列车荷载与水耦合作用下双块式轨道轨枕脱空机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双块式无砟轨道在我国高速铁路上应用较为广泛,对无砟轨道服役情况的调研发现,该型轨道出现了不同程度的伤损,比较典型的伤损为双块式轨枕松动病害。特别是在降雨量丰富的地区或排水不良的地段,双块式轨道破损的速率较干燥地区要快得多。目前国内外对相关问题缺乏系统研究,可以借鉴的经验较少。因此针对列车荷载与水耦合作用下双块式轨道的轨枕松动研究,探索无砟轨道水致伤损的相关理论问题,对完善无砟轨道设计理论,合理制定无砟轨道养护维修方法,延长使用寿命等具有重要理论和实际意义。具体研究内容及成果如下:
     首先,通过现场调研我国无砟轨道水损害的实际情况,结合国内外研究现状,借鉴公路混凝土路面等方面的研究,初步解释了双块式无砟轨道轨枕脱空水损害的成因,演化过程,影响因素及研究问题的实质。
     其次,建立了轨枕-水-道床板流固耦合动力学计算模型,通过采用计算流体力学软件ANSYS CFX对轨枕脱空情况下动水的作用特性进行了计算分析。研究了动水压强、流速的作用特性及不同工况下的变化情况。
     然后,设计了轨枕松动脱空的动水压力测量试验,从实验方面研究了动水压力的存在和变化规律,并与理论计算进行了对比,初步验证了理论计算的可行性。
     最后,探讨了动水压力和流速对道床板混凝土的冲刷作用和劈裂作用。基于微观角度分析了水流速度对混凝土的冲刷作用力和道床板冲刷的临界动水压强。基于断裂力学基本理论分析了最不利情况下动水对道床板裂缝的劈裂作用。
Currently, twin-block ballastless track structure has been widely used in our country. According to the investigation and survey of the service condition of the twin-block ballastless track, varying degrees of failure and damage occurs, especially in the rich rainfall areas or the poor drainage lot, in which the breakage rate of ballastless track is higher than that in the arid area. Present domestic and foreign researches are not systematic and little experience is available as reference. Therefore, the research is carried out and focused on the loosening of twin-block ballastless track sleepers under the coupled action of train load and water. Basic theoretical issues of water induced damage of ballastless track are investigated, which contributes to the development of ballastless track design and maintenance. The research results are meaningful for extending longevity and are listed as follows:
     Firstly, through the on-site investigation and survey of the actual situation of the water induced damage of ballastless track, combining with the research situation at home and abroad, and using the relative studies of concrete pavement of the highway, a preliminary interpretation of the causes of the sleeper void of twin-block ballastless track, the evolution process and influencing factors of the issues is achieved.
     Secondly, a coupling dynamic calculation model of sleeper-water-track slab has been established. With the help of the calculation fluid dynamics simulation software ANSYS CFX, we carry out simulation analysis on the action performances of moving water at the situation of void sleeper, which studies the general rules of hydrodynamic pressure and flow rate and changes of various conditions.
     And then, a hydrodynamic pressure measurement test of loose and void sleeper has been designed.Through the test we studied the existence and changing rules of hydrodynamic pressure, which were compared with theoretical calculations. The test result presents the reliability of computational theory.
     Finally, the scouring and fracturing action of concrete track slab in the condition of pressure and flow rate of moving water has been explored. Based on the microscopic point of view, the scouring force in concrete generated by moving flow rate, and the critical hydrodynamic pressure of scouring concrete track slab was analyzed. Also, based on the basic theory of fracture mechanics, the fracturing action of fracture in the track slab caused by hydrodynamic pressure, in the worst case, is analyzed.
引文
[1]刘学毅,赵坪锐,杨荣山,王平.客运专线无砟轨道设计理论与方法[M].成都:西南交通大学出版社,2010
    [2]杨荣山.轨道工程[M].北京:人民交通出版社,2013
    [3]张勇.路基上双块式无砟轨道空间力学及裂缝特性研究[D].中南大学博士学位论文.2011
    [4]Dempsey,B.J.Laboratory and field studies ofchanneling and pumping.Washington: Transportation Research Record,1982,849:1-12
    [5]Elmer C.Hansen.Unsteady Pressure-Driven Viscous Flows beneath Concreat Pacement SlabsJournal of Hydraulic Engineering,1991,117(6):713-724
    [6]廉向东,付其林,陈拴发,聂午龙,王秉纲.基于板底脱空的水泥混凝土路面动水压力试验研究[J].武汉理工大学学报,2011(05):100-103
    [7]谈至明,谭福平.水泥混凝土路面板底脱空区水运动规律的分析模型[J].水动力学研究与进展,2008,23(3):281-286
    [8]Mehta P K,Nonteiro P JM.Concrete:Microstructure, Properties andMaterials [M].Indian Concrete Institute,1997
    [9]Yaman,I.O,Heam N,Aktan H M. Active and non-active porosity in concrete part I: Experimental evidence [J].Material and Structure,2002,35(3):102-109
    [10]闫东明,林皋.不同初始静态荷载下混凝土动态抗压特性试验研究[J].水利学报,2006,37(3):360-364
    [11]Jing L,Tsang C F, Stephansson O.Dcoval ex-an international cooperative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int.J. Rock Mech. Min. Sci.& Geomech. Abstr.1995, 32(5):399-408
    [12]仵彦卿.岩体水力学导论[M].成都:西南交通大学出版社,1994
    [13]王会永.现浇无砟轨道轨枕结构对新老混凝土粘结面应力状态的影响[D].西南交通大学硕士学位论文,2008
    [14]林红松,刘学毅,周文.道床板裂纹对无砟轨道振动的影响初探[J].铁道学报,2010,30(06):67-71
    [15]Bruhwiler E and Saouma V.C.Water fracture interaction in concrete-part Ⅰ:Fracture properties. ACI Materials Journal,May/June 1995:296-303
    [16]Oshita H, Tanabe T.Water migration phenomenon in concrete in prepeak region [J]. Journal of Engineering Mechanics,2000,126(6):565-572.
    [17]王海龙,李庆斌.饱和混凝土静动力抗压强度变化的细观力学机理[J].水利学报,2006,37(8):958-962
    [18]Sidney Mindess, J Francis Young. Concrete [M].1981
    [19]董光,孟凡江,孙建鹏.公路混凝土结构化学侵蚀的防护[J].山东交通科技,2002(1):40-42
    [20]张劲松,刘利珍.输水洞侵蚀破坏机理分析及防护措施研究[J].武汉大学学报(工学版),2003(2):29-31
    [21]张红霞.浅谈混凝土的腐蚀与防止[J].太原科技,2000(6):29-31
    [22]张文渊.环境水对水泥混凝土的侵蚀作用及防护措施[J].腐蚀与防护,2000(2):83-85
    [23]陈一飞.混凝土结构劣化机理及耐久性设计研究[J].煤炭工程,2003(12):48-52.
    [24]王卫英,于志鹏等.钢筋混凝土的腐蚀与防护[J].海岸工程,2003(6):104-108
    [25]谢邵东,周定,岳奇贤.混凝土、砂浆和灰砂砖在模拟酸雨条件下的化学行为[J].重庆环境科学,1996(8):33-38
    [26]慕儒,孙伟,缪昌文.荷载作用下高强混凝土的硫酸盐侵蚀[J].工业建筑,1999(8):52-55
    [27]Lim C C,Gowripalan N,Sirivivatnanon V.Microcracking and chloride permeability of concrete under uniaxial compression.Cement & concrete composition,22,2000:353-360
    [28]Reinhardt H W, Rossi P and Van Mier J G M. Joint investigation of concrete at high rates of loading. Materials and Structures,1990(23):213-216
    [29]Ross CA, Jerome DM, Tedesco JW, Hughes ML.Moisture and strain rate effects on concrete strength. ACI Materials Journal,1996,96:293-300
    [30]Allen C,David M.Jerome,Joseph W. Tedesco & Mary L.Hughes. Moisture and strain rate effects on concrete strength.ACI Material Journal,Mary-June,1996:293-300
    [31]Wittmann F H. Interaction of hardened cement paste and water. Journal of the American ceramic society,56,1973:409-415
    [32]Bourgeois F, Shao JF, Ozanam O.An elastoplastic model for unsaturated rocks and concrete. Mechanics Research Communications,,2002(29):383-390
    [33]王森荣,杨荣山等.无轨道裂缝产生原因与整治措施[J].铁道建筑,2007(9):76-79
    [34]刘振民,钱振地,张雷.双块式无砟轨道道床板混凝土裂纹的分析与防治[J].铁道建筑,2007(6):99-100
    [35]宋学官,蔡林,张华ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012
    [36]谢龙汉,赵新宇,张炯明ANSYS CFX流体分析及仿真[M].北京:电子工业出版社,2012
    [37]丁源,吴继华.ANSYS CFX 14.0从入门到精通[M].清华大学出版社,2013
    [38]凌桂龙,丁金滨,温正.ANSYS WorkBench 13.0从入门到精通[M].北京:清华大学出版社,2012
    [39]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(2):84-88
    [40]张擎.考虑冲刷脱空的水泥混凝土路面设计研究[D].长安大学博士学位论文,2009
    [41]张海龙.提高混凝土构筑物抗渗性及耐冲刷性的研究[D].河北理工大学硕士学位论文,2006
    [42]刘崇熙,汪在芹.坝工混凝土耐久寿命的现状和问题[J].长江科学院院报,2000,17(1):17-20
    [43]杨春光.水工混凝土抗冲磨机理及特性的研究[D].西北农林科技大学硕士学位论文,2006
    [44]韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996
    [45]冯乃谦.实用混凝土大全[M].北京:科学出版社,2005
    [46]尹延国,胡献国,朱元吉.水工高强混凝土抗磨耐蚀性试验研究[J].水利水电技术,1998,29(2):51-52
    [47]张国雄.板底动水压力作用下水泥路面脱空机理及疲劳损伤研究[D].长沙理工大学硕士学位论文,2012
    [48]黄政宇.土木工程材料[M].北京:高等教育出版社,2002
    [49]禹华谦.工程流体力学[M].成都:西南交通大学出版社,2007
    [50]范天佑.断裂理论基础[M].北京:科学出版社,2003
    [51]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700