SiCw/Al复合材料的喷丸强化及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了SiC_w/Al复合材料在不同喷丸工艺处理后材料内应力分布及组织结构的变化,以及残余应力在高温下的应力松弛行为。此外,本文还利用有限元分析软件模拟了喷丸过程,通过建立均质模型分析了喷丸工艺中不同参数对残余应力场的影响;通过建立非均质模型分析了喷丸塑性变形区内微区残余应力的分布状态,分析纤维增强体的形态及分布对基体残余应力场的作用。
     对SiC_w/Al复合材料表面的传统喷丸处理结果表明,提高喷丸强度可以有效提高残余应力场中各特征参数,但最大残余应力受到材料自身力学性能影响,存在一定的强化极限。而通过改进的变温热喷丸、应力喷丸及复合喷丸则可以进一步提高材料内残余应力的各项特征参数,优化喷丸强化效果,对工业生产领域具有重要的意义。
     对经喷丸处理的SiC_w/Al复合材料进行等温加热,实验结果表明,当加热温度高于200℃时,材料内出现回复和再结晶行为,SiC_w/Al复合材料中残余应力随加热时间按幂指数方式松弛;加热温度较低时,材料内发生部分蠕变,残余应力发生部分松弛。
     通过测量喷丸前后材料内的织构成分以及ODF函数研究发现,在喷丸处理后,SiC_w/Al复合材料中表层的原始织构基本被消除。次表层的织构并没有消失,而是织构成分发生了变化,由原始织构{1 10} 112逐渐转变为{1 12} 110。这表明,在晶须增强复合材料中,基体的塑性变形受到晶须增强体在复合材料中分布取向的限制,与增强体的取向趋于一致。
     利用有限元分析软件建立均质有限元模型并模拟了喷丸处理,得到了符合实际实验结果的应力随层深分布曲线。利用该模型对喷丸工艺中各项参数进行分析,结果表明:喷丸覆盖率、喷丸速度、弹丸种类及大小均对喷丸残余应力场有着不同的作用。提高喷丸覆盖率可以提高材料内的最大残余压应力和压应力层深,并降低材料的表面粗糙度。不同材料弹丸对残余应力场的影响与弹丸的密度有重要的关系,高密度的弹丸意味着较高的动能,其影响的残余压应力层更深,残余压应力也越大。残余应力层深与弹丸尺寸之间具有一定的线性相关性,小直径弹丸喷丸后残余压应力较高,但是残余压应力层深较浅,压应力值随深度下降很快;弹丸直径较大时,表面压应力值和最大压应力值较低,而压应力层加深,压应力随深度下降缓慢。较高的弹丸速度喷丸可以获得更深的残余压应力场,而且可以降低材料内残余拉应力。
     对SiC_w/Al复合材料非均质模型的数值模拟实验结果表明,在塑性变形区内,由于增强体和基体材料的力学性能差异,经喷丸处理后,增强体内存在较大的残余拉应力,而基体材料内为残余压应力。基体材料在喷丸作用下的塑性变形受到增强体取向的限制,其残余应力场的分布与增强体的分布具有相似的规律。
This article mainly studied on how the residual stresses and microstructures of SiC_w/Al MMC are affected by different shot peening treatments, and stress relaxation of SiC_w/Al MMC under heat. Additionally, a finite element analysis method (FEA) is used to simulate shot peening process. Some parameters such shots’material, size, speed and overlay ratios are studied to learn how these parameters affect the distribution of residual stress inside SiC_w/Al MMC. With some simplified methods, a heterogeneous model of shot peening on SiC_w/Al MMC is built. With this model, the micro region distribution of residual stress in plastic deformation area is observed. We also learnt how the size and distribution of whisker reinforcements affect the deformation and stresses of metal matrix.
     The results of traditional shot peening treatments reveal that the characteristic parameters of residual stress field can be improved by increasing of peening intensity, while the maximum residual stress is limited by SiC_w/Al MMC properties itself. With improved peening methods such as warm peening, stress peening and compound peening, the characteristic parameters of residual stress field can be improved further which has an important meaning to industrial production field.
     After shot peening, we did some heating treatment to study stress relaxation of SiC_w/Al MMC, the results show that when the heating temperature goes up to 200℃, residual stress in SiC_w/Al MMC relaxed sharply within 10minutes, and residual stress even changed from compressive to tensile. When the heating temperature is about 100℃, residual stress just relaxed partly.
     ODF function results show that after shot peening, original texture inside SiC_w/Al MMC didn’t disappear or decrease as other materials did. The original texture on surface layer disappeared, while beneath surface, shot peening treatment changed the components of texture from {1 10} 112 to{1 12} 110 , the intensity of texture didn’t reduce so much. This result means that in SiC_w/Al MMC, the plastic deformation of metal matrix is constrained by whisker reinforcements and tends to be uniform of whisker reinforcements’orientation.
     With a FEA shot peening homogeneous model, we studied how some peening parameters such shots’material, size, speed and overlay ratios affect the distribution of residual stress inside SiC_w/Al MMC. Numerical simulation results show that these parameters take different effects in shot peening treatment. Overlay ratios can improve the maximum residual stress, compressive stress depth and reduce roughness of surface. Different shot material means different density, higher density shots can affects deeper and the value of residual stress is larger. The size of shots is directly related to the depth of compressive stress. With smaller shots, the maximum residual stress is bigger while compressive stress reduces faster in the depth direction. Large shots are easier to generate a deep compressive stress field but maximum stress value is smaller. Shots’speed is highly related to the value of tensile stress beneath compress stress field. Higher speed shot peening can affect deeper and the maximum tensile stress falls sharply.
     An inhomogeneous peening model is built to study residual stress distribution in micro region of plastic deformation area. Since the mechanical properties between reinforcements and metal matrix are quite different, the stress field in these two materials is discontinuous. In reinforcements, tensile stress is generated after shot peening, while in matrix, residual stress is mostly compressive. Plastic deformation of metal matrix is obviously constrained by whisker reinforcements because the stress field in matrix is similar to the distribution and orientation of whisker reinforcements. Between whiskers, high compressive stresses are obtained, but on two top side area of whisker, compressive stresses are smaller and even some tensile stresses are observed.
引文
[1].于化顺,金属基复合材料及其制备技术[M].化学工业出版社: 2006.
    [2].张国定;赵昌正,金属基复合材料[M].上海交通大学出版社: 1996; p 1-6.
    [3].赵玉涛;戴起勋;陈刚,金属基复合材料[M].机械工业出版社: 2007.
    [4]. Schulze, V. In Characteristics of surface layers produced by shot peening, 2002; 2002; pp 145-160.
    [5]. Lindemann, J.; Buque, C.; Appel, F., Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia 2006, 54 (4), 1155-1164.
    [6]. Fernández Pariente, I.; Guagliano, M., About the role of residual stresses and surface work hardening on fatigueΔKth of a nitrided and shot peened low-alloy steel[J]. Surface & Coatings Technology 2008, 202 (13), 3072-3080.
    [7].任瑞铭;陈春焕;栾卫志等,表面纳米化对1Cr17不锈钢耐氧化性的影响[J].材料热处理学报2007, 28 (B08), 188-192.
    [8]. Farrahi, G. H.; Majzoobi, G. H.; Hosseinzadeh, F., et al., Experimental evaluation of the effect of residual stress field on crack growth behaviour in C (T) specimen[J]. Engineering Fracture Mechanics 2006, 73 (13), 1772-1782.
    [9]. Li, H.; Zhou, Z.; Gong, S., et al., Effect of surface condition during pre-oxidation treatment on isothermal oxidation behavior of MCrAlY bond coat prepared by EB-PVD[J]. Surface & Coatings Technology 2007, 201 (15), 6793-6796.
    [10].李家宝,利用X射线衍射方法确定金属工艺表面的应力—应变关系[J].材料研究学报1998, 12 (003), 287-290.
    [11].苏晓风;陈浩然,金属基复合材料细观损伤机制与观性质关系的研究[J].复合材料学报1999, 16 (002), 88-93.
    [12].邵军超;刘越,颗粒增强金属基复合材料力学行为有限元模拟研究现状[J].材料导报2007, 21 (009), 111-115.
    [13].于春田,金属基复合材料[M].冶金工业出版社: 1995.
    [14].郝元恺;肖加余,高性能复合材料学[M].化学工业出版社: 2004.
    [15].张玉龙,先进复合材料制造技术手册[M].机械工业出版社: 2003.
    [16].吕一中;崔岩;曲敬信,金属基复合材料在航空航天领域的应用[J].北京工业职业技术学院学报2007, 6 (003), 1-4.
    [17].崔岩,碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程2002, (006), 3-6.
    [18].蔡日恒;吴登真,强化喷丸在汽车零件上的应用[J].汽车技术1994, (002), 33-39.
    [19].王仁智,喷丸形变强化工艺技术与现代机器制造业[J].现代零部件2003, (001), 69-71.
    [20].董星;段雄,喷丸强化机械及技术的发展[J].矿山机械2004, 32 (007), 66-68.
    [21].刘阳春,方兴未艾的喷丸强化处理新技术[J].世界产品与技术1997, (002), 10-11.
    [22].周爱琴;樊红凯,喷丸强化技术工艺实验及在生产中的应用[J].纺织机械2005, (001), 47-50.
    [23].中华人民共和国航空航天工业部,航空零件喷丸强化工艺通用说明书[M].航空工业标准HB/Z: 1992; p 26-92.
    [24].栾伟玲;涂善东,喷丸表面改性技术的研究进展[J].中国机械工程2005, 16 (015), 1405-1409.
    [25]. Harada, Y.; Fukauara, K.; Kohamada, S., Effects of microshot peening on surface characteristics of high-speed tool steel[J]. Journal of Materials Processing Tech. 2008, 201 (1-3), 319-324.
    [26]. Jian, L. U., Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. J. Mater. Sci. Technol 1999, 15 (3), 193.
    [27]. Liu, G.; Wang, S. C.; Lou, X. F., et al., Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J]. Scripta materialia 2001, 44 (8-9), 1791-1795.
    [28].杨磊;赵秀娟;陈春焕等,纯钛高能喷丸表面纳米化后粗糙度的分析[J].中国表面工程2006, 19 (004), 43-46.
    [29].温爱玲;王生武;杨军勇等,高能喷丸表层纳米化对纯钛旋转弯曲疲劳性能的影响[J].材料开发与应用2007, 22 (004), 11-14.
    [30]. Daly, J.; Dane, C. B.; Hackel, L. A., et al., High power laser for peening of metals enabling production technology[J]. 1998.
    [31].王健;邹世坤,激光冲击处理技术的应用研究[J].应用激光2002, 22 (002), 223-226.
    [32]. Montross, C. S.; Wei, T.; Ye, L., et al., Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue 2002, 24 (10), 1021-1036.
    [33].王健;邹世坤;谭永生,激光冲击处理技术在发动机上的应用[J].应用激光2005, 25 (001), 32-34.
    [34].方博武,受控喷丸与残余应力理论[M].山东科学技术出版社: 1991.
    [35].刘文泉,喷丸强化[J].吉林工学院学报:自然科学版1992, 13 (003), 35-41.
    [36]. Torres, M. A. S.; Voorwald, H. J. C., An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel[J]. International Journal of Fatigue 2002, 24 (8), 877-886.
    [37]. Benedetti, M.; Bortolamedi, T.; Fontanari, V., et al., Bending fatigue behaviour of differently shot peened Al 6082 T5 alloy[J]. International journal of fatigue 2004, 26 (8), 889-897.
    [38]. Fridrici, V.; Fouvry, S.; Kapsa, P., Effect of shot peening on the fretting wear of Ti–6Al–4V[J]. Wear 2001, 250 (1-12), 642-649.
    [39].王福会,微晶化对合金氧化的两种作用机制[J].材料研究学报1998, 12 (001), 83-86.
    [40].倪红芳;凌祥;彭薇薇,玻璃喷丸处理提高304不锈钢焊接接头抗应力腐蚀性能的研究[J].中国腐蚀与防护学报2005, 25 (003), 152-156.
    [41].严伟林,高锰钢在喷丸条件下的应变硬化[J].装备制造技术2008, (006), 32-33.
    [42].倪兆荣;盛继生,喷丸处理对汽车变速箱齿轮疲劳强度影响的研究[J].机械传动2003, 27 (001), 39-41.
    [43].傅敏;王学刚;李辛庚,喷丸对Fe-Cr合金的高温水蒸气氧化行为影响[J].腐蚀科学与防护技术2008, 20 (003), 166-169.
    [44]. Lodini, A., The recent development of neutronic techniques for determination of residual stresses[J]. Radiation Physics and Chemistry 2001, 61 (3-6), 227-233.
    [45].祁景玉, X射线结构分析[M].同济大学出版社: 2003.
    [46]. Gao, Y. K.; Yao, M.; Li, J. K., An analysis of residual stress fields caused by shot peening[J]. Metallurgical and Materials Transactions A 2002, 33 (6), 1775-1778.
    [47]. Holzapfel, H.; Wick, A.; Schulze, V., et al., Effect of shot peening parameters on the properties of surface layers in 42 CrMo 4(AISI 4140) in different heat treatment conditions[J]. Harterei-Technische Mitteilungen(Germany) 1998, 53 (3), 155-163.
    [48]. Clough, R. W., The finite element method in plane stress analysis[J]. 1960.
    [49].江见鲸;何放龙;何益斌等,有限元法及其应用[M].北京:机械工业出版社: 2006.
    [50].张洪信,有限元基础理论与ANSYS应用[M].机械工业出版社: 2006.
    [51].侯占忠.喷丸工艺的数值分析[D].华中科技大学, 2006.
    [52].何涛;杨竞;金鑫等, ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程[M].机械工业出版社: 2007.
    [53]. Meguid, S. A.; Shagal, G.; Stranart, J. C., et al., Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses[J]. Finite Elements in Analysis & Design 1999, 31 (3), 179-191.
    [54].凌祥;彭薇薇;倪红芳,喷丸三维残余应力场的有限元模拟[J].机械工程学报2006, 42 (008), 182-189.
    [55].洪滔;王志伟;袁巨龙,喷丸强化过程的有限元和离散元模拟[J].中国机械工程2008, 19 (011), 1321-1325.
    [56].胡凯征;吴建军;王涛等,基于温度场的喷丸成形数值模拟及参数优化[J].中国机械工程2007, 18 (003), 292-295.
    [57]. Klemenz, M.; Zimmermann, M.; Schulze, V., et al., Numerical prediction of the residual stress state after shot peening[J]. High Performance Computing in Science and Engineering: Transactions of the High Performance Computing Center, Stuttgart (Hlrs) 2006, 437–448.
    [58]. Mahagaonkar, S. B.; Brahmankar, P. K.; Seemikeri, C. Y., Effect of shot peening parameters on microhardness of AISI 1045 and 316L material: an analysis using design of experiment[J]. The International Journal of Advanced Manufacturing Technology 2008, 38 (5), 563-574.
    [59]. Guild, F. J.; Young, R. J., A predictive model for particulate-filled composite materials[J]. Journal of materials science 1989, 24 (1), 298-306.
    [60]. Llorca, J.; Elices, M.; Termonia, Y., Elastic properties of sphere-reinforced composites with a mesophase[J]. Acta Materialia 2000, 48 (18-19), 4589-4597.
    [61]. Llorca, J.; Segurado, J., Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites[J]. Materials Science & Engineering A 2004, 365 (1-2), 267-274.
    [62]. Segurado, J.; Llorca, J., A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics and Physics of Solids 2002, 50 (10), 2107-2121.
    [63].金泉;覃继宁;张荻等,颗粒和纤维混杂增强复合材料力学性能的三维有限元模拟[J].复合材料学报2006, 23 (002), 14-20.
    [64].李晓军;柴东朗;郗雨林等,颗粒增强镁基复合材料微区应力场的仿真模拟[J].
    [65].曹利强;柴东朗;郗雨林,镁基复合材料微区力学状态的有限元分析[J].
    [66].张芮;卢锡年,球形粒子填充复合材料微观应力场的有限元分析[J].复合材料学报1995, 12 (004), 90-93.
    [67]. B hm, H. J.; Eckschlager, A.; Han, W., Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements[J]. Computational Materials Science 2002, 25 (1-2), 42-53.
    [68]. Bruno, G.; Fernandez, R.; Gonzalez-Doncel, G., Relaxation of the residual stress in 6061 a 1-15 vol.% SiC w composites by isothermal annealing[J]. Materials science & engineering. A, Structural materials: properties, microstructure and processing 2004, 382 (1-2), 188-197.
    [69]. Garces, G.; Perez, P.; Adeva, P., Effect of the extrusion texture on the mechanical behaviour of Mg-SiC p composites[J]. Scripta materialia 2005, 52 (7), 615-619.
    [70]. Menig, R.; Schulze, V.; V hringer, O., Optimized warm peening of the quenched and tempered steel AISI 4140[J]. Materials Science & Engineering A 2002, 335 (1-2), 198-206.
    [71]. Humphreys, F. J.; Kalu, P. N., Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys[J]. Acta Metall. 1987, 35 (12), 2815-2829.
    [72]. Wick, A.; Schulze, V.; V hringer, O., Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel[J]. Materials Science & Engineering A 2000, 293 (1-2), 191-197.
    [73].唐志国;蔡大勇;刘文昌等, Inconel718合金喷丸残余应力场及应力松弛的研究[J].燕山大学学报2006, 30 (006), 503-505.
    [74]. Meguid, S. A.; Shagal, G.; Stranart, J. C., et al., Relaxation of peening residual stresses due to cyclic thermo-mechanical overload[J]. Journal of Engineering Materials and Technology 2005, 127, 170.
    [75]. Luan, W.; Jiang, C.; Ji, V., et al., Investigation for warm peening of TiB2/Al composite using X-ray diffraction[J]. Materials Science & Engineering A 2008, 497 (1-2), 374-377.
    [76]. Lu, K.; Lu, J., Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science & Engineering A 2004, 375, 38-45.
    [77].徐可为;胡奈赛,纯铜和黄铜喷丸强化的组织效应[J].金属学报1994, 30 (001), 29-34.
    [78]. Ferry, M.; Munroe, P. R., Recrystallization kinetics and final grain size in a cold rolled particulate reinforced Al-based MMC[J]. Composites Part A 2004, 35 (9), 1017-1025.
    [79]. Poudens, A.; Bacroix, B., Recrystallization textures in AL-SiC metal matrix composites[J]. Scripta Materialia 1996, 34 (6), 847-855.
    [80]. Borrego, A.; Fernandez, R.; del Carmen Cristina, M., et al., Influence of extrusion temperature on the microstructure and the texture of 6061Al–15 vol.% SiCw PM composites[J]. Composites Science and Technology 2002, 62 (6), 731-742.
    [81]. ANSYS公司, ANSYS/LS-DYNA Users' Guide[M].
    [82]. Dowling, N. E., Mechanical behavior of materials[J]. 1999.
    [83].方博武,受控喷丸与残余应力理论[M]. 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700