破损水泥混凝土路面的修复设计及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以国道321线广东高要至封开段水泥混凝土路面改造工程为基础,针对破损水泥混凝土路面修复设计和路面耐久性可靠性等科学问题,进行了较系统地试验和深入的研究。运用统计方法分析了破损水泥混凝土路面断裂破损规律、在试验室研究和配制了新型改性沥青、提出了路面力学性能监测手段、并运用有限元方法分析了破损水泥混凝土路面结构和破损水泥混凝土路面加铺半刚性基层沥青混凝土路面结构中各参数变化对其力学响应的影响,为提高修复设计的可靠性和经济性,提供了新的力学检(监)测方法和改性沥青设计,完善了破损水泥混凝土路面修复设计理论。
     论文首先对1.2公里长的试验路分块编号,对路面断裂破损状况进行了详细的调查,绘制路面板的断裂平面图,统计分析了断裂位置与行车方向接缝的距离,通过数值分析找到了路面在随机的车辆荷载和环境荷载作用下的断裂规律,研究了其断裂机理,为新建水泥混凝土路面的设计和破损水泥混凝土路面的修复设计提供理论基础。
     针对破损水泥混凝土路面加铺沥青混凝土路面的反射裂缝问题,基于STRATA应力吸收层的防裂原理,采用环氧树脂和橡胶粉对A级70号沥青进行改性,对加入不同比例和剂量改性剂的改性沥青进行了针入度P_(25℃,100g,5s)、软化点T_(R&B)和延度D_(25℃,5cm/min)三大指标的试验,同时进行了低温延度D_(5℃,5cm/min)和扭转回弹试验,在实验室研制出了一种高低温性能较好的改性沥青,以该改性沥青为粘结材料进行了沥青混合料室内试验,验证其具有较好的高温稳定性、抗疲劳性能、抗水损坏性能。
     针对目前判定路面承载力的主要设计指标路面弯沉的局限性,提出了一种以振弦式应变计为基础新的路面力学性能检(监)测手段。首先将振弦式应变计埋入混凝土梁试件和真实混凝土路面,进行了相关的室内、室外力学试验和室外路面的长期测监测后,验证振弦式应变计在水泥混凝土路面的力学性能测试应用中的可行性;设计了路面力学性能长期无线自动监测系统和人工半自动监测系统,并在试验路段中埋设了振弦式应变计和温度传感器,为破损水泥混凝土路面加铺修复设计的各结构层力学参数性能的测试,路面结构温度场的测试、路面在行车荷载及温度荷载作用下的应变、应力场的长期监测提供了新的方法和手段,为完善破损水泥混凝土路面的修复设计理论和可靠性研究提供新的试验监测方法。
     论文利用有限元力学分析方法,结合试验路段实际的结构类型和路面调查情况,考虑旧路面结构的实际几何形状,建立了有限元模型,分析了破损水泥混凝土路面板受到不同的边界约束条件、荷载作用在路面不同位置、地基模量、路面厚度、脱空尺寸和行车荷载等因素对路面结构力学响应的影响;同时对试验路不同时期的承载力进行了调查,分析出加速路面破坏的两个重要因素:路肩的稳定和路面结构的排水能力,针对提高破损水泥混凝土修复的可靠性,提出了在修复设计中必须高度重视路肩的维修和路面结构排水能力的修复的观点。
     论文利用有限元力学方法对破损水泥混凝土路面冲击破碎稳固或灌浆稳固后,加铺半刚性基层沥青混凝土路面结构的力学响应进行了分析。将理论计算结果同埋入路面结构的振弦式传感器所测的应变数据以及贝克曼梁测得的弯沉测量结果相比较,验证了计算模型的有效性和正确性。并以该模型为基础,分析了旧路面厚度、冲击破碎尺寸、行车荷载、温度荷载、加铺基层的厚度、沥青混凝土面层模量等因素对旧水泥混凝土路面加铺路面结构力学响应的影响。本论文理论研究与实验研究的成果已应用321国道试验路段。
Based on the reconstruction project of cement concrete pavement (CCP) of the national highway 321 (from Gaoyao to Fengkai in Guangdong province), the major problems in the renovation work were studied. Because of this state, the following were investigated. The crack distribution of the damaged CCP was statistically analyzed. A new type of modified asphalt was prepared and tested in laboratory. An alternative measurement method to determine the pavement mechanical properties was studied. Finally, the mechanical response of the damaged CCP, asphalt concrete (AC) surface and semi rigid base overlay renovation were calculated, and the influence of parameters' variation on the pavement structure mechanical response was analyzed. In this disertation, the new test and monitoring system and improved asphalt are presented for the improvements in the reliability and economy of renovation work .Futhermore, the renovation design theory of the damaged CCP is enhanced through the mechanical analysis.
     Initially the pavement slabs in the test road are numbered and pavement crack damage was investigated. The location and size of every crack in each pavement slab was measured and drawn in a plan. Through the statistical analysis of crack distribution in every pavement slab, the average crack distribution of the pavement under stochastic vehicle and environmental load is obtained. The physical mechanisms causing the cracks are discussed. With the crack distribution determined from the analysis, the design theory of new-constructed CCP, as well as of the maintenance and renovation of damaged CCP is developed and improved.
     One of the key problems in AC pavement overlay on the damaged CCP is the reflective crack. STRATA stress absorbing interlayer is one of the effective solutions. Based on its retarding and resisting reflective crack principle, the A-70 asphalt was modified with epoxy resin and rubber powder. Different samples of the modified asphalt were tested, varying the quality and the proportions of the additives for the penetration index (P25℃,100g,5s), softening point (TR&B) and ductility (D25℃,5cm/min), which are the three basic asphalt property indexes. At the same time, the low temperature ductility D5℃,5cm/min and torsion resilience were also tested. A new type of modified asphalt with good high and low temperature property was prepared at laboratory. Further testing of this modified asphalt mixture was carried out in the laboratory. These experiments demonstrated the good stability under high and low temperature regimes, good anti-fatigue properties and limiting the water-induced damage of the modified asphalt mixture.
     The present loading bearing capacity index—surface deflection has limitions when different materials was used for the pavement design. A new measurement and monitoring method, based on vibrating wire strain gauges (VWGS), was used for the testing. VWGS were embedded in the laboratory concrete beams and field CCP, then the relative mechanical experiments in and out of doors and long term monitoring in field of the concrete pavement were done. The suitability of the application of VWGS to test the mechanical properties of the CCP is proved by these experiments. Based on the VWGS, long-term automatic wireless and semi-automatic monitoring systems are suggested. The mechanical parameters of various layers of the AC pavement overlay on the damaged CCP can be measured with these VWGS and temperature sensors installed at various depths in the test road. The temperature range and the strain field at different depths in the pavement structure under random traffic and environmental loads are also able to be measured. This system allows for the mechanical response of pavement to be measured and also provides a basis to check on the design and performance of the renovated CCP.
     According to the actual pavement structure and investigation in the test road, a finite element model was developed, In the model the actual geometrical dimensions of the test road is taken into account. Parameters such as the influence of concrete slab with different boundary conditions, traffic loads at different positions, various ground modulus and surface thicknesses, different void dimensions and traffic load on the response of the damaged CP was calculated and discussed. The bearing capacity of the test road was measured at different time, and then the two important factors accelerating the damage, the stability of the shoulder and the drainage of the pavement structure are obtained. In order to enhance the reliability of the damaged CP renovation, these two factors should be given serious consideration.
     The mechanical response of the AC and semi-rigid base overlay on the damaged CP was also calculated with the finite element method. The damaged CP is treated by a break & seat procedure or grouting & seat procedure. The comparison between theoretical and measured values are presented, then based on these calculated results and the measured strain and surface deflection results from the VWGS and Benkelman beam, are used to support the validity of the calculation model and method. Using this method, the influence of the old cement concrete slab thickness and the influence of the break dimensions on the mechanical response of the composite pavement, under different traffic and temperature loads, are calculated. The influence of base thickness of the cement concrete slabs that were treated by break &seat procedure, the AC surface modulus and the traffic load on the mechanical response of the composite pavement are further presented.
引文
[1]姚祖康.水泥混凝土路面设计理论和分法[M].北京:人民交通出版社,2003
    [2]王秉钢,邓木莲.水泥混凝土路面设计与施工[M].北京:人民交通出版社,2004
    [3]王秉纲,水泥混凝土路面合理结构的研究[J].广西交通科技,2001,第四期
    [4]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001
    [5]沈金安.如何解决路面结构设计中存在的问题[R].第二届全国公路科技创新高层论坛告,2005,9
    [6]LTPP Product Brief." Rigid Pavement Design Software:A New Tool for Improved Rigid Pavement design[R].U.S Department of Transportation Federal Highway Administration,1999.
    [7]LTPP Product Brief:Manuals Provide Information for Pavement Maintenance and Repair[R].U.S Department of Transportation Federal Highway Administration.
    [8]Strategic Plan for Long-Term Pavement Performance Data Analysis[R].U.S Department of Transportation Federal Highway Administration.Novemeber 9,1999 Corrected 04-20-01
    [9]JTJ 073.1-2001,公路水泥混凝土路面养护技术规范[S]
    [10]郝大力,王秉纲.路面长期性能研究综述[J].国外公路,1999(19):11-15
    [11]单丽岩,侯相深.LTPP的进展综述[J].中外公路,2005(25):49-54
    [12]Biel TD,Lee Hosin.Performance study of Portland cement concrete pavement joint sealants[J].Transport Engineering,1997,123(5):398-404
    [13]Brigitte Odum-Ewuakye,Nii Attoh-Okine.Sealing system selection for jointed concrete pavements-A review[J].Construction and Building Materials,2006,20(8):591-602
    [14]Morian DA,Stoels S.Joint seal practices in the United States[C].Transportation Research Record No.1627.Pavement and Winter Maintenance,1998:7-12
    [15]FHWA.Materials and procedures for repair of joint seals in Portland cement concrete pavements manual of practice[R].FHWA Report No.FHWA-RD-99-146,December,1999
    [16]Hall KT,Crovetti JA.LTPP data analysis:relative performance of jointed plain concrete pavement with sealed and unsealed joints[R].National Cooperative Highway Research Program,Transportation Research Board,National Research Council,December 2000
    [17]Jorge A.Prozzi.Incremental Nonlinear Model for Predicting Pavement Serviceability[J].Transportation Engineering,2003,129(6):635-641
    [18]LawTiek Hwa.Pavement performance model for federal road[J].Proceeding of the Eastern Asia Society for Transportation Studies,2005,5(2):428-440
    [19]Yi-Chang Tsai,James Lai,and Yiching Wu.Using GIS to Support Network-level Pavement Maintenance Analysis[R],Proceedings,Second International Conference on Decision Making in Urban and Civil Engineering,Lyon,France,November 20-22,2000
    [20]Oliver Corby,Fr&l&ie Allez and Bertrand Neveu.A multi-expert system for pavement diagnosis and rehabilitation[C].Transportation Research Part A:General,1990,24(1):53-57
    [21]Yanfeng Ouyang and Samer Madanat.Optimal scheduling of rehabilitation activities for multiple pavement facilities:exact and approximate solutions[C].Transportation Research Part A:Policy and Practice,2004,38(5):347-365
    [22]Stuart Arnold,Paul Fleming.A test method and deterioration model for joints and cracks in concrete slabs[J].Cement and Concrete Research,2005,35(12):2371-2383
    [23]Mustafa M.Alidrisi.Availability:of pavements with random crack times and regular inspection[J].Microelectronics and Reliability,1993,33(8):1133-1140
    [24]Subramaniam KV,Shah SP.Biaxial tension fatigue response of concrete[J].Cement &Concrete Composites,2003,25(6):617~623
    [25]赵均海,俞茂宏,刘云贺.混凝土统一强度理论及其应用[J].西北建筑工程学院学报,1998,15(4):1-9
    [26]D.V.Ramsamoo.Fracture of highway and airport pavements[J].Engineering Fracture Mechanics,1993,4(4):609-626
    [27]Yunus Dere,Alireza Asgari.Failure prediction of skewed jointed plain concrete pavements using 3D FE analysis[J].Engineering Failure Analysis,2006,13(6):898-913
    [28]B.Ashtakala,H.B.Poorooshasb.Prediction of tensile cracks in road pavements[J].Mathematical and Computer Modelling,1989,12(1):55-60
    [29]P.Wriggers,S.O.Moftah.Mesoscale models for concrete Homogenization and damage behavior[J].Finite Elements in Analysis and Design,2006,42(7):623-636
    [30]黄克智,徐秉业.固体力学发展趋势[M].北京:北京理工大学出版社,1995
    [31]夏梦荣,韩闻生.统计细观损伤力学与损伤演化诱致突变(1)[J].力学模型,1995,25(1):1-40
    [32]Van mier Jan,G.M.(ED).Fracture process of concrete:assessment of material parameters for fracture models[M].CRC Press,Inc,Boca Raton,Florida,U.S
    [33]小林昭一.混凝土的破坏机理[M].北京:水利出版社,1982
    [34]Leite J.P.B,Slowik V.and Mihashi H.Computer simulation of fracture processes of concrete using mesolevel models of lattice structures[J].Cement and Concrete Research,2004,34(6):1025-1033
    [35]Wittmann,F.H.Structure of concrete with respect to crack formation[M].Fracture Mechanics of Concrete,Elsevier Science Publishers,1989
    [36]Wriggers P.and Moftah S.O.Mesoscale models for concrete:Homogenization and damage behavior[J].Finite Elements in Analysis and Design,2006,42:623-636
    [37]Wang ZM,Kwan AKH and Chan H C.Mesoscopic study of concrete Ⅰ:Generation of random aggregate structure and finite element mesh[J].Computers & Structures,1999,70(5):533-544.
    [38]Kwan A.K.H,Wang Z.M and Chan H.C.Mesoscopic study of concrete Ⅱ:nonlinear finite element analysis[J].Computers and Structures 1999,70(5):545-556
    [39]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714
    [40]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003,43(8):1120-1123
    [41]朱万成,唐春安等.混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J].工程力学,2002,19(6):148-153
    [42]唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003
    [43]张剑,金南国等.混凝土多边形骨料分布的数值模拟方法[J].浙江大学学报(工学版)2004,38(5):581-585
    [44]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130
    [45]Z.Q.Yue,S.Chen,L.G.Tham.Finite element modeling of geomaterials using digital image processing[J].Computers and Geotechnics,2003,30(5):375-397
    [46]姚祖康.路面[M].北京:人民交通出版社,1999
    [47]黄仰贤.路面分析与设计[M].北京.人民交通出版社,1998
    [48]James K.Cable et al.Design and construction procedures for concrete overlay and widening of existing pavements[R].FHWA DTFH61-01-X-00042(Project 6),IHRB Project TR-511,September 2005
    [49]Joint and crack sealing and repair for concrete pavements[R].TB012P.American Concrete Pavement Association,Arlington Heights,IL,1993.
    [50]Joanna K.Ambroz and Michael I.Darter.Rehabilitation of jointed Portland cement concrete pavements:Sps—6,initial evaluation and analysis[R].FHWA-RD-01-169,October 2005
    [51]Dean A.Maurer and Gerald J.Malasheskie.Field performance of fabrics and fibers to retard reflective cracking[J].Geotextiles and Geomembranes,1989,8(3):239-267
    [52]Monismith C L,Coctzce N F.Reflection cracking analysis:Laboratory studies and design consideration[J].Proceedings of AAPT,1980,49:268-313
    [53]Perez S.A,Balay J.M,Tamagny P and Petit Ch.Accelerated pavement testing and modeling of reflective cracking in pavements[J].Engineering Failure Analysis,2007,14(8):1526-1537
    [54]Reflective Cracking in Pavements State of the Art and Design Recommendations[C].Proceedings of the Second International RILEM Conference.Liege,Belgium,March 10-12,1993
    [55]Brooks E.W,Countryman R.Geotextile Fabrics under an asphalt concrete overlay to retard reflective cracking[R].Experimental features project OR-91-03.Federal Highway Administration.Oregon 1999.March.Report:OR 97301-5192
    [56]Hughes JJ and Somers E.Geogrid mesh for reflective crack control in bituminous concrete overlays[R].Pennsylvania Dept of Transportation,Harrisburg.Bureau of Construction and Materials.Jul 2000,96p.Report:PA-2000-013-86-001
    [57]Kidd SQ.Paving Fabric and asphalt stress absorbing membrane interlayers(SAMI)[R].Mississippi State Highway Dept.,Jackson.Research and Development Div.Aug 1990.126p.Report:MSHD-RD-90-67-6,STATE STUDY-67-6
    [58]Lyton R.L and U.Shanmugham.Fabric reinforced overlays to retard reflection cracking[R].Report RF-342-5,Texas A&M Research Foundation,February 1983
    [59]杨军.格栅加筋沥青路面研究[D].南京:东南大学,1996
    [60]陈奕帆.水泥混凝土路面沥青加铺罩面层反射裂缝的防治[J].公路,2007(5):180-184
    [61]胡长顺,王秉纲.复合式路面设计原理与施工技术[M].北京:人民交通出版社,1999
    [62]符冠华.沥青混凝土加铺层改造旧水泥混凝土路面的应用研究[D].南京,东南大学,2001
    [63]杨斌.旧水泥混凝土路面沥青加铺层结构研究[D].长安:长安大学,2005
    [64]顾强康,冷培义.水泥混凝土道面上沥青加铺层反射裂缝试验研究[J].中国公路学报,1999,127(1):21-26
    [65]周富杰,孙立军.复合路面沥青面层最佳厚度[J],同济大学学报,2001,29,(10):1235-1241
    [66]祝海燕,王选仓,曹宝贵.复合式路面中夹层对旧水泥混凝土板荷载应力影响分析[J].公路,2006,(12)::100-103
    [67]张肖宁,邹桂莲,王绍怀.旧混凝土路面上沥青加铺层的抗反射裂缝能力[J].华南理工大学学报自然科学版,2001,29(8):82-85
    [68]符冠华,倪富健,战高峰.旧水泥混凝土路面上沥青加铺层反射裂缝疲劳试验研究[J].公路交通科技,2000,17(1):9-13
    [69]李淑明,蔡喜棉,许志鸿.防治复合式路面的反射裂缝技术研究[J].同济大学学报自然科学版.2005,33(12):1616-1620
    [70]倪富健,尹应梅,高明生.聚酯玻纤布防荷载型反射裂缝室内模拟试验[J].东南大学学报(自然科学版),2007,37(1):128-131
    [71]廖卫东,王小雄.沥青加铺层抗反射裂缝足尺疲劳试验[J].长安大学学报,2006,26(5):9-14
    [72]刘荥等.旧水泥混凝土路面改建中的新技术与方法的研究[J].华东公路,2003,(2): 7-9
    [73]黄尚林.旧水泥混凝土路面加铺沥青混凝土面层改造技术[J].中南公路工程,2001,(3),19-21
    [74]谢勇利.水泥混凝土路面加铺沥青混凝土的设计技术[J].交通科技,2002,(3):29-31
    [75]张超等.水泥混凝土路面加铺沥青混凝土面层后反射裂缝的防治[J].公路,2002,(1):61-63
    [76]叶国铮.防治沥青路面反射裂缝的设计方法[J].中南公路工程,1998,23(1):33-38
    [77]Stolle D.F.E.Modelling of dynamic response of pavements to impact loading[J].Computers and Geotechnics,1991,11(1):83-94
    [78]Stolle D.F.E.Peiravian.Falling weight deflectometer data interpretation using dynamic impedance[J],Canadian Journal of Civil Engineering,1996,23(1):1-8
    [79]Karadelis J.N.A numerical model for the computation of concrete pavement moduli:a non-destructive testing and assessment method[J].NDT & E International,2000,33(2):77-84
    [80]Mehmet Saltan,Suna Saltan and Ahmet Sahiner.Fuzzy logic modeling of deflection behavior against dynamic loading in flexible pavements[J].Construction and Building Materials,2007,21(7):1406-1414
    [81]曾胜.路面性能评价与分析方法研究[D].长沙:中南大学,2003
    [82]赵国,何国权.落锤式弯沉FWD应用研究[J].中南公路工程.2005,30(2):168-171
    [83]王陶.基于遗传算法的刚性路面脱空判定[J].中国公路学报,2003,16(3):23-26
    [84]梁新政,倪富健等.路面结构层材料非线性特性反演[J].公路交通科技,2002,119(15):5-7
    [85]姬亦工,王复明,郭忠印.基于落锤式弯沉仪(FWD)动态数据的路面模量反演方法[J].土木工程学报,2002,35(3):34-37
    [86]王复明,魏翠玲等.路面结构的动态分析[J].工程力学,2002,19(1):121-124
    [87]王阔.应用落锤式弯沉议(FWD)进行模量反算的误差分析[J].东北公路,2003,26(4):62-63
    [88]Shreenath Rao and Jeffery Roesler.Characterization of effective built-in curling and concrete pavement cracking on the Palmdale test sections[Z].University of California,
    Berkeley,Institute of Transportation Studies Pavement Research Center draft,May 2005
    [89]Seong-Min Kim and Patricia Kim Nelson.Experimental and numerical analyses of PCC overlays on PCC slabs-on-grade subjected to climatic loading[J].International Journal of Solids and Structures,200,41(3):785-800
    [90]王秉刚,邓学均.路面力学计算[M].北京:人民交通出版社,1985
    [91]吕惠卿,张湘伟,成思源.水泥混凝土路面力学性能研究综述[J].重庆大学学报(自然科学版),2005,28(6):60-64
    [92]Westergaard H.M.Stresses in Concrete pavements Computed by Theoretical Analysis[J],Public Road,1926,7(2):25-35
    [93]王秉刚,邓学均.路面力学计算[M].北京:人民交通出版社,1985
    [94]Burmister D.M.The general theory of stresses and displacements in layered soil systems[J],Journal of Applied Physics,1945,16:89-94,126-127,296-302
    [95]Burmister D.M.Stresses and displacement characteristics of a two-layered,rigid base soil system:Influence diagrams and practical applications[C].Proceedings,Highway Research Board,1956,35:773-814
    [96]Schiffman R.F.General analysis of stresses and displacements in layered elastic systems [C].Proceedings,International Conference on Structural Design of Asphalt Pavements.University of Michigan,1962:365-375
    [97]南京工学院教学教研组,数学物理方程与特殊函数[M].北京:人民教育出版社,1978年
    [98]郭大智,路面力学中的工程数学[M].哈尔滨,哈尔滨工业出版社,2001
    [99]Cheung Y.K and Zienkiewic O.C.Plates and Tanks on Elastic Foundation—An Application of Finite Element Method[J],International Journal of solids and structures,1965,1(3):451-461
    [100]Hudson W.R and Matlock H.Analysis of discontinuous ortho- tropic pavement slabs subjected to combined loads[R].Highway Research Record NO.131,H.R.B,1966:1-48
    [101]Wang S.K,Sargious M,and cheung Y.K.Advanced analysis of rigid pavement[J],Journal of Transportation Engineering,ASCE,1972,98(TE1):37-44
    [102]Huang,Y.H and Wang,S.T.Finite element analysis of concrete slabs and its implication for rigid pavement design[R].Highway Research Record 466,H.R.B.,1973
    [103]Huang Y.H and Wang S.T.Finite element analysis of rigid pavement with partial subgrade contact[R].Transportation Research Record 485,T.R.B.,1974:39-54
    [104]Huang Y.H and Deng X.J.A Simplified method for analyzing concrete pavements composed of jointed slabs[C],Proceedings of the International Conference of Finite Element Methods,Shanghai,china,1982:376-381
    [105]Huang Y.H and Deng X.J.Finite element analysis of jointed concrete pavements[J],Journal of Transportation Engineering ASCE,1983,109(5):689-705
    [106]交通部公路规范设计院,水泥混凝土路面设计理论和参数研究报告集[R],上海:同济大学,1982
    [107]Subramanian KV and Shah SP.Biaxial tension fatigue response of concrete[J].Cement &Concrete Composites,2003,25(6):617-623
    [108]赵均海,俞茂宏,刘云贺.混凝土统一强度理论及其应用[J].西北建筑工程学院学报,1998,15(4):1-9
    [109]Lu Sun.Computer simulation and field measurement of dynamic pavement loading[J].Mathematics and Computers in Simulation,2001,56(3):297-313
    [110]Liu C,McCullough BF and Oey HS.Response of rigid pavements due to vehicle-road interaction[J].ASCE Journal of Transportation Engineering,2000,126(3):237-42
    [111]耿大新,钟才根,杨琳德.行车荷载作用下刚性路面结构体系的动力响应[J].中南公路工程,2003,28(4):16-19
    [112]王林玉,谢永利,朱向荣.循环荷载作用下路面模型试验研究[J].西安公路交通大学学报,1999,19(4):11-14
    [113]常志权,罗虹等.谐波叠加路面输入模型建立及数字模拟[J].重庆大学学报(自然科学版),2004,27(12):5-8
    [114]Hadi M.N.S and Y.Arfiadi.Optimum rigid pavement design by genetic algorithms[J].Computer and Structures,2001,79(2):1617-1624
    [115]Kim S mand B.Frank MC.Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude[J].Engineering Structures,2003,25(9):1179-1188
    [116]毛菊良,侯芸,郭忠印.动态荷载下刚柔复合路面结构变形和应力分析[J].同济大学学报(自然科学版),2004,32(10):1403-1407
    [117]Mindess S.Fracture process zone detection[R].In:Fracture mechanics test methods for concrete.[R].Report of Technical Committee 89-FMT,RILEM,Chapman and Hall,1991
    [118]于骁中主编.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991
    [119]黄克智,徐秉正.固体力学发展趋势[M].北京:北京理工大学出版社,1995
    [120]夏蒙棼,韩闻生等.统计细观损伤力学和损伤延缓诱致突变(1)[J].力学进展,1995-25(1):1-40
    [121]http://entropy.com.cn 熵.信息.复杂性网站
    [122]何兆益.碎石基层防止半刚性路面裂缝及其路用性能研究[D].南京:东南大学,1997
    [123]莫石秀.多年冻土地区级配碎石路用性能及设计方法研究[D].西安:长安大学,2004
    [124]郑俊杰.STRATA应力吸收层在我国的首次应用[J].公路交通科技,2003,20(3):19-23
    [125]张忠岐.STRATA反射裂缝应力吸收层施工技术[J].武汉理工大学学报,2003年25卷12期:38-40
    [126]廖卫东.STRATA应力吸收层的级配特征与施工控制技术[J].公路,2005,(5):13-18
    [127]杨志峰,李美江,王旭东.废旧橡胶粉在道路工程中应用的历史和现状[J].公路交通科技,2005,22(7):19-22
    [128]刘大梁,刘小燕.环氧沥青混凝土性能试验研究[J].公路交通科技.2005,22(4):13-14
    [129]孙振平.水泥混凝土路面在我国的地位及其发展措施[J].混凝土,1995,(4):26-29
    [130]傅智.水泥混凝土路面滑模施工技术[M].北京:人民交通出版社,2000
    [131]姚祖康.对我国沥青路面现行设计指标的评述[J].公路,2003,(2):43-49
    [132]胡霞光.国内外路面快速检测技术的现状与发展[J].中外公路,2003,23(6):95-99
    [133]陈常松,颜东煌,陈政清.混凝土振弦式应变计测试技术研究[J].中国公路学报,2004,(17)1:29-33
    [134]蒋小钢,辛松林.振弦式仪器及其长期稳定性[J].大坝观测与土木工程测试.1994,18(1):20-25
    [135]巴里.塞勒斯,袁远.振弦式传感器在大坝安全监测中的应用[J].水利水电快报,2001,22(19):19-20
    [136]毛良明,王为胜,沈省三.振弦式传感器及自动化网络测量系统在桥梁安全监测系统中的应用[J].传感技术学报,2002,(1):73-76
    [137]吕惠卿,张湘伟,张荣辉等.振弦式应变计在水泥混凝土路面力学性能测试中的应用 [J].公路交通科技,2007,(2):61-63
    [138]秦健,孙立军.国外沥青路面温度预估方法综述[J].中外公路,2005,25(6):19-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700