针织物的细观本构模型和织物的屈曲分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织物变形和屈曲的模拟技术在服装CAD、虚拟服装店、虚拟现实、人物动画、电子游戏等众多领域有着广泛的应用。从20世纪80年代开始,国内外学者对编织物的悬垂和屈曲的数值模拟进行研究,这些研究把编织物看作是正交异性的连续体,用有限元方法进行模拟,取得了一定的进展。同时也发现,模拟的精度与实验相比存在较大的误差,某些屈曲现象很难模拟出来。国内学者张义同等在国家自然科学基金的资助下,建立了编织物的细观本构模型,并基于此模型,对编织物在受到单向拉伸时的屈曲、以及在受简单剪切时的屈曲现象成功地进行了解析分析。
     与编织物不同,对针织物相关理论的研究很少见到。本文建立了针织物的细观力学本构模型,对针织物的悬垂和屈曲进行了解析分析和数值模拟。同时,也对编织物的悬垂和屈曲用有限元方法进行了数值模拟。具体内容如下:
     1.建立了针织物的细观力学本构模型。这个本构模型更好地描述了针织物的力学性质,特别是针织物由于其特有的细观针织结构所具有的某些性质。
     2.基于本文建立的针织物细观本构模型和有限弹性变形的增量理论,分析了针织物片在受到沿纹路方向单向拉伸时的屈曲现象。分析结果表明,针织物片在受到沿纹路方向的单向拉伸时只存在弯曲模态屈曲,这与在实验中观察到的针织物片的屈曲现象是一致的。
     3.基于本文建立的针织物细观本构模型和有限弹性变形的增量理论,分析了针织物片在受到沿织层方向单向拉伸时的屈曲现象。分析结果表明,针织物片在受到沿织层方向的单向拉伸时不会屈曲,这与实验结果也是相符的。
     4.进行了针织物的拉伸实验,并得到了相应的弹性模量值。
     5.基于本文建立的针织物细观本构模型,采用大变形曲壳单元,用有限元方法对针织物的悬垂屈曲进行了数值模拟。有限元模拟结果和实验结果达到了数值上的基本吻合。
     6.基于已有的编织物细观本构模型,采用大变形曲壳单元,用有限元方法对编织物的悬垂屈曲进行了数值模拟。分析了编织物面内的压缩模量在其屈曲分析中的重要作用。有限元模拟结果和实验结果达到了数值上的基本吻合。
The simulating techniques of deformation and buckling of fabric have extensive applications in many fields, such as CAD for garments, virtual clothing stores, virtual reality, computer cartoons, and computer games. Since the eighties of the twentieth century, many researchers have devoted their works on the numerical simulations of the draping and buckling of woven fabric. The woven fabric was modeled as the orthotropic continuum. Based on the models the draping and buckling of woven fabric were numerically simulated. It was found that the simulations did not well agree with the experiment observations, and some buckling deformations can’t even been predicted. Supported by the National Nature Science Foundation of China, the micro-mechanical model for woven fabric was proposed and, based on the model, some buckling phenomena of woven fabric sheet under tension and simple shear were analytically predicted successfully.
     In contrast with the research on woven fabric, there are little works reported in literature. In this thesis the micro-mechanical constitutive model for knitted fabric is proposed, the analytical and numerical studies of draping and buckling of knitted fabric are carried out, and finally, the buckling of woven fabric is simulated numerically. The works in this thesis are briefly listed below.
     1. The micro-mechanical constitutive model for knitted fabric is proposed that describes the special mechanical properties due to the micro-knitting structure.
     2. Based on the micro-constitutive model of knitted fabric and the well-established theory of small deformation superimposed on large deformation, the buckling of knitted fabric sheets under uniaxial tension along wale direction is investigated. It is shown that only the flexural buckling mode is possible, that is in good agreement with the experiment observation.
     3. Based on the micro-constitutive model of knitted fabric the buckling of knitted fabric sheets under uniaxial tension along course direction is analyzed. It is proved that the knitted fabric sheets don’t buckle, that is also in good agreement with the experiment observation.
     4. The experiments of knitted fabric subjected tension are carried out, and the elastic moduli is measured.
     5. Based on the micro-constitutive model of knitted fabric the draping and buckling of knitted fabric sheets are simulated numerically by using the curved shell element for large deformation. The simulated result agrees well with the image of buckled knitted fabric sheets.
     6. Based on the micro-constitutive model of woven fabric the draping and buckling of woven fabric sheets are simulated numerically by using the curved shell element for large deformation and the finite element method. The important effect of compress moduli on the buckling analysis is analyzed. The simulated result agrees well with the image of buckled woven fabric sheets.
引文
[1] 张义同.近代织物力学和稳定性分析理论. 北京:北京大学出版社,2003, 3~9
    [2] F. T. Peirce. The geometry of cloth structure. J. Text. Inst, 1937, 28: 45~97
    [3] F. T. Peirce. Geometrical principles applicable to the design of functional fabrics. Text. Res. J, 1947, 17: 123~147
    [4] Amirbayat J, Hearle J W S. The anatomy of buckling of textile fabrics: drape and conformability. J. Text Inst, 1989, 80(1): 51~68
    [5] Kawabata S. The Standardization and Analysis of Hand Evaluation (2nd Edition). Japan: Hand Evaluation Standardization Committee, 1980
    [6] Boos A D. FAST Instruction Manual. Australia: CSIRO Division of Wool Technology Geelong Laboratory, 1991
    [7] P. Grosberg. The bending of yarns and plain woven fabrics. In Mechanics of flexible fibre assemblies. J.W.S. Hearle, J.J.Thwaites, and J.Amirbayat. eds. Sijthoff & Noordhoff, Alphen aan den rijn. Netherlands, 1980
    [8] J. Linderg, B.Behre, B.Dahlberg. Mechianical properties of textile fabrics, Part III: Shearing and buckling of various commercial fabrics. Text. Res. J, 1961, 31(2): 99~122
    [9] B. Olofsson. A general model of a fabric as a geometric mechanical structure. J. Text. Inst, 1964, 55(11): 541~557
    [10] B. Behre. Mechanical properties of textile fabrics, Part I: shearing. Text. Res. J, 1961, 31(2): 87~93
    [11] B. Dahlberg. Mechanical properties of textile fabrics, Part II: buckling. Text. Res. J, 1961, 31(2): 94~99
    [12] J. Skelton. Shear of woven fabrics. In Mechanics of flexible fibre assemblies. J.W.S. Hearle, J.J.Thwaites, and J. Amirbayat. Eds. Sijthoff & Noordhoff, Alphen aan den rijn. Netherlands, 1980
    [13] C. C. Chu, C.L. Cummings, N.A. Teixeira. Mechanics of elastic performance of textile materials, Part V: a study of the factors affecting the drape of fabrics-the development of a drape meter. Text. Res. J, 1950, 20(8): 539~548
    [14] G. E., Cusick. The dependence of fabric drape on bending an an shear stiffness. J. Text. Inst, 1965, 56(11): 596~606
    [15] H.Morooka, M. Niwa. Relation between drape coefficients and mechanical properties of fabrics. J. Text. Mach. Soc. Jpn, 1976, 22(3): 67~73
    [16] Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Mah. Soc, 1943, 49: 1~23
    [17] Argyris J H. Energy theorems and structural analysis. Butlerworth, London (Series of articles Published in aircraft engineering during 1954~1955), 1960
    [18] Turner M J, Clough R W, Martin H C, Topp L C. Stiffness and Deflection Aanlysis of Complex Structures. J. Aero. Sci., 1956, 23: 805~823
    [19] O. C. Zienkiewicz. The Finite Element Method in Structural Mechanics. McGraw Hill, 1967, 272
    [20] J. R. Collier etal. Drape prediction by Means of Finite-Element Analysis. J. Text. Inst., 1991, 82(1): 96~107
    [21] L. Gan and N. G. Ly. A Study of Fabric Deformation Using Nonlinear Finite Elements. Textile Res. J., 1995, 11: 660~668
    [22] T. J. Kang and W. R. Yu. Drape Simulation of Woven Fabric by Using the Finite Element Method. J. Text. Inst., 1995, 4: 635~648
    [23] B. Chen and M. Govindaraj. A Physically Based Model of Fabric Drape Using Flexible Shell Theory. Textile Res. J., 1995, 6: 324~440
    [24] J. Ascough, H. E. Bez, A. M. Bricis. A Simple Beam Element, Large Displacement Model for the Finite Element Simulation of Colth Drape. J. Text. Inst., 1996, 1: 152~165
    [25] Jeffrey W. Eischen, Shigan Deng, Timothy G.Clapp. Finite Element Modeling and Control of Flexible Fabric Parts. IEEE Computer Graphics and Applications, 1996, 9: 71~80
    [26] Kim J H. Fabric mechanics analysis using large deformation orthotropic shell theory: [dissertation]. Dept. of Mechanical and Aerospace Engineering, North Carolina State University, 1991
    [27] 董孚允. 织物结构力学中几个问题研究的进展. 纺织基础科学学报,1991,4(1):64~70
    [28] 徐一耿. 织物结构力学理论发展的现状、问题和对策. 力学实践,1996,18(1):9~12
    [29] Zhang Y T, Fu Y B. A micromechanical model of woven fabric and its application to the analysis of buckling under uniaxial tension Part 1: the micromechanical model. Inter J Engng Sci, 2000, 38(17): 1895~1906
    [30] Zhang Y T, Fu Y B. A micromechanical model of woven fabric and its application to the analysis of buckling under uniaxial tension Part 2: Buckling analysis. Inter J Engng Sci, 2001, 39(1): 1~13
    [31] Zhang Y T, Xu J F. The Buckling analysis of woven fabric subjected to uniaxial tension along any direction. Applied Mathematics and Mechanics, 2002, 23(5): 597~605
    [32] Zhang Y T, Xu J F. Buckling analysis of woven fabric under simple shear along any direction. Textile R J, 2002, 72(2): 147~152
    [33] Zhang Yitong, Hao Yongjiang, Li Cuiyu. Incremental micro-mechanical model of plain woven fabric. ACTA MECHANICA SOLIDA SINICA, 2004, 17(2): 131~139
    [34] 张义同,王亮,李翠玉. 织物的膜理论. 天津大学学报,2004,37(7): 614~619
    [35] To. psjemlp. S. History of strength of materials. Mcgraw-Hill Co., 1950
    [36] Budiausky, B, Roth, R S. Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells. NASATN-1510, 1962, 597~609
    [37] Hsu C C. On Dynamic Stability of Elastic Bodies with Prescribed Initial Condition. Int J. Eng. Sci., 1966, 4: 1~21
    [38] Hsu C S. Stability of Shallow Arches Against Snap-Through Under Timewise Step Loads. JAM, 1968, 35: 31~39
    [39] Simitses G J. Suddenly-loaded Structual configuration. J. Eng. Mech., ASCE, 1984, 110(9): 1320~1334
    [40] 王仁. 冲击载荷下结构塑性稳定性的研究. 冲击动力学进展,北京:中国科学技术大学出版社,1992,157~176
    [41] Lee L H N. On Dynamic Stability and Quasi-Bifurcation. Int. J. Nonlinear Mech., 1981, 16: 79~87
    [42] Lee L H N. Dynamic Buckling of an Inelastic Column. Int. J. Solid and Struct., 1981, 17: 271~279
    [43] Lee L H N. Quasi-Bifurcation in Dynamic of Elastic-Plastic Continua. JAM, 1977, 44: 413~418
    [44] Abrahamson G Rand Goodier J N. Dynamicastic Compression Wave. JAM, 1996, 33: 241~247
    [45] 腾宁均,苏先樾. 半无限长弹性直杆受轴向载荷作用的分叉问题. 力学学报,1989,21(5):591~595
    [46] Huchinson J W, Koiter J T. Post-Buckling Theory. Appl. Mech. Rev., 1970, 23(12): 1355~1366
    [47] Klyushnikov. V.D. Stability of Elastic-plastic Systems Nauka. Moscow, 1980
    [48] M. L. Bushnell, J. J.Martin. Computerized Thermal Mechanical Fatigue Testing. Industrial Research, 1977, 19(7): 60~64
    [49] 梁炳文,胡世光. 弹塑性稳定理论. 北京:国防出版社,1983,21~50
    [50] Simitses G J. Instability of Dynamically Loaded Structures Appl. Mech. Rev. 1987, 40(10): 1403~1408
    [51] 王仁. 结构的塑性静动态稳定性. 非线性力学的新发展,武汉:华中理工大学出版社,1988,4~35
    [52] 杨桂通,王德禹. 结构的冲击屈曲问题. 冲击动力学进展,北京:中国科学技术大学出版社,1992,177~210
    [53] 王勖成. 有限单元法. 北京:清华大学出版社,2003,617~659
    [54] 张义同. 织物力学研究的新进展. 力学进展,2003,33(2):217~226
    [55] 刘正兴,孙雁,王国庆. 计算固体力学. 上海:上海交通大学出版社,2000,236~253
    [56] 庄茁. 连续体和结构的非线性有限元. 北京:清华大学出版社,2002,64~86
    [57] 殷有泉. 固体力学非线性有限元引论. 北京:北京大学出版社,清华大学出版社,1987,55~70
    [58] 傅依斌. 连续介质力学. 天津:天津大学出版社,1992,42~59
    [59] 吴勇国. 板料成形过程数值模拟研究. 博士学位论文,华中理工大学,1996
    [60] 张庆丰. 织物变形模拟的有限元方法研究. 博士学位论文,西北工业大学,2002
    [61] 黄克智,黄永刚. 固体本构关系. 北京:清华大学出版社,1999,174~201
    [62] Kang T J, Yu W R. Drape simulation of woven fabric by using the Finite-element method. Journal of the Textile Institute, 1995, 86(4): 635~648
    [63] Chen B J, Govindaraj M. A Phisicaly-based model of fabric drape using flexbile shell theory. Textile Research Journal, 1995, 65(2): 324~330
    [64] ZHANG Yitong, LI Cuiyu, XU Jiafu. A micro-mechanical model of knitted fabric and its application to the analysis of buckling under tension in wale direction: micro-mechanical model. Acta mechanica sinica, 2004, 20(6): 623~631
    [65] Hu JL, Zhang YT. The KES shear test for fabric. Textile Res Journal, 1997, 67(9): 654~664
    [66] Yitong Zhang, Cuiyu Li, Jiafu Xu. A micro-mechanical model of knitted fabric and its application to the analysis of buckling under tension in wale direction: buckling analysis. Acta mechanica sinica, 2005, 21(2): 176~180
    [67] 张义同,李翠玉,熊成安. 针织物沿织层方向拉伸时的不屈曲性. 天津大学学报,2005,38(8):659~663
    [68] Ogden, R.W. Non-linear Elastic Deformation. Dover Publications, New York, 1997
    [69] Fu, Y.B., Ogden, R.W. Nonlinear stability analysis of pre-stressed elastic bodies. Continuum Mech Thermodyn, 1999, 11(1): 141~172
    [70] Zhang, Y.T. Modern Fabric Mechanics and Theory on Stability. Peking University Press, Beijing, 2003
    [71] S. Ahmad, B.M.Irons and O.C.Zienkiewicz. Analusis of thick and thin shell structures by curved elements. Int. J. Num. Meth.Eng., 1970, 2: 419~451
    [72] Surana, K.S. Geometrically Nonlinear Formulation for the Curved Shell Elements. Int. J. Num. Meth, Eng, 1983, (19): 581~615
    [73] 章林,夏翌人. 曲壳元几何非线性分析. 第二届全国计算力学会议论文,上海,1986
    [74] 张义同,杨海元,张敬宇. 一种大变形曲壳单元. 力学学报,1990,22(2):200~205
    [75] 谢贻权,何福保. 弹性和塑性力学中的有限单元法. 北京:机械工业出版社,1981,122~130
    [76] T. J. R. Hughes, W.K.Liu. Nonlinear finite element analysis of shells: part 1, thress-dimesional shells. Comp. Meth. Appl. Mech. Eng., 1981, 26: 331~362
    [77] 熊跃熙. 非保守系统的有限变形弹性变分原理. 力学学报,1983,15(1):86~90
    [78] 吴永礼. 固体力学计算方法. 北京: 科学出版社,2003,149~168
    [79] 陈火红. Marc 有限元实例分析教程. 北京:机械工业出版社,2002,215~221
    [80] 朱伯芳. 有限单元法原理和应用. 北京:中国水利电力出版社,1998,56~80
    [81] 丁皓江,何福保等. 弹性和塑性力学中的有限单元法. 北京:机械工业出版社,1989,36~45
    [82] Cenap Oran. Tengent Stiffness in Space Frames. J. Struct. Div., 1973, 99(6): 987~1001
    [83] Carrera E. A study on arc-length-type methods and their operation failures illustrated by a simple model. Computers and Structures, 1994, 50(2): 217~229
    [84] 许强. 薄壁曲梁线弹性理论和弹塑性稳定极限承载力分析. 博士论文,浙江大学,2002
    [85] P G Bergan, G Horrigmoe, B Krakeland, T H Soreide. Solution techniques for nonlinear finite element problems. International Journal of Numerical Methods in Engineering, 1978, 12: 1677~1696
    [86] Zhou Zhilong, D W Murray. An incremental solution technique for unstable equilibrium paths of shell structures. Computers and Structures, 1994, 55(5): 749~759
    [87] J L Meek, H S Tan. Geometrically non-linear analysis of space frames by an incremental iterative technique. Comput. Meth. for Appl. Mech. Engng., 1984, 47: 261~282
    [88] Y T Feng, D Peric and D R J Owen. A new criterion for determination of initial loading parameter in arc-length methods. Computers and Structures, 1996, 58(3): 479~485
    [89] Bellini P X, Chulya A. An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Computers and Structures, 1987, 26(1): 99~110
    [90] 沈祖炎,罗永峰. 网壳结构分析中结点大位移迭加及平衡路径跟踪技术的修正. 新型空间结构论文集,杭州:浙江大学出版社,1994,144~150
    [91] 李元齐,沈祖炎. 弧长控制类方法使用中若干问题的探讨与改进. 计算力学学报,1998, 15(4): 414~422
    [92] Crisfield M A. A fast incremental/iterative solution procedure that handles “snap-through”. Computers and Structures, 1981, 13(1-3): 55~62
    [93] Papadrakakis M. Solving large-scale nonlinear problems in solid and structures mechanics. Papadrakakis M. Solving large-scale problems in mechanics. John Wily & Sons, Chinchester, England, 1993, 183~223
    [94] Bergan P G, Soreide T H. Solution of large displacement and instability problems using the current stiffness parameter. Bergen P G, etal. Finite Elements in Nonlinear Mechanics. Tapir Press, Trondheim, 1978, 647~669
    [95] Bathe K J and Dvorkin E N. On the automatic solution of nonlinear finite element equations. Computers and Structures, 1983, 17: 871~879
    [96] Crisfield M A. An arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering, 1983, 19(8): 1269~1289
    [97] Crisfield M A. A faster modified Newton-raphson iteration. Comp Meth Eng, 1979, 20: 267~278
    [98] YOSHIDA Yutaka, NOMURA Takashi, MASUDA Nobutoshi. A formulation and solution procedure for post-buckling of thin-walled structures. Computer Methods in Applied Mechanics and Engineering, 1982, (32): 285~309
    [99] Jian Cao, Xi Wang. An analytical model for plate wrinkling under tri-axial loading and its application. International Journal of Mechanical Sciences, 2000, 42: 617~633
    [100] 谢晖. 薄板冲压成型中板料起皱的临界应力分析和预测. 计算力学学报,2003,20(1):95~100
    [101] Long Y Q. Generalized conforming plate bending element using point and line compatibility conditions. Computer and Structures, 1995, 54(4): 717~723
    [102] 铁摩辛柯,沃诺斯基著. 板壳理论. 北京:科学出版社,1977,61~80
    [103] T. J. Chakraborty, V.D. Agrawal and M.L. Bushnell. On a Variable Clock Method for Path Delay Testing of Sequential Circuits. IEEE Transactions on Computer-Aided Design, 1997, 16(11): 1237~1249
    [104] Macdouqall. D.A.S., Harding. A constitutive relation and failure criterion for Ti6AL4V alloy at impact rates of strain. Journal of the Mechanics and Physics of Solids, 1999, 47(5): 1157~1185
    [105] D. Pantuso, K.J. Bathe and P.A. Bouzinov. A Finite Element Procedure for the Analysis of Thermo-Mechanical Solids in Contact. Computers & Structures, 2000, 75(6): 551~573
    [106] 翟畅,王君泽,高强. 机织物几何模型及其计算机模拟. 纺织学报,2002,23(3):210~212
    [107] 张义同,谢宇新. 变形构形下织物的细观线性本构方程. 天津大学学报,2003,36(3):271~275
    [108] 张义同. 大变形下初始斜交异性本构方程. 固体力学学报,2000,21(4):345~349
    [109] 张义同. 非保守大变形分析中的虚位移原理及逐步加载法. 天津大学学报,1989,(3):86~91
    [110] 张义同,徐家福. 受沿任意方向单向拉伸的织物的屈曲分析. 应用数学与力学,2002,23(5):533~540
    [111] 纪峰,李汝勤,郭永平. 织物悬垂性研究的追踪与展望. 纺织学报,2003,24(1):72~74
    [112] 钟跃崎,王善元. 织物与服装仿真技术进展. 纺织学报,2002,23(6):502~504
    [113] 张菊美. 棉针织物褶皱变形的控制研究. 针织工业,2002,(3):59~60
    [114] 梁建军,冯毅力,李汝勤. 服装 CAD 技术研究的现状与方向. 纺织学报,2000,24(6):612~614
    [115] J W Eisben etal. Finite-element Modeling and Control of Flexible Fabric Parts. IEEE Computer Graphics and Applications, 1996, (5): 71~80
    [116] 刘卉等. 服装 CAD 综述. 计算机辅助设计与图形学学报,2000,(6):473~480
    [117] H. Okable etal. Three-Dimensional Apparel CAD System. Computer Graphics, 1992, (2): 105~110
    [118] T. L. Kunii, H. Gotoda. Singularity Theoretical Modeling and Animation of Garment Wrinkle Formation Process. Visual Computer, 1990, (6): 326~336
    [119] 张永宁,甘应进,王建刚. 有限元分析技术及其在纺织中的应用. 纺织学报,2002,23(5):421~422
    [120] Lloyd. D.W. The Analysis of Complex Fabric Deformation. Mechanics of Flexible Fibre Assemblies, 1980, 311~341
    [121] Contri. J. R. etal. A Geometrical Nonlinear Finite Element Analysis of Wrinkled Membrane Surfaces by a No-compression Material Model. Comm-Appl. Num. Meth, 1998, (4): 5~15
    [122] Leewood. A. etal. Design and Analysis of Fabric Structures with the Finite Element Method. Eng. Coput, 1984, (1): 17~24
    [123] 徐一耿. 织物结构力学理论发展的现状、问题和对策. 力学与实践,1996,18(1):9~12
    [124] C. A. 阿姆巴尔楚米扬. 不同模量弹性理论. 北京:中国铁道出版社,1986
    [125] 张义同,刘立厚,徐家福. 织物面内的压缩模量. 纺织学报,1999,20(1):10~13
    [126] Hu J L, Zhang Y T. A Study of the KES Shear Test for Fabric. The Proceedings of 25th Textile Research Symposium, 1996, 2~5
    [127] J. Weil. The Synthesis of Cloth Objects. Computer Graphics, 1986, (20): 49~54
    [128] De Jong, S., R. Postle. Energy analysis of woven fabric mechanics by means of optimal-control theory. Part I: tensile properties. J. Text. Inst, 1977, 68(11): 350~361
    [129] J. Amirbayat, J.W.S.Hearle. The complex buckling of flexible sheet materials, Part I: Theoretical approach. Int, J.Mech. Sci, 1986, 28(6): 339~358
    [130] J. Amirbayat, J.W.S.Hearle. The complex buckling of flexible sheet materials, Part II: Experimental study of three-fold buckling. Int, J.Mech. Sci, 1986, 28(6): 359~370
    [131] M. Carignan etal. Dressing Animated Synthesis Actors with Complex Deformable Cloths. Computer Graphics, 1992, (2): 99~104
    [132] David Baraff, Andrew Witkin. Large Steps in Cloth Simulation. Computer Graphics, 1998, (7): 43~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700