挤压性围岩隧道施工时空效应及其大变形控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高地应力、大变形、特软岩隧道的挤压变形(Squeezing)是与时间密切相关联的,运用岩土流变力学的观点和方法,能以更充分阐明这类挤压性围岩与支护相互作用机理的实质,使力学计算分析参与隧道信息化设计施工。论文以乌鞘岭隧道岭脊段围岩挤压性大变形为工程背景和主要研究对象,采用理论解析、数值模拟和现场足尺试验等手段,对挤压性围岩隧道稳定性及其大变形动态控制开展了相应的研究。
     论文结合国内外挤压性围岩隧道工程实例,总结并分析了挤压大变形所表现出的力学特性,从流变学的角度对挤压变形定义进行了阐释,将挤压变形归属为变形速率较快而收敛速率慢的流变变形范畴,进而系统地分析了挤压大变形发生的力学机理。提出采用初步设计阶段的挤压潜力(Squeezing Potential)预测与施工阶段的大变形等级评定的双重控制措施来克服挤压大变性。
     在挤压性地层中开挖隧道,是一个在时间和空间上动态变化的过程,论文阐述了挤压性围岩隧道开挖过程中的时空耦合非线性作用。考虑挤压隧道掘进过程中开挖面空间效应,计入软岩流变时效特性,推演了围岩与支护相互作用随时间变化规律的解析解,拓展了已有的理论解析推导,有助于对挤压性围岩与支护相互作用的认识。
     合理确定挤压性岩体力学性态的诸有关参数,是正确认识岩体力学属性并确保数值计算结果可靠性的关键。本文把隧道现场监测变形时间序列作为据以选择数学模型,并阐明其物理概念的技术基础。根据位移反分析理论,获得对隧道围岩稳定分析结果影响的流变参数,进而进行流变本构模型辨识,为隧道工程稳定性分析提供合理的本构模型和切合实际的计算参数。
     挤压隧道大变形现象可由四维时空几何学来描述。本文通过构建三维粘弹塑性大变形数值模型,进行隧道施工时变力学数值模拟,分析开挖过程中围岩应力、变形随时间、空间、工序逐渐发展演化的非线性时空历程,进一步丰富了隧道工程施工时变力学理论。
     挤压性围岩隧道支护的设计、施工,实质是围岩稳定性控制的及时性与有效性的问题。本文将岩石流变学理论用于合理选择内衬构筑时机、优化隧道施工与支护设计中,并结合现场足尺试验研究,对挤压性围岩隧道设计、施工的动态反馈与控制进行了相应的研究,初步建立了一种适用于软岩挤压性变形地压的控制原理和方法。
Coupling with high crustal stress and large deformation, deformation of soft rock tunnel always correlate with time. Based on theological mechanics of geomaterials, the mechanism of interaction of surround rock and support structure can be explained, and mechanical analysis can be applied to information design and construction of tunnel. By analytical theory, numerical simulation, and on-site full-scale experimental research with example of Wu Shaoling Tunnel Project, the stability and dynamic control of tunnel in squeezing ground were researched in this dissertation.
     Based on the analysis of typical tunnel engineering example in squeezing ground, the mechanical characteristic of squeezing deformation were concluded. The squeezing deformation was defined based on view of theological mechanics, and squeezing deformation can be regarded as theologic deformation along with fast rate of deformation and slow convergence. Furthermore, the mechanical mechanisms of squeezing deformation were studied. Also, the control method for squeezing deformation was proposed, involved both prediction of squeezing potential in design phase and grade judgment of deformation in construction phase.
     Mechanical behaviors of tunnel excavation in squeezing ground are dynamic process of space and time. The temporal and spatial nonlinear coupling action with the excavation process of tunnel in squeezing ground was analyzed in this dissertation. Considering spatial effect of excavation face and time-dependent characteristic of soft rocks, the interaction between supporting structure and surrounding rocks with time is deduced through analytic method. The research expanded the existing analytic solution and was helpful for further understanding the interaction of squeezing surrounding rocks and supporting structure.
     Rational mechanics parameter of squeezing rocks is very important for understanding the mechanical characteristic of rocks and improving the reliability of numerical simulation. Based on the displacement time series from field monitoring, rheological parameter of rocks were obtained by numerical inverse analysis. Furthermore, visco-elastic constitutive model of squeezing rocks were identified. The research provided rational constitutive model and rheological parameter for stability analysis of tunnel in squeezing ground.
     Four-dimensional temporal and spatial geometry can well and truly describe squeezing phenomena. In this dissertation, three-dimensional numerical model with visco-elastic-plastic constitutive and large deformation was established, and the construction time-varying mechanics was simulated. During excavation period of tunnel in squeezing ground, temporal and spatial nonlinear evolvement process were investigated. The research enriched the theory of construction mechanics of tunnel engineering.
     The critical problem of design and construction of tunnel in squeezing ground is the betimes and validity of stability control of surrounding rocks. In this dissertation, rheological mechanics theory of rock was used to optimize lining time, inverted arch time, and bench length and bolt parameter. Based on the on-site full-scale experimental and optimization analysis, design and construction of tunnel in squeezing ground were researched by theory of dynamic feedback and control, and the control principle for squeezing earth pressure was established.
引文
[1] 张弥,刘维宁,秦淞君.铁路隧道工程的现状和发展[J].土木工程学报,2000,vol.33(2):1~7
    [2] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [3] 孙钧,侯学渊.地下结构(上,下册)[M].北京:科学出版社,1987
    [4] 孙钧,汪炳鑑.地下结构有限元法解析[M].上海:同济大学出版社,1986
    [5] 孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996
    [6] 周维垣.高等岩石力学[M].北京:水利水电出版社,1990
    [7] 孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,vol.26(6)
    [8] 陈宗基.地下巷道长期稳定的力学问题[J].岩石力学与工程学报,1982,vol.1(1):1~20
    [9] Sun Jun, Y. Y. Hu. Time-Dependent Effects on the Tensile Strength of Saturated Granite at Three Gorges Project in China[J]. Int. J. Mech. Min. Sci., 1997, vol. 34 (3/4): 323~337
    [10] Sun Jun, J. M. Ling. Time and Space Effects of Damage and Failure of Rock Mass[A]. In: Proc. 8th Int. Congr. On Rock Mech., ISRM[C], Tokyo, 1995, 193~196
    [11] Sun Jun. Performance of High Rock Slopes at the THREE Gorges Permanent Ship Lock[J]. News J. ISRM, 1998, vol. 5(2): 21~24
    [12] Sun Jun, D. X. Zhang, C. J. Li. The Couped-Creep Effect of Pressure Tunnels Interacted with Its Water-Osmotic Swelling Viscous Elasto-plastic Surrounding Rocks[J]. Tunnelling and Underground Works, 1984, vol. 4 (4): 141~149
    [13] Sun Jun. The 3-D Nonlinear Rheological Behaviour of Extremely Weak Rock and Its Application in Mining Construction Work[A]. In: Proc. 1st Asian Rock Mech. Symp., ARMS'97[C], Seoul/Korea, 1997, 13~15
    [14] 孙钧,宋德彰.高地应力区隧洞围岩非线性流变及其对洞室支护的力学效应[A],中国力学学会岩土力学解析方法与数值分析第四届学术年会论文集[C],泰安:1991,148~154
    [15] Sun Jun, H. W. Jing, W. J. Ruan. Experimental Study on Electromagnetic Radiation and Sound Emission during Creep-fracturing of Water Content Rock Samples[A]. In: Proc. the 4th Pacific RIM Conf. on Rheology[C], Beijing, Science Press: 1997, 971~974
    [16] 陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报,1996,vo24.(5):504~508
    [17] E. Maranini, M. Briognoli. Creep Behavior of a Week Rock: Experimental Characterization[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 127~138
    [18] M. Gasc-Barbier, S. Chanchole. Creep Behavior of Bure Clayed Rock[J]. Applied Clay Science, 2004, 26: 449~458
    [19] Li Yongsheng, Xia Caichu. Time-Dependent Tests on Intact Rocks in Uniaxial Compression[J]. Int. J. Rock Mech. Mine. Sci. and Geomech. Abstr., 2000, 37.. 467~475
    [20] 徐平.工程岩体的流变性能及其应用[D].武汉:华中科技大学博士学位论文,2003
    [21] 崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,vol.25(5):1021~1024
    [22] Fujii Y, Kiyama T. et al, Cricumferential Strain Behavior during Creep Tests of Brittle Rocks[J]. Int. J. Rock Mech. Min. Sci., 1999, 36: 323-337
    [23] 朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,vol.21(12):1791~1796
    [24] 李铀,朱维申,白世伟.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,vol.22(10):1673~1677
    [25] 徐卫亚,杨圣奇等.绿片岩三轴流变力学特性研究(Ⅰ):试验结果[J].岩土力学,2005,vol.26(4):531~537
    [26] 陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变试验研究及分析评价[J].岩石力学与工程学报,2003,vol.22(6):905~912
    [27] 李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,vol.22(3):299~303
    [28] 沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,vol.23(1):223~226
    [29] 丁秀丽,刘雄贞.岩体结构面蠕变特性研究[J].地下空间,1999,vol.19(5):681~687
    [30] 王思敬.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004
    [31] 周德培.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995
    [32] H. Kawakata, A. Cho, T. Yanagidani, M. Shimada. The Observations of Faulting in Westerly Granite under Triaxial Compression by X -ray CT Scan[J], Int. J. Rock Mech. Min. Sci., 1997, 34(3/4): 375~375
    [33] 邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应试验研究[J].实验力学,2002,vol.17(2):177~183
    [34] 任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10~15
    [35] 陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,vol.10(4):299~312
    [36] 夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,vol.24(5):498~503
    [37] Enrico Maranini, Tsutomu Yamaguchi. A Non-associated Viscoplastic Model for the Behaviour Granite inTriaxial Compression [J], Mechanics of Materials, 2001, 33: 283~293
    [38] Yamatomi J.岩石粘塑性性态流变模型[A],计算方法在岩石力学及工程中的应用国际学术讨论会文集[C],西安:1993,85~95
    [39] 金丰年,浦奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,vol.14(4):355~361
    [40] 陈沅江,潘长良等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,vol.13(3):735~742
    [41] 陈沅江,潘长良等.软岩流变的一种新力学模型[J].岩土力学,2003,vol.24(2):209~214
    [42] 曹树刚,金边,李鹏.岩石蠕变本构关系及改进的西元正夫模型[J].岩石力学与工程学报,2002,vol.21(5):632~634
    [43] 邓荣贵,周德培等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,vol.20(6):780~784
    [44] 万志军,周楚良等.巷道/隧道围岩非线性流变数学力学模型及其初步应用[J].岩石力学与工程学报,2005,vol.24(5):761~767
    [45] 徐卫亚,杨圣奇.岩石非线性粘弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,vol.25(3):433~447
    [46] 缪协兴,陈智达.岩石材料的一种蠕变损伤方程[J].同体力学学报,1995,vol.16(4):343~346
    [47] 凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,vol.12(4):304~312
    [48] 金丰年,范华林.岩石的非线性流变损伤模型及其应用[J].解放军理工大学学报,2000,vol.1(3):1~5
    [49] Napier J. A., Malan D. F., A Viscoplastic Discontinuum Model of Time-Dependent Fracture and Seismicity Effect in Brittle Rock [J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1997, 34: 1075~1089
    [50] 杨松林,黄启平,张建民.层状裂隙岩体蠕变柔量估计的合理方法[J].岩石力学与工程学报,2004,vol.23(18):3044~3048
    [51] Sakurai S., Takeuchi K., Back Analysis of Measured Displacement of Tunnel [J], Rock Mech. Rock Engng., 1983, vol. 16(3): 173~180
    [52] 杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1999
    [53] 王芝银.岩石力学位移反演分析回顾及进展[J].力学进展,1998,vol.28(4):488~498
    [54] Yang Zhifa, Wang Zhiyin, et al, Back-Analysis of Viscoelastic Displacements in a Soft Rock Road Tunnel[J], Int. J. Rock Mech. & Min. Sci., 2001, 38: 331~341
    [55] Li Yunpeng, Wang Zhiyin, et al, Three Dimension Back Analysis of Viscoelastic Creep Displacements[A], In: Proc. 3rd Int. Conf. on Underground Space and Earth Sheltered Buildings[C]. Shanghai: Tongji University Press, 1988: 383~387
    [56] 左红伟,冯紫良等.岩石粘弹塑性时效模型的遗传算法多参数辨识[J].岩石力学与工程学报,2002,vol.21(增2):2527~2531
    [57] 陈炳瑞,冯夏庭等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,vol.24(2):207~211
    [58] 袁勇,朱合华,孙钧.围岩粘弹性本构方程的反演识别[J].同济大学学报,1993,vol.21(4):439~445
    [59] 刘保国,孙钧.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998,vol.22(4):10~14
    [60] 朱珍德,徐卫亚.岩体粘弹性本构模型辨识及其工程应用[J].岩石力学与工程学报,2002,vol.21(11):1605~1609
    [61] 范厚彬,樊志华等.基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报,2005,vol.24(5):768~773
    [62] 刘世君,徐卫亚等.岩石粘弹性模型辨识及参数反演[J].水利学报,2002,6:101~105
    [63] 陈沅江,潘长良等.基于人工神经网络的岩土材料流变本构模型辨识[J].中国有色金属学报,2002,vol.12(5):1027~1034
    [64] Panet M. Time-Dependent Deformations in Underground Works[A], Proc. 4th Conf. ISRM[C], Montrux: 1979, 3: 279~290
    [65] Sakurai S. Approximate Time-Dependent Analysis of Tunnel Face[J], Int. J. Numer. Analyt Mech. Geomech., 1978, 2: 159~178.
    [66] Ladanyi B. Use of the Long-Term Strength Concept in the Determination of Ground Pressure on Tunnel Linings[A], Advances in Rock Mechanics[C], Proc 3rd Congr ISRM Denver: 1974. 1150~1156
    [67] Sulem J, Panet M, Guenot A. An Analytical Solution for Time-Dependent Displacements in a Circular Tunnel[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1987, 24 (3): 155~164
    [68] 于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983
    [69] 张良辉,熊厚金,张清.隧道围岩位移的弹塑粘性解析解[J].岩土工程学报,1997,vol.19(4):66~72
    [70] 陈进,袁文伯.巷道围岩渐进破坏的粘弹塑性软化分析[J].中国矿业学院学报,1988,(4):38~45
    [71] 张向东,郑雨天等.软弱岩体Burger模型及井巷流变地压[J].中国有色金属学报,1997,vol.7(1):13~17
    [72] 王贵君,孙文若.粘弹塑性围岩流变特性解析[J].淮南矿业学院学报,1991,vol.11(1/2):69~76
    [73] 杨小礼,刘宝琛.根据非线性破坏准则计算隧道的粘弹塑性位移[J].有色金属,2001,vol.53(3):52~55
    [74] 华心祝,吕凡任等.锚注软岩巷道流变研究[J].岩石力学与工程学报,2003,vol.22(2):297~303
    [75] 朱珍德,胡定等.地下巷道流变与断裂耦合问题的研究[J].岩石力学与工程学报, 1999,vol.18(增刊):913~915
    [76] 刘保国,杜学东.圆形洞室围岩与支护结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,vol.23(4):561~564
    [77] Sun Jun. Performance of the High Rock Slope at the Three Gorge Permanent Ship Lock[J]. News J., ISRM, 1998, vol. 5(2): 21~24
    [78] 周火明,丁秀丽,盛谦.三峡工程地下电站开挖的粘弹性数值模拟及稳定性评价[J].长江科学院学报,2002,vol.19(1):31~34
    [79] 章根德.岩体高边坡流变学性状有限元分析[J].岩土工程学报,1999,vol.21(2):166~170
    [80] 肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,vol.33(6):94~98
    [81] 朱合华.隧洞掘进面时空效应的研究—边界元法的若干进展及其工程应用[D].上海:同济大学博士学位论文,1989
    [82] 杨林德,颜建平等.围岩变形的时效特征与预测的研究[J].岩石力学与工程学报,2005,vol.24(2):212~216
    [83] 朱浮声,郑雨天.软岩巷道围岩流变与支护相互作用[J].矿山压力与顶板管理,1996,(1):6~8
    [84] 刘保国,张清.秦岭Ⅱ线隧道围岩在不同温度下蠕变变形的有限元分析[J].山东科技大学学报,2001,vol.20(4):95~98
    [85] 张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994,vol.16(3):33~45
    [86] 高峰,李德武.家竹箐隧道弹粘塑性有限元分析[J].甘肃科学,1998,vol.10(2):36~39
    [87] 杜守继,职洪涛等.高速公路软岩隧道复合支护机理的FLAC解析[J].中国公路学报,2003,vol.16(2):70~77
    [88] 何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002
    [89] R. Yoshinaka, M. Osada, T. V. Tran. Deformation Behavior of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1996, vol. 33(6): 557~572
    [90] R. Yoshinaka, M. Osada, T. V. Tran. Non-linear Stress- and Strain-Dependent Behavior of Soft Rocks under Cyclic Triaxial Conditions[J]. Int. J. Rock Mech. Min. Sci., 1998, vol. 35(7): 941~955
    [91] R. Yoshinaka, M. Osada, T. V. Tran. Pore Pressure Changes and Strength Mobilization of Soft Rocks in Consolidated-Undrained Cyclic[J]. Int. J. Rock Mech. Min. Sci., 1997, vol. 34(5): 715~726
    [92] 郭志.软岩力学特性研究[J].工程地质学报,1996,vol.4(3):79~84
    [93] 郭志.软岩流变过程与强度研究[J].工程地质学报,1996,vol.4(1):75~79
    [94] 朱效嘉.软岩的强度特征及流变性[J].矿业科学技术,1997,(2):36~41
    [95] 周楚良.岩石强度衰减、流变与围岩稳定性分析[J].矿山压力与顶板管理,1993, (3/4):7~13
    [96] 煤炭工业部科教司,煤炭工业部软岩巷道支护专家组.中国煤矿软岩巷道支护理论与实践[M].北京:中国矿业大学出版社,1996
    [97] C. Wang, Y. Wang, S. Lu. Deformation Behaviour of Roadway in Soft Rocks in Underground Coal Mine and Principle for Stability Control[J]. Int. J. Rock Mech. & Min. Sci., 2000, vol. 37: 937~946
    [98] Y. Jiang, H. Yoneda, Y. Tanabashi. Theoretical Estimation of Loosening Pressure on Tunnels in Soft Rocks[J]. Tunnelling and Underground Space Technology, 2001, vol. 16: 99~105
    [99] O. Aydan, T. Akagi, T Kawamoto. The Squeezing Potential of Rocks Around Tunnels: Theory and Prediction[J]. Rock Engineering, 1993, vol. 26(2): 137~163
    [100] ISRM. Commission on Squeezing Rocks in Tunnels Tunneling in Difficult Ground[A]. Tokyo: Barla G. ed. Proc. Workshop 8th ICRM, 1995
    [101] Barla, G, Squeezing Rocks in tunnels[J]. Int. Soc. Rock Mech. News J., 1995, vol. 2(3/4): 44~49
    [102] Dube, A. K., Squeezing under High Stress Conditions[A]. Balkeme: Assessment and Prevention of Failure Phenomena in Rock Engineering[C], 1993
    [103] Schubert, W., Schubert, P., Tunnels in Squeezing Rock: Failure Phenomena and Counteractions[A]. Turkey: Assessment and Prevention of Failure Phenomena in Rock Engineering[C], 1995
    [104] Suleyman Dalgic. Tunneling in Squeezing Rock, the Bolu Tunnel, Anatolian Motorway, Turkey[J]. Engineering Geology, 2002, vol. 67: 73~96
    [105] D. Kolymbas, W. Fellin, A. Kirsch. Squeezing due to Relaxation in Foliated Rock[J]. Int. J. Numer. Anal. Meth. Geomech., 2006, vol. 30: 1357~1367
    [106] A. Yassaghi, H. Salari-Rad. Squeezing Rock Conditions at an Igneous Contact Zone in the Taloun Tunnels, Tehran-Shomal Freeway, Iran: a Case Study[J]. Int. J. Rock Mech. & Min. Sci., 2004, vol. 42: 95~108
    [107] 张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,vol.40(2):5~12
    [108] 姜云,李永林,李天斌,王兰生.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,vol.15(4):46~51
    [109] 喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998,1:46~51
    [110] 潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995
    [111] Wittke, W., New Design Concept for Under-Ground Openings in Rocks[M]. Aachen: In Finite Elements in Geomechanics, 1972
    [112] 刘洪洲.大跨度扁坦隧道施工的力学响应及施工方法的研究[D].重庆:重庆大学博士学位论文,1999
    [113] X. D. Pan et al. Plane Strain Analysis in Modeling Three-Dimensional Tunnel Excavations[J]. Rock Mech. Min. Sci. & Gemench. Abstr., 1988, vol. 25(5): 331~337
    [114] Swoboda G., Mertz W, Schmid A. Three-Dimensional Numerical Model to Simulate Tunnel Excavation[A]. Niagara Falls: Proc. of the 3rd Int. Conf. on Num. Models in Geomech., 1989, vol. 25(5): 331~337
    [115] Swoboda G., et al. Three-Dimensional Numerical Modelling for TBM Tunneling in Consolidated Clay[J]. Tunnel Underground Space Technology, 1999, vol. 14(3): 327~333
    [116] G. Galli, A. Grimaldi, A. Leonardi. Three-Dimensional Modeling of Excavation and Lining[J]. Computers and Geotechics, 2004, vol. 31: 171~183
    [117] T. Unl, H. Gercek. Effect of Poisson's Ratio on the Normalized Radial Displacements Occurring Around the Face of a Circular Tunnel[J]. Tunneling and Underground Space Technology, 2003, vol. 18: 547~553
    [118] E. Eberhardt. Numerical Modeling of Three-Dimension Stress Rotation Ahead of an Advance Tunnel Face[J]. Int. J. Rock Mech. & Min. Sci., 2001, vol. 38: 499~518
    [119] 朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [120] 曾小清,孙钧,曹志远.隧道工程施工过程中的力学分析[J].同济大学学报,1998,vol.26(5):512~515
    [121] 肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报,2000,vol.22(4):421~425
    [122] 王华宁,曹志远.岩体施工过程损伤演化预测的时变力学分析[J].应用力学学报,2002,vol.19(4):134~138
    [123] 蒋宇静,肖俊,宋振骐等.三维数值模拟技术在深部大型发电站厂房信息化施工中的应用[J].岩石力学与工程学报,2003,vol.22(6):957~964
    [124] 白世伟,林鲁生,徐邦树.凤岗隧洞三维非线性仿真[J].岩土力学,2002,vol.23(6):673~677
    [125] 朱合华,吴江斌.高速公路隧道施工中粘弹性变形的有限元分析[J].同济大学学报,2002,vol.30(1):18~22
    [126] 吴波,刘维宁,高波等.城市浅埋隧道施工性态的时空效应分析[J].岩土工程学报,2004,vol.26(3):340~343
    [127] 杨家岭,朱维申,邱祥波.三维粘弹塑有限元分析在隧道工程中的应用[J].岩土力学,1997,vol.18(增刊):147~151
    [128] 王芝银,李云鹏,郭书太等.大型地下储油洞粘弹性稳定分析[J].岩土力学,2005,vol.26(11):1705~1710
    [129] 金丰年,钱七虎.隧洞开挖的三维有限元计算[J].岩石力学与工程学报,1996,vol.15(3):193~200
    [130] 梁文灏,李国良.乌鞘岭特长隧道设计方案[J].现代隧道技术,2004,vol.41(2):1~7
    [131] 石家庄铁道学院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究——专题报告之一[R].西安:铁道第一勘察设计研究院,2006.12
    [132] 铁道第一勘察设计研究院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究总报告[R].西安:铁道第一勘察设计研究院,2006.12
    [133] 张吉佐,李民政.软弱岩盘隧道之设计与施工探讨[J].岩石力学与工程学报,1999,vol.18(增刊):830~835
    [134] Bhawani Singh, J. L. Jethwa et al. Correlation between Observed Support Pressure and Rock Mass Quality(J]. T. & UST, 1992, vol. 7(1): 59~74
    [135] Goel, R. K., Jethwa, J. L., Paithankar, A. G. Indian Experiences with Q and RMR System(J]. Tunneling Underground Space Technology, 1995, vol. 10(1): 97~109
    [136] 徐林生,李永林.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通学院学报,2002,vol.21(2):16~20
    [137] 刘高.高地应力区结构性流变围岩稳定性研究[D].成都:成都理工大学博士学位论文,2001
    [138] P. Egger. Design and Construction Aspects of Deep Tunnels(J]. Tunneling and Underground Space Technology, 2000, vol. 15(4): 403~408
    [139] 孙钧,曹刃.软岩塑性应变软化与巷道支护的蠕变效应[J].金属矿山,1986,(8)
    [140] 李世辉.隧道支护设计新论—典型类比分析法应用和理论[M].北京:科学出版社,1999
    [141] 石家庄铁道学院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究——专题报告之二[R].西安:铁道第一勘察设计研究院,2006.12
    [142] 同济大学.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究——专题报告之十二[R].西安:铁道第一勘察设计研究院,2006.12
    [143] 张志强,关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,vol.22(6):696~700
    [144] 中国地震局地壳应力研究所.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究——专题报告之四[R].西安:铁道第一勘察设计研究院,2006.12
    [145] 韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987
    [146] 张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J1.岩土力学,2004,vol.25(3):455~458
    [147] 乌成三.及时掌握软岩隧道的修建方法[J].铁道标准设计,1997,(1):1~4
    [148] 王明年,翁汉民,李志业.隧道仰拱的力学行为研究[J].岩土工程学报,1996,vol.18(1):46~53
    [149] 白继承,管健.超长锚杆在控制家竹箐隧道大变形中的应用[J].世界隧道,1998(1):57~59
    [150] 关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003
    [151] 铁道第一勘察设计研究院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究——专题报告之九[R].西安:铁道第一勘察设计研究院,2006.12
    [152] 中华人民共和国行业标准.铁路隧道设计规范[S].北京:中国铁道出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700