-1329
    [80] Krysell M. Bromoform in the Nansen Basin in the Arctic ocean. Mairne Chemistry,1991,33:187-197
    [81] Kurihara M K, Kimura M, Iwanmoto Y, et al. Distributions of short-lived iodocarbons andbiogenic trace gases in the open ocean and atmosphere in the western North Pacific. Marinechemistry,2010,118(3-4):156-170
    [82] Laturnus F, Wiencke C, Adams F C. Influence of light conditions on the release of volatilehalocarbons by Antarctic macroalage. Marine Environmental Research,1998,45:285-294
    [83] Laturnus F, Wiencke C, Hloser H. Antarctic macroalgae-sources of volatile halogenatedorganic compouds. Marine Environmental Research,1996,41(2):169-181
    [84] Laturnus F. Volatile halocarbons released from Arctic macroalgae. Marine Chemistry,1996,55:359-366
    [85] Lee B S, Bullister J L, Murray J W, et al. Chloroflutocarbon CFC-11and carbontetrachloride removal in Saanich Inlet, an intermittently anoxic basin. Marine Chemistry,1999,66(3-4):171-185
    [86] Lee M R, Lee J S, Hsiang W S, et al. Purge-and-Trap gas chromatography-massspectrometry in the analysis of volatile organochlorine compounds in water. Journal ofChromatogrphy A,1997,775:267-274
    [87] Lee-Taylor J M, Doney S C, Brasseur G P, et al. A global three-dimensional atmosphere‐ocean model of methyl bromide distributions. Journal Geophysical Research,1998,103:16039-16057
    [88] Li H J, Yokouchi Y. Akimoto H. Measurement of methyl halides in the marine atmosphere.Atmospheric Environmet1999,33:1881-1887
    [89] Liss P S, Merlivat L. Air-sea gas exchange rates: introduction and synthesis. In:Buat-Menard, P.(Ed.), The Role of Air-Sea Exchange in Geochemical Cycling. Reidel,Dordrecht, the Netherlands,1986, pp.113-127
    [90] Liss P S, Slater P G. Flux of gases across the air-sea interface. Nature,1974,27:181-184
    [91] Liu K K, Gong G C, Lin S, et al. The year-round upwelling at the shelf break near thenorthern tip of Taiwan as evidenced by chemical hydrography. Terrestrial, Atmospheric andOceanic Sciences,1992,3:234-276
    [92] Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea.Continental Shelf Research,2003,23:1161-1174
    [93] Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea.Continental Shelf Research,2003,23:1161-1174
    [94] Liu Y, Yvon-Levis S A, Hu L. CHBr3, CH2Br2, and CHClBr2in the U.S. coastal watersduring the Gulf of Mexico and East Coast Carbon cruise. Journal of Geophysical Research2011,116, C1004, doi:10.1029/2010JC1006729
    [95] Lovelock J E, Maggs R G, Wade R J. Halogenated hydrocarbons in and over the Atlantic.Nature,1973,241:194-196
    [96] Lovelock J E. Natural halocarbons in air and in the sea. Nature,1975,256:193-194
    [97] Lu X L, Yang G P, Song G S, et al. Distributions and fluxes of methyl chloride and methylbromide in the East China Sea and the Southern Yellow Sea in autumn. Marine Chemistry,2010,118:75-84
    [98] Manley S K, Goodwin K, North W J. Laboratory production of bromoform, methylenebromide and methyl iodide by macroalgae and distribution in near shore southern Californiawaters. Limnology and Oceanography,1992,37:1652-1659
    [99] Marshall R A, Hamiltion T G, Mattthew D H. The red alga Asparagopsistaxiformis/Falkenbergia hillebrandii-a possible source of trichloroethylene andperchloroethylene. Limnology and Oceanography,2000,45(2):516-519
    [100] Maw R L, Jin S L, Wei S H, et al. Purge and Trap gas chromatography-mass spectrometry inthe analysis of volatile organochlorine compounds in water. Journal of Chromatogrphy A,1997,775:267-274
    [101] McCulloch A, Aucott M L, Graedel T E, et al. Industrial emissions of trichloroethene,tetrachloroethene, and dichloromethane: reactive chlorine emissions inventory. Journal ofGeophysical Research-Atmosphere,1999,104(D07):8417-8427
    [102] McCulloch A. Chloroform in the environment: occurrence, sources, sinks and effects.Chemosphere,2003,50:1291-1308
    [103] Millet D B, Atlas E L, Blake D R, et al. Halocarbons emissions from the United States andMexico and their global warming potential. Environ. Sci. Technol.2009,43:1055-1060
    [104] Moore R M, Geen C E, Tait V K. Determination of Henry’s law constants for a suite ofnaturally occurring halogenatede methanes in seawater.Chemosphere,1995,30(6):1183-1191
    [105] Moore R M, Tokarczyk R. Volatile biogenic methyl halides in the northwest Atlantic, GlobalBiogeochemistry Cycles,1993,7:195-210
    [106] Moore R M, Webb B. The relationship between methyl bromide and chlorophyll‐a in highlatitude ocean waters, Geophysical Research Letter,1996,23:2591–2594
    [107] Moore R M, Webb M, Tokarezyk R. Bromoperoxidase and iodoperoxidase enzymes andproduction of halogenated methanes in marine diatom culture. Journal of GeophysicalResearch,1996,101(C9):20899-20908
    [108] Moore R M, Zafiriou O C. Photochemical production of methyl iodide in seawater, JournalGeophysical Research,1994,99:16415-16420
    [109] Moore R M. Marine Sources of Volatile Organohalogens. The Handbook of EnvironmentalChemistry,2003,3:85-101
    [110] Moore R M. The solubility of a suite of low molecular weight organochlorine compounds inseawater and implications for estimating the marine source of methyl chloride to theatmosphere. Chemosphere-Global Change Science,2000,2(1):95-99
    [111] Moore R M. Trichloroethylene and tetrachloroethylene in Atlantic waters. Journal ofGeophysical Research,2001,106(C11):27135-27143
    [112] Müller B, Berg M, Yao ZP, et al. How polluted is the Yangtze River? Water qualitydownstream from the Three Gorges Dam. Science Total Environment,2008,402:232-247
    [113] Murphy C D, Moore R M, White R L. An isotopic labeling method for determingingproduction of volatile organohalogens by marine microalgae. Limnology and Oceanography,2000,45(8):1868-1871
    [114] Nightingale P D,1991. Low molecular weight halocarbons in seawater. Ph.D. thesis, Univ.East Anglia.
    [115] Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchangeparameterizations using novel conservative and volatile tracers. Global Biogeochemistry,Cycles2000,14(1),373-387, doi:10.1029/1999GB900091
    [116] Nightingale P D, Malin G, Liss P S. Production of chloroform and otherlow-molecular-weight halocarbons by some species of macroalgae Limnology andOceanography,1995,40(4):680-689
    [117] Ning X, Liu Z, Cai Y, et al. Physicobiological oceanographic remote sensing of the EastChina Sea: satellite and in situ observation. Journal of Geophysical Research,1998,103:21623-21635
    [118] O'Dowd C D, Jimenez J L, Bahreini R, et al. Marine aerosol formation from biogenic iodineemissions. Nature,2002,417:632-636
    [119] Ooki A, Tsuda A, Kameyama S, et al. Methyl halides in the surface seawater and marineboundary layer of the northwest Pacific. Journal of Geophysical Research,2010,115,C10013, doi:1029/2009JC005703
    [120] Palmer C J, Reason C J. Relationships of surface bromoform concentrations with mixedlayer depth and salinity in the tropical oceans. Global Biogeochemistry Cycles,2009,23,GB2014, doi:10.1029/2008GB003338
    [121] Parsons T R, Maita Y, Lalli C M.1984. A Manual for Chemical and Biological Methods forSeawater Analysis. Pergamon Press, Oxford
    [122] Pedersen M. Collen J. Abrahamsson K et al. Production of halocarbons from seaweeds: anoxidative stress reaction? Scientia Marina,1996,60:255-261
    [123] Penkett S A, Jones B M R, Rycroft M J. An interhemispheric comparison of theconcentrations of bromine compounds in the atmosphere, Nature,1985,318:550–553
    [124] Penkett S A. Non-methane organics in the remote troposphere. In E.D. Goldberg [ed.],Atmospheric chemistry, Springer,1982,329-355
    [125] Pilinis C, King D B, Saltzman E S. The oceans: A source or a sink of methyl bromide?,Geophysical Research Letter,1996,23:817–820
    [126] Platt U. Janssen C. Observation and Role of the Free Radicals NO3, ClO, BrO and IO in theTroposphere. Faraday Discuss.,1995,10:175-198
    [127] Prather M J, McElroy M B, Wofsy S C. Reduction in ozone at high concentrations ofstratospheric halogens. Nature,1984,312:227-231
    [128] Qiao F L, Yang Y Z, Lu X G, et al. Coastal upwelling in the East China Sea in winter.Journal of Geophysical Research,2006,111, C11S06, doi:10.1029/2005JC003264
    [129] Quack B, Suess E. Volatile halogenated hydrocarbons over the western Pacific between43°Nand4°N, Journal of Geophysical Research,1999,104:1663–1678
    [130] Quack B, Wallace D W R. Air-sea flux of bromoform: Controls, rates, and implications,Global Biogeochemistry Cycles,2003,17(1),1023, doi:10.1029/2002GB001890
    [131] Raimund S, Quack B, Bozec Y, et al. Sources of short-lived bromocarbons in the Iberianupwelling system. Biogeosciences,2011,8:1551–1564
    [132] Reifenhauser W, Heumann K G. Determinations of methyl iodide in the Antarcticatmosphere and the South Polar Sea, Atmospheric Environment,1992a,16,2905–2912
    [133] Reifenhauser W, Heumann K G. Bromo-and bromochloromethanes in the Antarcticatmosphere and the South Polar Sea, Chemosphere,1992b,24(9),1293–1300
    [134] Rivert A C, Martin D, Nickless G, et al. In situ gas chromatographic measurements ofhalocarbons. Atmospheric Enviroment,2003,37:2221-2235
    [135] Roy R, Pratihary A, Narvenkar G, et al. The relationship between volatile halocarbons andphytoplankton pigments during a Trichodesmium bloom in the costal eastern Arabian Sea.Estuarine Coastal and Shelf Science,2011,95:110-118
    [136] Roy R. Short-term variability in halocarbons in relations to phytoplankton pigments incoastal waters of the central eastern Arabian Sea. Estuarine Coastal and Shelf Science2010,88,311-321
    [137] Sarrion M N, Santons F J, Galceran M T. Strategies for the analysis of chlarobenzenes insoils using solid phase microextraction coupled with gas chromatography-ion trap massspectrometry. Journal of Chromatography A,1998,819(1-2):197-209
    [138] Scarratt M G, Moore R M. Production of methyl chloride and methyl bromide in thelaboratory cultures of marine phytoplankton. Marine Chemistry,1996,54:263-272
    [139] Schall C, Heumann G, GC determination of volatile organoiodine and organobrominecompound in Arctic and air samples. Fresenius Journal of Analyticla Chemistry,1993,346:717-722
    [140] Schall C, Heumann K G, Kirst G O. Biogenic volatile organoiodine and organobrominehydrocarbons in the Atlantic Ocean from42°N to72°S. Fresenius Journal of AnalyticlaChemistry,1997,359:298–305
    [141] Scrarratt M G, Moore R M. Production of chlorinated hydrocarbons and methl iodide by thered microalga porphyridium purpureum. Limnology and Oceanography,1999,44(3):703-707
    [142] Sharp G J, Yokouchi Y, Akimoto H. Trace analysis of organobromine compounds in air byadsorbent trapping and capillary gas chromatography, mass spectroscopy, EnvironmentalScience Technology,1992,26:815–816
    [143] Singh H B, Salas L J, Shigeishi H, et al. Atmospheric halocarbons, hydrocarbons and sulfurhexafluroride: Global distribution, sources and sinks. Science,1979,203:899-903
    [144] Singh H B, Salas L J, Stiles R E.1Methyl halides in and over the Eastern Pacific(40oN-32oS). Journal of Geophysical Research,1983a,88:3684-3690
    [145] Singh H B, Salas L J, Stiles R E. Selected man-made halogenated chemicals in the air andoceanic environment, Journal Geophysical Research,1983b,88:3675–3683
    [146] Smythe-Wright D, Boswell S M, Breithaupt P, et al. Methyl iodide production in the ocean:Implications for climate change, Global Biogeochemistry Cycles,2006,20, GB3003,doi:10.1029/2005GB002642
    [147] Smythe-Wright D, Boswell S M, Lucas C H, et al. Halocarbon and dimethyl sulphidestudies around the Mascarene Plateau, Philos. Trans. R. Soc. London, Ser. A,2005,363:169–185
    [148] Smythe-Wright D, Peckett C, Boswell S, et al. Controls on the productions oforganohalogens by phytoplankton: effect of nitrate concentration and grazing. Journal ofGeophysical Researhc,2010,115, G03020, doi:10.1029/2009JG001036
    [149] Solomen S. Antarctic ozone: Progress towards a quantitative understanding. Nature,1990,347:347-354
    [150] Solomon S, Mills M, Heidt L E, et al. On the evaluation of ozone depletion potentials.Journal of Geophysical Research,1992,97:825-842
    [151] Stack M A, Fitzgerald G, O'Connell S, et al. Measurement of trihalomethanes in potable andrecreational waters using solid phase micro extraction with gas chromatography-massspectrometry. Chemosphere,2000,41(11):1821-1826
    [152] State Oceanic Administration,1991. Specifications of Oceanographic Survey. China OceanPress, Beijing, p.766
    [153] Sturges W T, Sullivan C W, Schnel R C, et al. Bromoalkane production by Antarctic icealgae. Tellus,1993,45B:120-126
    [154] Sturges W T. Sullivan C W. Schnell R C. et al. Bromoform emission from Arctic ice algae.Nature,1992,358:660-662
    [155] Su J L,1998. Circulation dynamics of the China Sea: north of18°N. In: Robinson, A.R.,Brink, K.H.(Eds.), The Sea. John Wiley&Sons Inc., New York, pp.483-505
    [156] Swanson A L, Davis D D, Arimoto R, et al. Organic trace gases of oceanic origin observedat South Pole during ISCAT2000. Atmospheric Environment,2004,38:5463-5472
    [157] Swinnerton J W, Linnebaum V J. Determination of C1-C4hydrocarbons in seawater by gaschromatography. Journal of Gas Chromatography,1967,5:570-573
    [158] Tait V K, Moore R M. Methyl chloride (CH3Cl) production in phytoplankton cultures.Limnology and Oceanography,1995,40(1):189-195
    [159] Tanhua T, Fogelqist E, Basturk O. Reduction of volatile halocarbons in anoxic seawater,results from a study in the Black Sea. Marine Chemisty,1996,54:159-170
    [160] Tanhua T, Olsson A K. Removal and bioaccumulation of anthropogenic, halogenatedtransient transient tracers in an anoxic fjord. Marine Chemistry,2005,94:27-41
    [161] Tokarczyk R, Moore R M. Production of volatile organohalogens by phytoplankton cultures.Geophysical Research Letter,1994,21:285-288
    [162] U S Environmental Protection Agency. Compendium Method TO-11.1999EPA/625/R-96/010B
    [163] United Nations Environment Programme (UNEP),1991. Handbook for the MontrealProtocol on Substances That Deplete the ozone Layer,2nd ed., Ozone Secr., Nairobi, Kenya.
    [164] Von Glasow R, Crutzen P J. Troposhperic Halogen Chemistry, in: Treatise on GeochemistryUpdate1, edited by: Holland, H.D. and Turekian, K.K., Elsevier Ltd.,1-67,2007
    [165] Wallace D W R, Beining P, Putzka A. Carbon tetrachloride and chlorfluorocarbons in theSouth Atlantic Ocean19°S. Journal of Geophysical Research,1994,99(C4):7803-7819
    [166] Wamsley P R, Elkin J W, Fahey D W, et al. Distribution of halon‐1211in the uppertroposphere and lower stratosphere and the1994total bromine budget, Journal ofGeophysical Research,1998,103(D1):1513–1526, doi:10.1029/97JD02466
    [167] Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the East ChinaSea. Estuary Coastal Shelf Science,2003,58:127-136
    [168] Wang C J-L, Blake D R, Rowland F S.Seasonal variations in the atmospheric distribution ofa reactive chlorine compound, tetrachloroethene (CCl2=CCl2), Geophysical ResearchLetter,1995,22:1097-1100
    [169] Wang J X, Qin P, Sun S C. The flux of chloroform and tetrachloromethane along anelevational gradient of a coastal salt marsh, East China. Environmental Polluion,2007,148:10-20Wayne R P, Poulet G, Biggs P, et al. Halogen oxides: Radicals, sources and reservoirsin the laboratory and in the atmosphere. Atmospheric Environment,1995,29:2677-2884
    [170] Wanninkhof, R.,1992. Relationship between wind speed and gas exchange over the ocean. J.Geophys. Res.97,7373-7382
    [171] Wayne R P, Poulet G, Biggs P, et al. Halogen oxides: Radicals, sources and reservoirs in thelaboratory and in the atmosphere. Atmospheric Environment,1995,29:2677-2884
    [172] Wever R, Tromp M G M, Krenn B E, et al. Brominating activity of the seaweedAscophyllum nodosum: Impact on the biosphere. Environmental Science Technology,1991,25,446-449
    [173] Wingenter O W, Kubo M K, Blake N J, et al. Hydrocarbon and halocarbon measurements asphotochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, andvertival mixing obtained during Lagrangian flights. Journal of GeophysicalResearch-Atmosphere,1996,101,4331-4340
    [174] World Meteorological Organization (WMO)(2007), Scientific Assessment of OzoneDepletion:2006, Global Res. Monit. Proj. Rep.,50, Genva.
    [175] Yamamoto H, Yokouchi Y, Otsuki A, et al. Depth profiles of volatile halogenatedhydrocarbons in seawater in the Bay of Bengal. Chemosphere,2001,45:371-377
    [176] Yamamoto H, Yokouchi Y, Otsuki A, et al. Depth profiles of volatile halogenatedhydrocarbons in seawater in the Bay of Bengal. Chemosphere,2001,45:371-377
    [177] Yang G P, Lu X L, Song, G S, et al. Purge-and-trap gas chromatography method for analysisof methyl chloride and methyl bromide in seawater. Chinese Journal of Analysis Chemistry,2010,38(5):719-722
    [178] Yang X, Cox R A, Warwick N J, et al. Tropospheric bromine chemistry and its impacts onozone: A model study. Journal of Geophysical Research,2005,110, D23311, doi:10.1029/2005JD006244
    [179] Yokouchi Y, Akimoto H, Barrie L A, et al. Serial gas chromatographic/mass spectrometricmeasurements of some volatile organic compounds in the Arctic atmosphere during the1992Polar Sunrise experiment, Journal of Geophysical Research,1994,99:25379-25389
    [180] Yokouchi Y, Barrle L A, Toom D, et al. The seasonal variation of selected natural andanthropogenic halocarbons in the Arctic troposphere. Atmospheric Enviroment.1996,30,1723-1727
    [181] Yokouchi Y, Li H J, Machida T. Isoprene in the marine boundayr layer (Southeast Asian Sea,eastern Indian Ocean, Southern Ocean): Comparison with dimethy sulfife and bromoform.Journal of Geophysical Research,1999,104(D7):8067-8076
    [182] Yokouchi Y, Mukai H, Yamamoto H, et al. Distribution of methyl iodide, ethyl iodide,bromoform, and dibromomethane over the ocean (east and southeast Asian seas and thewestern Pacific). Journal of Geophysical Research,1997,102(D7):8805-8809
    [183] Yokouchi Y. Inagaki T. Yazawa K et al. Estimates of ratios of anthropogenic halocarbonsemissions from Japan based on aircraft monitoring over Sagami Bay, Japan. Journal ofGeophysical Research,2005,110, D06301, doi:10.1029/2004JD005320
    [184] Yvon-Lewis S A, King D B, Tokarczyk R, et al. Methyl bromide and methyl chloride in theSouthern Ocean. Journal Geophysical Research,2004,109, C02008, doi:10.1029/2003JC001809
    [185] Zhang J, Su J L.2006. Nutrient dynamics of the China Seas: the Bohai Sea, Yellow Sea,East China Sea and South China Sea. In: Robinson, A., Brink, K.(EDs.), The Sea, Press ofHarvard University, USA, p.14. Chapter14-17
    [186] Zhang J. Nurtient elements in large Chinese estuaries. Continental Shelf Research,1996,16:1023-10445
    [187] Zhang Y L, Guo H, Wang X M, Simpson I J, et al. Emission patterns and spatiotemporalvariations of halocarbons in the Pearl River Delta region, southern China. Journal ofGeophysical Research,2010,115, D15309, doi:10.1029/2009JD13726
    [188] Zhou Y, Ruth KV, Rachel S R, et al. Coastal water source of short-lived halocarbons in NewEngland. Journal of Geophysical Research,2005,110, D21302, doi:10.1029/2004JD005603.
    [189] Zoccolillo L, Amendola L, Cafaro C, et al. Improved analysis of volatile halogenatedhydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometricdetection. Journal of Chromatography A,2005,1077:181-187
    [190] Zoccolillo L, Amendola L, Tarallo G A. Halocarbons in Antarctic surface waters and snow.International Journal of Environment Analytical Chemistry,1996,63:91-98
    [191] Zoccolillo L, Rellori M. Halocarbons in Antarctic surface waters. Journal of EnvironmentAnalytical Chemistry,1994,55:27-32
    [192] Zoccolillo L. Abete C. Cafaro C. Insogna S. Evaluation of volatile chlorinated hydrocarbonsdistribution along depth profiles in the Ross Sea, Antarctica. Microchemical Journal.2009,92:32-36
    [193]崔仙舟,尹衍军,曾韶辉,王中柱.液上空间气相色谱法测定海水中的卤代烃.青岛海洋大学学报,1995,25(4):517-522
    [194]邓春梅,于志刚,姚鹏,等.东海、南黄海浮游植物粒级结构及环境影响因素分析.中国海洋大学学报,2008,38:791-798.
    [195]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999
    [196]黄邦钦,刘媛,陈纪新,等.黄海浮游植物生物量的粒级结构及时空分布.海洋学报,2006,28(2):156-164
    [197]黄大吉,苏纪兰,张立人.渤海冬春季环流的数据研究.空气动力学学报,1998,16(1):115-121
    [198]蒋国昌,王玉衡.浙江近海上升流区无机磷酸盐和溶解氧分布以及相互关系.海洋学报,1989,11(3):356-363
    [199]李凤岐,苏育嵩.海洋水团分析.青岛海洋大学出版社,2000, p379.
    [200]陆小兰,杨桂朋,高先池.海水中挥发性卤代烃的天然来源及其产生机理.中国海洋大学学报,2004,34:127-131
    [201]陆小兰.中国东部陆架海区溴甲烷和氯甲烷的浓度分布和海-气通量研究:[博士学位论文].青岛:中国海洋大学,2006
    [202]罗民波,陆健健,王云龙,等.东海浮游植物数量分布与优势种.生态学报,2007,27(12):5076-5085
    [203]潘玉萍,沙文钰.夏季闽浙沿岸上升流的数值研究.海洋学报.2004,23(3):1-11
    [204]钱晓荣,董毛毛,丁成.吹扫-捕集气相色谱法测定水中挥发性卤代烃.分析测试技术与仪器,2002,8:161-164
    [205]沈志良,陆家平,刘兴俊,等.长江口营养盐的分布特征及三峡工程对其的影响.海洋科学集刊,1992,33:107-129
    [206]石晓勇,藏路,王传松,等.北黄海典型断面生源要素四季变化的研究.中国海洋大学学报,2009,39(4):757-766
    [207]苏育嵩,苏洁.渤、黄海夏季低温带及形成机制处初析.海燕学报.1996,18(1):13-20
    [208]孙军,刘东艳,杨世民,等.渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究.海洋与湖沼,2002,33(5):461-471
    [209]孙军,刘东艳.2000年秋季渤海的网采浮游植物群落.海洋学报,2005,27(3):124-132
    [210]孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    [211]王保栋,刘峰,占闰.黄海生源要素的生物地球化学研究评述.黄渤海海洋,2001,19(2):99-106
    [212]王保栋,王桂云,郑昌洙,等.南黄海冬季生源要素的分布特征.黄渤海海洋,1999,17(1):40-45
    [213]王保栋.长江冲淡水的扩展及其营养盐的输送.黄渤海海洋,1998,16(2):41-47
    [214]王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报,2003,14(7):1122-1126
    [215]王延松,万冬梅.渤海海岸带(辽宁段)浮游生物状况分析.环境保护科学,2004,30(124):45-51
    [216]夏综万,郭炳火.山东半岛和辽东半岛顶端附近水域的冷水现象和上升流.黄渤海海洋,1983,1(1):13-19
    [217]向武,邓南圣,吴峰.海水中挥发性卤代烃产生机制研究进展.海洋科学,2001,25(9):
    [218]向武,邓南圣,吴峰.挥发性卤代烃的天然来源及其生成机制.上海环境科学,2003,22(9):623-628
    [219]徐韧,洪君超,王桂兰,等.长江口及其邻近海域的赤潮现象.海洋通报,1994,13(5):25-29
    [220]许建平.冬季浙江沿岸上升流水团结构的初步分析.东海海洋,1986,4(3):51-56.
    [221]杨斌,陆小兰,杨桂朋,等.北黄海海水中挥发性卤代烃的分布和海-气通量研究.海洋学报.2010,32(1):47-55
    [222]杨斌.中国东海、黄海和南海北部海水中挥发性卤代烃的分布与通量研究:[硕士论文].青岛:中国海洋大学,2010.
    [223]杨桂朋,尹士序,陆小兰,等.吹扫-捕集气相色谱法测定海水中挥发性卤代烃.中国海洋大学学报,2007,37(2):299-304
    [224]于非,张志欣,刁新源等.2006.黄海冷水团演变过程及其邻近水团关系的分析.海洋学报,28(5):611-616
    [225]张洪海.中国东海、黄海DMS和DMSP的生物地球化学研究:[博士论文].青岛:中国海洋大学,2009
    [226]张经,黄薇文,刘敏光.黄河口及邻近海域中悬浮体重分布特征和季节变化.山东海洋学院学报,1985,15(2):96-104
    [227]张景明,刘建琳,周雯等.水样中痕量有机物分析的前处理方法.中国环境监测,2001,17(3):31-33
    [228]张亮.黄海和东海五种挥发性卤代烃的初步研究:[硕士论文].青岛:中国海洋大学,2009
    [229]张苗苗.渤海和黄海海水中挥发性卤代烃的分布与海-气通量研究:[硕士学位论文].青岛:中国海洋大学,2012
    [230]张伟.东海营养盐分布及胶州湾地质无机氮动力学研究:[硕士学位论文].青岛:青岛海洋大学,1996.
    [231]张志欣,乔方利,郭景松,等.渤海南部沿岸水运移及渤黄海水体交换的季节变化.海洋科学进展,2010,28(2):142-148
    [232]赵保仁.北黄海冷水团环流结构探讨-潮混合锋对环流结构的影响.海洋与湖沼,1996,27(4):429-435
    [233]赵保仁.长江口外的上升流现象.海洋学报,1993,15(2):108-114
    [234]赵卫红,王江涛,李金涛,等.长江口及邻近海域冬夏季浮游植物营养限制及其比较.海洋学报.2006.
    [235]周名江,朱明远,张经.中国赤潮的发展趋势和研究现状.生命科学,2001,13(2):53-59
    [236]周伟华,袁翔城,霍文毅,等.长江口领域叶绿素和初级生产力的分布.海洋学报,2004,26(3):143-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700