ZrB_2-SiC陶瓷高温氧化机理及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高温陶瓷材料(UHTCs)在国防和航天上发挥着越来越重要的作用,它能够胜任于包括高超声速长时飞行、大气层再入、跨大气层飞行、和火箭推进系统等极端环境,因此它的抗氧化性能是其使用时最重要的参考依据,热化学理论作为一种相对成熟的方法,为研究超高温陶瓷的抗氧化性能提供了一条研究途径。
     本文利用热化学理论系统的研究了超高温陶瓷的高温氧化机理,探讨了超高温陶瓷高温氧化过程中材料微结构的变化趋势;并利用细观力学理论分析了高温氧化特性对材料力学性能的影响。
     为了研究超高温陶瓷的高温氧化机理,在1800℃时分别对ZrB2+20vol%SiC(ZS1)、ZrB2+30vol%SiC(ZS2)复合材料进行不同氧分压下的高温氧化实验,并且利用热力学计算软件FactSage进行数值模拟,得出了材料的高温氧化机理;探讨了氧化产物含量对表面形态的影响,与氧化后照片吻合;通过对不同SiC含量和氧分压的材料进行计算,发现SiC含量高对提高材料的抗氧化性能有利,但在低氧分压下由于SiO2的挥发使得这种有利因素不明显;根据氧化产物生成时的氧分压不同,得出了氧化层的示意图,分析出SiC耗散层是影响抗氧化性能的薄弱环节,并与材料测试结果进行了比较分析。
     在反应物与生成物的总质量守恒以及SiC耗尽层内的固体相体积不变基础上,描述了SiC耗尽层内生成物的体积膨胀以及孔洞的演化随温度的变化规律;把生成相与孔洞视为广义夹杂,通过细观力学的理论预报了SiC耗尽层的高温弹性性能的劣化过程,结果表明,衰减主要受相变的控制,初始SiC含量越高,生成的孔洞体积分数越大,SiC耗尽层的弹性性能衰减也越明显。
Ultra high temperature ceramics (UHTCs) is becoming more and more important in national defense and astronavigation region. It can be used in extreme environments including those associated with hypersonic flight, atmospheric re-entry and rocket propulsion. The oxidation resistant properties of UHTCs are the most important reference datum for use. Thermo chemical theory provides a method to study the oxidation-resistant properties as another ripe way.
     In this thesis, the high temperature oxidation mechanism has been investigated by thermo chemical theory. The change of microstructures after high temperature oxidation has also been investigated. Regarding resultant phases and holes as generalized inclusion, the high temperature oxidation characteristic has been studied by micromechanics method.
     In order to investigate the high temperature oxidation mechanism, the high temperature oxidation experiments and tests of ZrB2+20vol%SiC(ZS1)、ZrB2+30vol%SiC(ZS2) compositions was done at 1800℃and different oxygen partial pressures ,and the numerical simulation was done by the thermodynamics software FactSage. The high oxidation mechanism was gained. The effects of oxidation resultant content on surface conformation was discussed which is in good agreement with experiment. By calculating compositions at different SiC content and oxygen partial pressures, we found a high SiC content is beneficial for oxidation resistance, but this phenomenon changed with reduced oxygen partial pressure because of the volatilization of SiO2. The proposed oxide layered structure was get with the oxygen partial pressures of the oxidation resultants, and SiC-depleted region is the decisive factor of oxidation resistant properties which was compared with experiment.
     The expending volume of resultant and the change of holes in SiC-depleted region were described at the base of conservation which includes reactant- resultants conservation and solid phase volume conservation. Regarding resultant phases and holes as generalized inclusion, the bad process of high temperature elasticity property was predicted by micromechanics. It was indicated that attenuation was controlled by phase transformation. The more SiC content at first, the bigger volume fraction with the elasticity property decreased rapidly.
引文
1 K.E.Wurste, H.W.Stone. Heating Environment Definition/Thermal Protection System Selection for the HL-20Journal of Spacecraft and Rockets. Aerodynamic.2003, 30(5):549~557
    2梁军,易法军.防热材料高温烧蚀-相变特性的细观研究.复合材料学报.2002,19(2):108~112
    3 OpekaM M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃Hypersonic Aaerosurfaces. Theoretical Considerations and Historical experience. 2004, 39 (19) :5887~5904.
    4韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展.固体火箭技术.2005,28(4):289~294
    5 Ron Loehman, Dale Zschiesche.Ultrahigh-Temperature Ceramics For Hypersonic Vehicle Applications. Ceramic Materials Dept. 2006,22(4):29~42
    6张文,王早.突破热障[J].国外科技动态. 1998(8): 30~31
    7周玉.陶瓷材料学(第二版)[M].科学出版社, 2004: 332~380
    8吴人洁.复合材料.天津大学出版社.2000:56~65
    9 Zhang Guo-Jun. Reactive Hot Pressing of ZrB2 Composites. J. Am. Ceram. Soc.2000, 83(9):2330~2332
    10 C. W. Ohlhorst, W. L. Vaughn. Arc Jet Results on Candidate High Temperature Coatings for NASA’S Nglt.Refractory Composite Leading Edge Task. NASA/Langley Research Center. 2004 (54):269~272
    11 C. B. Bargeron, R. C. Benson, R. W. Newman. Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100°C. Johns Hopkins APL Technical Digest. 1993, 14(1):29~36
    12 C. B. Bargeron, R. C. Benson. X-ray Microanalysis of a Hafnium Carbide Film Oxidized at High Temperature. Surface & Coatings Technology. 1998, 36(1):111~115
    13 G. R. Holcomb, G. R. Pierre. Application of a Counter-current Gaseous Diffusion Model to the Oxidation of Hafnium Carbide at 1200 to 1530℃. Oxidation of Metals. 1993, 40(1):109~118
    14 G. R. Holcomb. Countercurrent Gaseous Diffusion Model of Oxidation Througha Porous Coating. Corrosion (Houston). 1996, 52(7):531~539
    15 E. L. Courtright, J. T. Prater, G. R. Holcomb, G. R. Pierre., R. A. Rapp. Oxidation of Hafnium Carbide and Hafnium carbide with Additions of Tantalum and Praseodymium. Oxidation of Metals. 1991, 36(6):423~437
    16 R. Loehman, D. Zschiesche. Ultrahigh-Temperature Ceramics For Hypersonic Vehicle Applications.Ronald E. Loehman. Sandia National Laboratories. Ceramic Materials Dept. 2004,43(2):234~346
    17 M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman. S. Johnson. Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/silicon Carbide Ultra High Temperature Ceramics. Journal of Ournal of Materials Science. 2004, (39): 5925~5937
    18 S. R. Levine, E. J. Opila. Tantalum Addition to Zirconium Diboride for Improved Oxidation Resistance. NASA/TM. 2003, 212~483
    19 I. G. TALMY. High Temperature Corrosion and Materials Chemistry III. Electrochem. Soc. 2001, 12:144~149
    20潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀.腐蚀科学与防护技术.2000, 12(2):109~120
    21 Vaughn W L.Maohs H G. J.Am.Ceram.Soc.1990,73 (6) :1540
    22 ZhengZ,TresslerRE,SpearKE.J.Electrochem.Soc. 1990,1373 :854
    23武七德,童元丰.碳化硅材料的氧化及抗氧化研究.Ceramics Science&Art.2002(1):7~13
    24张伟刚,成会明,沈祖洪.碳材料抗氧化研究进展.碳素.1997(2):1~6
    25朱小旗.抗氧化碳/碳复合材料的制备性能及机理研究.西北工业大学博士论文.1995:34~36
    26 Park Soojin, SeoMinkang. The effects of MoSi on the oxidation behavior of carbon/carbon composites. Carbon.2001,(34):1229~1235
    27 Verde,Alida Bellosi.Effect of the addition of silicon nitride on sintering behaviour and microtructure of zirconium diboride.Scripta Materialia. 2002 ,(46):223~228
    28陈勇. ZrB2基超高温陶瓷材料性能的评价.哈尔滨工业大学硕士学位论文.2006:12~13
    29 J.W.Gibbs.On the Equilibrium of Hetergeneous Substances.Trans Connet. 2006,2(33):100~105
    30 G.N.Lewi,M.Randall.Thermodynamics and the Free Energy of Chemical Substances.NY.McGraw-Hill.2005:64~67
    31 S.R.Brinkley, H.J.Kandiner.Calculation of Equilibrium Composition of Systems of Many Constituents.J.Chem.Phys..1998,15(2):107~110
    32 H.J.Kandiner, S.R.Brinkley.Calculation of Complex Equilibrium Problem. Ind.Eng.Chem.1994,42(5):850~855
    33 W.B.White, S.M.John.Chemical Equilibrium in Complex Mixtures. J.Chem.Phys.1998,28(5):751~755
    34 F.J.Zeleznik,S.A.Gordon.General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance,and Chapman-Jouget Detonations.NASA TND-1454.1993:53~56
    35 S.A.Gordon,B.J.McBride.Computer Program for Calculation of Complex Chemical Equilibrium Compositions,Rocket Performance,Incident and Reflected Shocks and Chapman-Jouget detonations.NASA SP-273.1989:78~79
    36 L.V.Gurvich, I.V.Veitz.Thermodynamic Properties of Individual Substances. Fourth edition in 5 volumes, Hemisphere Pub Co.NY,L..1989,1(2):23~28
    37 M.W.Chase.NIST-JANAF Thermochemical Tables. Fourth Edition, J.Phys. Chem.Ref.Data, Monography.1998: 1951
    38 I.Barin,O.Knacke,O.Kubaschewski.Thermochemical Properties of Inorganic Substances.Springer-Verlag,Berlin,1977:99~103
    39 V.S.Iorish,G.V.Belov.On Quality of Adopted Values in Thermodynamic Databases.Netsu Sokutei.1997,24(4):199~205
    40 G.V.Belov,B.G.Trusov.Influence of Thermodynamic and Thermochemical Data ErrorsonCalculatedEquilibriumComposition,Ber.Bunsenges.Phys.Chem.v.1998,102(12):874~879
    41 K.Y.Upadhya, W.P.Hoffmann. Materials for Ultrahigh Temperature Structural Applications.Am.Ceram.Soc.Bull.1997,76(12):51~56
    42张文群,张振山.一种非理想多相共存体系平衡的通用计算方法.兵器材料科学与工程.2002,25(6):8~11
    43阎小俊,蒋德明.一种计算热化学平衡态的新算法.西安交通大学学报.2000,34(7):5~8
    44 A.K.Hoffman. Chemical equilibrium of ablation material including condensed species.NASA TND-5391.2007,23(6):62~69
    45田德余,刘剑波.化学推进剂计算能量学.长沙:湖南科技出版社.1999:33
    46杜建华,胡雪蛟,刘翔.最小能量函数法求解多元相平衡.大连理工大学学报.2001(41):1~4
    47 Gordon,S.Zeleznic.A General Method for Automatic Compution of Equilibrium Compositions and Theoretical Rocket Performance of Propellants.NASA TND-132,1999:78~85
    48 Gordon.Computer Program for Caculating Complex Chemical Equilibria,Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations, NASA SP-273:86~92
    49 Gordon.Computer Program for Caculating Complex Chemical Equilibrium Compositions and Applications,Supplement I-Transport Properties.NASA TM-86885.1996:321~323
    50 McBride, Gordon. Computer Program for Calculating and Fitting Thermodynamic Functions. NASA RP-1271.1992:567~572
    51 Zeleznic,Gordon.Caculation of Complex Chemical Equilibria.Industrial and Engineering Chemistry.1968(60):27~57
    52 Gordon.Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications.NASA-1311.1994:60~64
    53高盘良.物理化学学习指南.高等教育出版社,2002.8:26~50
    54 W.B.White,S.M.Johnson.Chemical Equilibrium in Complex Mixtures. J.Chem.Phys.1958,28(5):751~55
    55 F.J.Zelezink,S.A.Gordon.General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions,Rocket Performance,and Chapman-Jouget Detonations.NASA TND-1454.2003:96~102
    56 S.A.Gordon,B.J.McBride.Computer Program for Calculation of Complex Chemical Equilibrium Compositions,Rocket Performance,Incident and Reflected Shocks and Chapman-Jouget detonations.NASA SP-273.1998:56~63
    57熊金松,王玺堂.ZrB2在无机非金属材料gh中的应用现状.武汉科技大学学报.2006,29(3):229~230
    58王世忠,徐良瑛等.SiC单晶的性质、生长及应用.无机材料学报.1999,14(4):527~530
    59易法军,梁军,孟松鹤,杜善义.防热复合材料的烧蚀机理与模型研究.固体火箭技术.2000,23(3):50~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700