高体积分数金属基复合材料SiCp/2024Al动态力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高体积分数颗粒增强金属基复合材料由于其具有高比刚度、高比强度、低密度和优越的热学性能,使得其被广泛地应用于航空航天、军工、装配和电子封装等领域。其中,在很多领域涉及到动态载荷的作用,而材料在准静态载荷和动态载荷作用下的力学性能存在着显著的差异。研究其动态力学性能及其机理,为该类复合材料的材料设计与开发以及工程应用等方面具有重要意义。
     本文针对高体积分数颗粒增强金属基复合材料SiCp/2024Al的动态力学性能进行了实验和数值模拟研究。主要研究内容包括以下几个方面:
     分别采用霍普金森压杆(SHPB)动态压缩加载装置和Instron材料试验机研究了铸造、退火和T6热处理的三种颗粒体积分数40%、45%和50% SiCp/2024Al复合材料的压缩力学性能,其中应变率测试范围为0.001/s-2500/s。由于高体积分数颗粒增强金属基复合材料具有一定的脆性,通常的SHPB加载方法表现出一定的局限性。为此,采用了波形整形的方法,通过对实验结果的比较与分析,选择尺寸为Ф5mm×1mm的黄铜垫片作为整形器,以实现试件在变形过程中处于应力平衡和常应变率变形状态,满足了SHPB工作原理应力和应变均匀性的假设,保证了实验结果的可靠性。
     准静态和动态压缩实验结果表明,不同体积分数SiCp/2024Al复合材料表现出明显不同的变形行为。其中,与准静态相比,高应变率下复合材料表现出较高的延伸率;颗粒体积分数为40%的复合材料在高应变下从腰鼓状变形逐渐至剪切破坏,具有较大的延伸率和较好的塑性,而颗粒体积分数为45%和50%的复合材料则从剪切破坏到劈裂破坏,表现出明显的脆性;结合文献中体积分数40%以下的颗粒增强金属基复合材料在高应变率不发生破坏的实验结果,本文的实验结果表明,对于SiCp/2024Al复合材料,40%左右颗粒体积分数为该复合材料由塑性至脆性特性转变的临界体积分数。
     通过单轴压缩实验得到了SiCp/2024Al复合材料在应变率范围为0.001-2500/s的应力应变曲线,实验结果表明,应变率对复合材料的流动应力有明显的影响。其中,颗粒体积分数为40%的复合材料的流动应力随着应变率的增大而提高,而颗粒体积分数为45%和50%复合材料的流动应力则是随着应变率的增大先增大后减小,这一趋势可能是由于高应变率下绝热压缩过程中生成的热所引起的软化效应所导致的,本文还讨论了颗粒体积分数、热处理、应变硬化和应变率硬化对复合材料动态力学性能的影响。
     通过对压缩试件断口的SEM照片分析,观察到了基体在高应变率下发生熔化的现象。这一现象可能是由于绝热压缩是塑性变形转换生成的热所引起的。结合此现象,以及试件的宏观变形和不同应变率下的应力应变曲线结果表明,高应变率下,颗粒增强金属基复合材料SiCp/2024Al的变形机理为:低体积分数复合材料是由基体变形承受、传递载荷,而高颗粒体积分数则是由颗粒相接触形成的网状结构承受载荷。
     针对上述动态压缩实验还进行了数值模拟分析。其中,利用有限元软件LS-DYNA建立了含有不同长径比椭球形颗粒的二维轴对称和三维的单胞模型,根据SEM照片中发现熔化现象,为了分析和比较热软化效应的影响,本文分别采用了Cowper-Symonds和Johnson-Cook材料模型进行了数值计算。计算结果表明,带有温度软化的Johnson-Cook模型的计算结果与实验结果比较吻合,还利用从隐式到显示计算分析了动态冲击载荷下的热残余应力的影响。
     在此基础上,利用有限元LSDYNA软件计算分析了不同颗粒体积分数、长径比和颗粒形状等对SiCp/2024Al复合材料动态力学性能的影响。数值计算结果表明,颗粒体积分数10-30vol.%时长径比对复合材料的流动应力影响小于对40-50vol.%复合材料流动应力的影响;以及复合材料的应力应变曲线在体积分数为30%以下明显的线性硬化,而在40 vol.%和50vol.%时复合材料的应力应变曲线则表现出随着应变增大而下降的趋势,与实验结果得出的40%左右颗粒体积分数为复合材料性能转变的临界体积分数的结论相吻合。
Metal matrix composites (MMCs) reinforced with high content particles were extend applied in aerospace, military, assemble and electric packaging fields due to its specific stiffness and strength, low density and advanced thermal properties. Some of those applications were involved dynamic loading. There is great different behavior between under the quasi-static and dynamic loading. It is necessary to study the dynamic properties to provide the reliable data for numerical calculation, engineering application and materials design.
     The dynamic properties of SiCp/2024Al with high particle content were investigated by experiment testing and numerical calculation method in present paper; it mainly includes content as following:
     The compression mechanical properties of SiCp/2024 reinforced with 40vol.%, 45vol.% and 50 vol.% particles were investigated by using split Hopkinson pressure bar(SHPB) and Instron materials testing machine, respectively. Before testing, samples were with casting, T6 and annealing solution-heat treated. The experiments were carried out in comparison at stain rates ranging from 0.001/s to 2500/s. The common SHPB technique showed limitation due to the brittle properties of metal matrix composites reinforced with high content particles. The pulse shaper technique was employed in dynamic compression. In order to obtain the reliable data, the copper disk with dimension ofФ5mm×1mm was chosen as pulse shaper to ensure the Samples are in dynamic stress equilibrium and have nearly constant strain rate over most of the test duration.
     The experiment results showed the composites display obviously different deformation mechanism at various strain rates. The composites show better elongation at high strain rate compared with under quasi-static loading. And at high strain rate, 40vol.% SiCp/2024Al deformed with good elongation from drug shape to shear fracture step by step, however, 45 and 50vol% SiCp/2024Al deformed with obvious brittle properties from shear fracture to split fracture. Compared with lower particle content (<30%) MMCs with good plastic deformation, the results showed that 40% as a critical volume fraction for SiCp/2024Al between plastic properties and brittle properties.
     The stress-strain curves at strain rates ranging from 0.001/s to 2500/s were obtained. The results showed that the composites exhibited high strain-rate sensitivity. The flow stress kept increase for 40 vol.% SiCp/2024Al and showed increase-decrease tendency for 50 vol.% SiCp/2024Al at strain rates ranging from 1250 to 2500/s, which maybe was caused by heat generated during adiabatic compression.
     The fracture surfaces were characterized by scanning electron microscopy. It is obvious that the matrix was softened /melted by heat generated during adiabatic compression. Combining the results of macro-deformation and the stress-strain curves, the results showed that the deformation mechanism of 40 vol.% SiCp/2024Al was controlled by matrix, and 50 vol.% SiCp/2024Al was controlled by net shape structure consisted by particles.
     Compressive properties of MMCs reinforced with high content partilces were investigated by using LS-DYNA. Axi-symmetric and three dimensional unit cell models with ellipsoids particles were employeed in numerical simulation. The effects of temperature rising caused by heat generated during adiabatic compression with Johnson-Cook model compared to Cowper-Symonds model and the thermal resident stress on the flow stress of SiCp/2024Al with high particle content were discussed. The results with Johnson-Cook model agreed well with the experiment results.
     And the effects of particle volume fraction, aspect ratio and particle shape on SiCp/2024Al dynamic properties were also discussed by using LS-DYNA. The numerical results showed that the effect of aspect ratio on flow stress of composites with lower particle content (10-30 vol.%) was less than on composites with high particle content. And the stress/strain curves of composites with low particle content was linear strain work hardening, however, the stress/strain curves of composites with 40% and 50% particle content showed increase-decrease tendency with increasing of strain. This agreed well with the experiments results of 40% is the critical volume fraction for properties of SiCp/2024Al.
引文
1 张国定,赵昌正.金属基复合材料.上海:上海交通大学出版社.1996
    2 T.W.Clyne,W.J.Withers.金属基复合材料导论.余永宁,房志刚译.北京:冶金工业出版社.1996
    3 F. Delannay, L. Froyen, A. Deruyttee. Review the wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. Journal of materials science.1987,22:1-16
    4 武高辉,张 强,姜龙涛,陈国钦,修子扬,SiCp/Al 复合材料在电子封装应用中的基础研究,电子元件与材料,6(22),2003,27-29
    5 杨会娟,王志法,王海山, 莫文剑,郭磊.电子封装材料的研究现状及进展.电子封装.2004,18(6):86-88
    6 J.Cadek, M. Pahutova, V. Sustek. Creep behaviour of a 2124 Al alloy reinforced by 20 vol.% silicon carbide particulates. Materials Science and engineering A. 1998,246:252-264
    7 陈国钦,朱德智,武高辉,张强,修子扬.电子封装用 SiCp/Cu 复合材料制备与性能.电子与封装.2006,6(5):5-8
    8 冷金凤,武高辉.SiCp+Gr/2024Al 复合材料的力学性能和加工性能.稀有金属.2006,30(S1):20-23
    9 曹法和,田时雨,王建军,宋顺成.Al/Al2O3p 金属基复合材料的静动态压缩性能及损伤分析.兵器材料科学与工程.2003,26(5):23-26
    10 J. Cadek, S. J. Zhu, K. Milicka. Threshold creep behaviour of aluminium dispersion strengthened by fine alumina particles. Materials Science and Engineering A. 1998,252(1):1-5
    11 B. Y. Zong, B. Derby. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite. Acta materialia. 1997,41(1):41-49
    12 C. C. Perng, J. R. Hwang, J. L. Doong. The effect of strain rate on the tensile properties of an Al2O3p/6061-T6 aluminum metal-matrix composite at low temperatures. Scripta Metallurgica et Materialia. 1993,29(3):311-316
    13 谭明照.颗粒增强金属基复合材料力学行为的研究.博士学位论文.沈阳:东北大学.2001
    14 谷万里..SiCw/LDAl 复合材料超塑变形微观过程的研究.博士学位论文.哈尔滨:哈尔滨工程大学.2001
    15 王晓敏.工程材料学.北京:机械工业出版社.1999
    16 倪礼忠,陈麒.复合材料科学与工程.北京:科学出版社.2002
    17 T. W. Clyne, P. J. Withers. An introduction to metal matrix composites,Cambridge University Press, Cambridge (1993).
    18 马晓春.挤压铸造法制备 SiC 颗粒增强铝基复合材料.热加工工艺.1996,(4):25-26.28
    19 张强,陈国钦,武高辉.含高体积分数 SiCp 的铝基复合材料制备与性能.中国有色金属学报.2003,13(5):1180-1183
    20 杨滨,王锋,黄赞军,段先进,张济山.喷射沉积成形颗粒增强金属基复合材料制备技术的发展.材料导报.2001,15(3):4-6
    21 强颖怀,王晓红,冯培忠.SiCp 增强金属基复合材料的研究进展.轻金属.2003,(7):49-51
    22 J. Eliosson, R. Somclstrom. Applications of aluminum metal matrix composites. Key Engineering Materials. 1995,(104-107):3-36.
    23 M. K. Surappa. Aluminium matrix composites challenges and opportunities. Sadhana. 2003,28(1&2):319-334
    24 张强.高体积分数铝基复合材料的微观组织与性能研究.博士学位论文.哈尔滨:哈尔滨工业大学.2003
    25 崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用.材料工程.2002(6):3-6
    26 S. Nemat-Nasser. Introduction to high strain rate testing. ASM Handbook. eds. H. Kuhn, D. Medlin. 2000,8:427-428
    27 J. M. Staehler, W. W. Predebon. Micromechanisms of deformation in high-purity hot-pressed alumina. Materials science & Engineering A. 2000,291:37-45
    28 B. Hopkinson. A method of measuring the pressure produced in the detonation of high explosive or by the impact of bullets. Phil. Trans. R. Soc A. 1914, 213: 437-447
    29 R. M. Davies. A critical study of the Hopkinson pressure bar. Philos. Trans. R. Soc A.1948, 240:375-457
    30 H. Kolsky. An investigation of the mechanical properties of materials at very high rates of loading. Proc. R. Soc. B. 1949,62:676-700
    31 Lal Ninan, J. Tsai, C. T. Sun. Using of split Hopkinson pressure bar for testing off-axis composites. International journal of impact engineering. 2001, (25):291-313
    32 U. Zencker, R. Clos. Limiting conditions for compression testing of flat specimens in the split Hopkinson pressure bar. Experimental mechanics. 1999,39(4):343-348
    33 李英雷.装甲陶瓷的本构关系和抗弹机理研究.博士学位论文.合肥:中国科学技术大学.2003
    34 Z. Li, J. Lambros. Determination of the dynamic response of brittle compositesby using the split Hopkinson pressure bar. Composites science and technology. 1999,59:1097-1107
    35 S. Nemat-Nasser, J. B. Isaacs. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. London. A. 1991,435:371-391
    36 G. Ravichandran, G. Subhash. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J. Am. Ceram. Soc. 1994,77(1):263-267
    37 G. Subhash. Split-Hopkinson pressure bar testing of ceramics. ASM Handbook, eds. H.Kuhn, D. Medlin. 2000,8:497-504
    38 W. Chen, G. Subhash, G. Ravichandran. Evaluation of ceramic specimen geometries used in split Hopkinson pressure bar. DYMAT J. 19941(3): 193-210
    39 S. Yadav, D. R. Chichili, K. T. Ramesh. The mechanical response of a 6061-T6 Al Al2O3 metal matrix composite at high rates of deformation. Acta metallurgy materiallia. 1995,43(12):4453-4464
    40 U. S. Lindholm, R. L. Bessey, G. V. Smith. Effect of strain rate on yield strength, tensile strength and elongation of three aluminum alloys. .Journal Material JMLSA.1971,6(1):119-132.
    41 C. San Marchi, Fahe Cao, M. Kouzeli, A. Mortensen. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Materials science and engineering A. 2002,337:202-211
    42 T. Christman, A. Needleman, S. Suresh. Experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica. 1989, 37(11): 3029-3050
    43 A. G. Evans; F. W. Zok, J. Davis. Role of interfaces in fiber-reinforced brittle matrix composites. Composites Science and Technology. 1991,42(1-3):3-24
    44 T. Christman, A. Needleman, S. Nutt, S. Suresh. On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal-matrix composite. Materials Science & Engineering A. 1989,107:49-61
    45 D. Razaghian, T. Yu, Chandra. Fracture behaviour of a SiC particle reinforced aluminum alloy at high temperature. Composites science and technology. 1998,58:293-298
    46 Broeckmann, R. Pandorf. Influence of particle cleavage on the creep behaviour of metal matrix composites. Computational Materials Science. 1997,9(1-2):48-55
    47 G. Bao, J. W. Hutchinson, R.M. McMeeking. Particle reinforcement of ductile matrices against plastic flow and creep. Acta metallurgic materialia. 1991(39): 1871-1882
    48 G. Bao, K. T. Ramesh. Plastic flow of a tungsten-based composite underquasistatic compression. Acta Metallurgica et Materialia 1993, 41(9): 2711-2719.
    49 M. T. Kiser, F. W. Zok, D.S. Wilkinson, Plastic flow and fracture of a particulate metal matrix composite. Acta materialia. 1996,44(9):3465-3476
    50 Y. Li, K.T. Ramesh, E.S.C.Chin. The compressive viscoplastic response of an A359/SiCp metal matrix composites and of the A359 aluminum alloy matrix. International Journal of Solids and Structures. 2000,(37):7547-7642
    51 Y. Li, K. T. Ramesh. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain. Acta Materialia. 1998,46(16):5633-5646
    52 Y. Li, K.T. Ramesh, E.S.C. Chin. Viscoplastic deformations and compressive damage in an A359SiCp metal–matrix composite. Acta Materials. 2000,48:1563-1573
    53 Y. Li, K. T. Ramesh, E.S.C. Chin. The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations. Materials Science and Engineering A. 2004,382:162–170
    54 Y. Li, K. T. Ramesh, E. S. C Chin. Comparison of the particle deformation and failure of A359/SiC and 6061/Al2O3 metal matrix composites under dynamic tension. Materials science and engineering A. 2004,371:359-370
    55 C. M. Friend, A. C. Nixon. Impact response of short delta-alumina fiber/aluminium alloy metal matrix composites. Journal of Materials Science. 1988,23(6):1967-1975
    56 D. G. Dixon. Spall failure in 6061/SiC particulate metal matrix composite. Scripta Metallurgica et Materialia. 1990,24(3):577-580
    57 S. I. Hong, G. T. III.Gray, J. J. Lewandowski. Microstructural evolution in an Al-Zn-Mg-Cu alloy-20 vol.% SiC composite shock-loaded to 5 GPa. Scripta Metallurgica et Materialia. 1992,27(4):431-436
    58 宫能平,周元鑫,夏源明.应变率对 SiC 颗粒增强铝基复合材料拉伸性能的影响.力学季刊.2000,21(4):415-420
    59 L. H. Dai, L. F. Liu, Y. L. Bai. Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites. Material letters. 2004,58:1773-1776
    60 L. H. Dai, L. F. Liu, Y. L. Bai. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids and Structures. 2004,41:5979-5993.
    61 Y. X. Zhou, Y. M. Xia. Experimental study of the rate-sensitivity of SiCp Al composites and the establishment of a dynamic constitutive equation. Composites Science and Technology. 2000,60:403-410.
    62 W. Chen, G. Ravichandran, Failure mode transition in ceramics under dynamic multiaxial compression. International Journal of Fracture. 2000,101:141-159
    63 Y. Li, F. A. Mohamed. An investigation of creep behavior in a SiC-2124 Al composite. Acta materialia. 1997,45(11):4775-4785
    64 M. Guden, I. W. Hall. Dynamic properties of metal matrix composites a comparative study. Material Science and Engineering A. 1998,242:141-152
    65 M. Guden, I. W. Hall. High strain rate deformation behavior of a continuous fiber reinforced aluminum metal matrix composite. Composites and Structures. 2000,76:139-144
    66 G. Subhash, G. Ravichandran. Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression. Journal of materials science. 1998,33:1933-1939
    67 K. Xu, R. J. Arsenault. High temperature deformation of NiAl matrix composites. Acta materialia. 1999,47(10):3023-3040.
    68 D. Rittel. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of materials. 1991(31):131-139
    69 D. Rittel. Temperature measurement using embedded thermocouples. Experimental mechanics. 1998,38(2):73-79
    70 R. Kapoor, S. Nemat-Nasser. Determination of temperature rise during high strain rate deformation. Mechanics of Materials. 1998,27:1-12
    71 C. A. Ross, R. L. Sierakowski, In materials: Science of advanced materials and process engineering, National SAMPE symposium and Exhibition Vol. 16. SAMPE, Azusa, California, 1971:109-121
    72 J. Harding, B. Derby, S.M Pickard, M. Taya. An investigation of the high-rate deformation of SiCw/2124 Al composite. In: F.L. Matthews et al. (Eds.), Proc. Sixth Int. Conf. on Composite Materials (ICCM VI), vol. 3, Elsevier, London, 1987:76–85.
    73 A. Marchand, J. Duffy, T. A. Christman, S. Suresh. Experimental study of the dynamic mechanical properties of AnAl-SiC/w. Engineering Fracture Mechanics. 1988,30(3):295-315
    74 C. C. Perng, J. R. Hwang, J. L. Doong. High strain rate tensile properties of an (Al2O3 particles)-(Al alloy 6061-T6) metal matrix composite. Materials Science & Engineering A. 1993,171:213-221
    75 R. U. Vaidya, A. K. Zurek. Dynamic mechanical response of an SiCp/Al-Li (8090) composite. Journal of Materials Science 1995,30(10):2541-2548
    76 D. R. Chichili, K. T. Ramesh. Dynamic failure mechanisms in a 6061-T6 Al/Al2O3 metal-matrix composite. International Journal of Solids and Structures. 1995,32(17-18):2609-2626
    77 G. T. Camacho, M. Ortiz. Computational modeling of impact damage in brittle materials. International Journal of solids structures. 1996, 33(20-22): 2899-2938.
    78 G. K.Hu, G. Guo, D.Baptiste. A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites. Computational materials Science. 1998,9:420-430.
    79 F. J. Humphreys. in Mechanical and physical behaviour of metallic and ceramic composites, edited by S. I. Anderson, Ris National Laboratory, Denmark, 1988:25-32
    80 G. Bao, Z. Lin. High strain rate deformation in particle reinforced metal matrix composites. Acta metallurgical materialia. 1996,44(3):1011-1019
    81 W. Ramberg, W. R. Osgood, Description of stress-strain curves by three parameters. Technical Note No. 902, 1943, National Advisory Committee For Aeronautics, Washington DC
    82 R. Pandorf, C. Broeckmann. Numerical simulation of matrix damage in aluminium based metal matrix composites. Computational materials science. 1998,13:103-107
    83 J. W. Leggoe, A.A.Mammoli, M.B.Bush. X.Z.Hu. Finite element modelling of deformation in particulate reinforced metal matrix composites with random local microstructure variation. Acta Materialia. 1998,46(17):6075-6088
    84 J.R.Brockenbrough, F.W. Zok. On the role of particle cracking in flow and fracture of metal matrix composites. Acta metallurgical materiallia. 1995,43(1):11-20
    85 Safak Yilmaz, Ahmet Aran. Finite element analysis of the effect of particle alignment on the deformation behavior for a ductile matrix containing hard particles. Canadian Metallurgical Quarterly. 1999,38(3):201-205,.
    86 C.R.Chen, S.Y.Qin, S.X.Li, J.L.Wen. Finite element analysis about effects of particle morphology on mechanical response of composites. Materials Science and Engineering A. 2000,278:96-105
    87 Essam El-Magd, Michael Brodmann. Influence of precipitates on ductile fracture of aluminium alloy AA7075 at high strain rates. Materials Science and Engineering A. 2001,307:143-150
    88 M. S. Bruzzi. P. E. Mchugh. Methodology for modelling the small crack fatigue behaviour of aluminium alloys. International Journal of Fatigue. 2002,24:1071-1078
    89 M. S.Bruzzi. P. E. McHugh. Micromechanical investigation of the fatigue crack growth behaviour of Al – SiC MMCs. International Journal of Fatigue. 2004,26:795-804
    90 L. M. Tham, L. Su, L. Cheng, M. Gupta. Micromechanical modeling of processing induced damage in Al-SiC metal matrix composites synthesized using the disintegrated melt deposition technique. Materials Research Bulletin. 1999, 34(1):71–79,
    91 M. M. Aghdam, D. J. Smith, M. J. Pavier. Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. Journal of the Mechanics and Physics of Solids. 2000,48:499-528
    92 P. B. Prangnell, S. J. Barnes, S. M. Roberts, P. J. Withers. The effect of particle distribution on damage formation in particulate reinforced metal matrix composites deformed in compression. Material Science and Engineering A. 1996,220:41-56
    93 D. Steglich , T. Siegmund, W. Brocks. Micromechanical modeling of damage due to particle cracking in reinforced metals. Computational Materials Science. 1999,16:404-413
    94 P. R. Leduc, G. Bao. Thermal softening of a particle-modified tungsten-based composite under adiabatic compression. International Journal of Solids and Structures, 1997,34(13):1563-1581
    95 毛小南,周廉,曾泉浦,魏海荣.TiC 颗粒增强钛基复合材料的形变断裂,稀有金属材料与工程.2000,29(4):217-220
    96 王立东,李建平,李高宏,常建虎.不同应力比下 SiCp/Al 复合材料疲劳裂纹扩展行为.2006,26(1):72-75
    97 姜龙涛,武高辉,孙东立,AlN 颗粒在不同铝合金中的增强行为.材料科学与工艺.2001,9(1):47-51
    98 毕敬,肖伯律,马宗义.SiCp/2024 铝基复合材料的超塑性变形行为研究.金属学报.2002,38(6):621-624
    99 段慧玲,王建祥,黄筑平,黄红波.颗粒增强复合材料的界面模型与界面相模型的关系.复合材料学报.2004,21(3):102-109
    100 吴晶,李文芳,蒙继龙.颗粒增强金属基复合材料微屈服行为的细观力学计算.材料科学与工程学报.2003,121(11):8-22
    101 李晓军,柴东朗,郗雨林.SiCp 增强镁基复合材料微区应力场的仿真模拟.金属学报.2004,40(9):927-929
    102 郭 然,施惠基,姚振汉.颗粒增强复合材料界面开裂力学性能的模拟.航空材料学报.2003,23(2):18-24
    103 E. Soppa, S. Schmauder, G. Fischer, J. Brollo, U. Weber. Deformation and damage in Al/Al2O3. Computational materials science. 2003,28:574-586
    104 G. Meijer, F. Ellyin, Z. Xia. Aspects of residual thermal stress/strain in particle reinforced metal matrix composites. Composites: Part B. 2000,31:29-37
    105 E. Weissenbek, H. J. Bohm, F. G. Rammerstorfer. Micromechanicalinvestigations of arrangement effects in particle reinforced metal matrix composites. Computational materials science. 1994,3:263-278.
    106 G. K. Hu, G. K. Weng. Influence of thermal residual stresses on the composite macroscopic behavior. Mechanics of Materials. 1998,27:229-240.
    107 Y. H. Seo, C. G. Kang. Micromechanical solidification heat transfer and initial strain estimation in the fabrication process of particles-reinforced aluminum composites. Journal of materials processing technology. 1992,72:152-161
    108 Andrade-Campos, J. A. M Pinho-da-Cruz, F. Teixeira-Dias. Finite element modeling and analysis of residual stresses in Al-SiC metal matrix composites with GiD. Proc. of the 1st Conference on Advances and Applications of GiD, 117-120; 20-22 February, UPC, Barcelona, Spain, 2002.
    109 M. M. Aghdam, A. Kamalikhah. Micromechanical analysis of layered systems of MMCs subjected to bending-effects of thermal residual stresses. Composites structures. 2004,66:563-569
    110 S. Schmauder , U. Weber, E. Soppa. Computational mechanics of heterogeneous materials-influence of residual stresses. Computational Materials Science. 2003,26:142-153
    111 D. R. Chichili, K. T. Ramesh, K. J. Hemker, Adiabatic shear localization in α-titanium experiments, modeling and microstructure evolution. Journal of the Mechanics and Physics of Solids. 2004,52:1889-1909.
    112 M. Geni, M. Kikuchi.Void configuration under constrained deformation in ductile matrix materials. Computational Materials science. 1999,16:391-403
    113 王礼立.应力波基础.北京:国防工业出版社,第二版.2005
    114 马晓青.冲击动力学.北京:北京理工大学出版社.1992.
    115 D. J. Frew, M. J. Forrestal, W. Chen. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Experimental Mechanics, 2002,42(1):93-106
    116 L. M. Yang, V. P. W. Shim, An analysis of stress uniformity in split Hopkinson bar test specimens. International journal of impact engineering. 2005 31:129-250
    117 M. V. Hosur, J. Alexander, U.K. Vaidya, S. Jeelani. High strain rate compression response of carbon/epoxy laminate composites, composite structure. 2001,52:405-417
    118 Z. Li, J. Lambros. Dynamic thermomechanical behavior of fiber reinforced composites. Composites-Part A 2000,31:537-547
    119 首义曾,晏麓晖,陈斌,蒋志刚.多层吸能元件在冲击波作用下大变形问题的模态解.固体力学学报,1999,20(3):237-244
    120 G. R. Johnson, W. H. Cook. A constitutive model and data for metals subjectedto large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Ballistics Symposium. The Hague: The Netherlands, 1983:541-547.
    121 李春雷.LY12.硕士学位论文.哈尔滨:哈尔滨工业大学.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700