软土孔隙特征及其固结过程中变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土是工程建设中常见的天然地质材料,广泛分布于沿海、河流中下游及湖泊的三角洲地区,其物理力学性质非常复杂,具有含水量高、孔隙比大、压缩性高、强度低、渗透性差、结构性和流变性显著等特点,其中具有代表性的淤泥和淤泥质土,主要由极细的粘土颗粒、有机物、氧化物等固相物质和水组成。长期以来,人们主要从宏观层次研究软土的工程特性,唯像地解释软土不良的工程性质,难于揭示产生不良工程特性的物理机制和本质规律。本文通过实验,测试细颗粒软土固结过程的孔隙率、孔隙尺度分布等孔隙特征及其变化规律,分析软土固结特性的微观机理及其变化机制,为软土地基加固设计提供有价值的理论参考。
     本文开展的主要研究工作和取得的成果有如下几个方面:
     (1)综述了土体微结构测试技术的若干进展,介绍了土体微结构的常用测试方法,包括压汞法、气体吸附法、扫描电子显微镜分析法和CT法等。
     (2)试样制备方法研究。文中对不同的试样制备方法,包括风干法、烘干法和冻干法对软土孔隙特征试验的影响进行研究分析。研究表明,不同的试样制备方法对土体孔隙分布存在一定的影响,且试样的的含水率越高,影响越明显;风干法和烘干法制作试样会引起孔隙收缩,导致土体微孔隙特征的改变;而冻干法不引起孔隙收缩,对土体微孔隙特征的影响很小。因此,冻干法是制备测试软土孔隙特征试样的最佳方法,这一研究结果对土体孔隙特征测试的实验有重要指导作用。
     (3)天然软土的孔隙特征测试。分别对深圳软土、南沙软土和珠海软土进行了孔隙特征测试。从压汞试验测得的累积进汞量曲线,求得了各土样的退汞效率、总孔面积、平均孔径和曲折因子。试验结果表明,天然软土的孔隙主要分布范围是40nm~2.5μm,占土中总孔隙的80%以上,其中直径为500~1100nm的小孔隙占主要部分。
     (4)重塑软土的孔隙特征测试。分别对重塑深圳软土、重塑南沙软土和重塑珠海软土进行了孔隙特征测试。从压汞试验测得的累积进汞量曲线,求得了各土样的退汞效率、总孔面积、平均孔径和曲折因子。试验结果表明,重塑深圳软土的孔隙主要分布范围是40nm~2.5μm和10μm~34.4μm,占土中总孔隙的85.8%,其中直径为183nm的微孔隙占主要部分,重塑南沙软土和重塑珠海软土的孔隙主要分布范围是40nm~2.5μm,分别占土中总孔隙的52.8%和82.9%,其中重塑南沙软土直径为3187nm的小孔隙占主要部分,重塑珠海软土直径为1621nm的小孔隙占主要部分。将土重塑以后,土中大孔隙和中孔隙的含量明显增大,小孔隙的含量明显减小,微孔隙和超微孔隙的含量基本不变,同时软土经过重塑以后,渗透系数急剧增大。重塑软土中大孔隙和中孔隙的含量增大是土的渗透系数急剧增大的主要原因。
     (5)研究了掺加不同比例的膨润土的细颗粒土的微孔隙特征。试验结果表明,只要加入少量的膨润土便可使土体中大孔隙的数量急剧减少;随着膨润土的含量的增多,孔隙尺度分布逐渐发生变化,中孔隙的数量逐渐减少,小孔隙、微孔隙和超微孔隙的数量逐渐增多,峰值所对应的孔隙直径减小。在高岭土中加入不同比例的膨润土后,土的孔隙主要分布范围是40nm~2.5μm,占土中总孔隙的81%以上,其中直径为553~1313nm的小孔隙占主要部分。在石英中加入不同比例的膨润土后,土的孔隙主要分布范围是300nm~11μm,占土中总孔隙的78%以上,其中直径为1051~6037nm的小孔隙和中孔隙占主要部分。
     (6)不同荷载下固结的软土的孔隙特征测试。对于同一种土,孔隙比先随固结压力增大而显著降低,之后随着固结压力的增大,孔隙比缓慢减小,最后孔隙变化趋于稳定;随着固结压力的逐渐增大,曲折因子缓慢增大,平均孔径不断减小。对于重塑石英、深圳软土、南沙软土和珠海软土中的任何一种土样,随着固结压力的增加,较大尺度的孔隙(如大、中孔隙)的百分比有所减小,而小尺度孔隙(小、微、超微孔)的百分比则有所增加。上述结果说明,在压力作用下,较大尺度的孔隙被压碎分裂成较小尺度的孔隙。固结过程中较大孔隙先被压缩,较小的孔隙后被压缩。大尺度的孔隙向小尺度的孔隙转化,最终小尺度孔隙(小、微、超微孔)占据主导地位。
Soft soil is a kind of common natural materials for civil engineering, which is widely distributed in coastal areas, middle-lower reaches of rivers and lacustrine delta areas. Slit and mucky soil are the most typical ones that characterized with complex physical-mechanical properties, such as high water content, large void ratio, high compressibility, low strength, weak permeability, remarkable structural and rheological properties and so on. Slit and mucky soil are mainly composed of solid phase matter including tiny clay particles, organics, oxides, and water. The research of engineering characteristics of soft soil is still focus on macroscopic stage mainly for a long time, which is unable to reveal the mechanism and essential law of its inferior properties. Base on experimental study, this dissertation analyzes :the pore diameter and pore-scale distribution after consolidation and seepage characteristics of tiny-particle soft soil.
     The outline of the research tasks and achievements of this dissertation are listed as follows:
     (1) Some advances of testing methods in microstructure of soil were reviewed in this paper, the methods in common use for testing microstructure of soil are introduced, which include the mercury method, the gas-adsorption method, the scanning electron microscopy analysis method and computerized tomography method.
     (2) Sample preparation methods research. Based on different sample preparation methods, including air dry method, drying method and freeze dry method on soft soil characteristics of the influence of porosity test research and analysis. Research shows that different samples of soil preparation methods have a certain influence on the pore distribution, and the higher the moisture content of the samples, the more obvious influence; air dry method and drying method legal system for sample can cause pore contractive, led to the changes of character of soil micro pore; And freeze dry method not cause pore contractive, the soil micro pore features a little effect. Therefore, freeze drying is soft soil preparation of test sample the best method of pore characteristic, the findings of the pore characteristic of soil testing experiment is important guiding role.
     (3) Pore characteristic test of natural soft soil. This paper test the pore characteristic of Shenzhen soft soil、Nansha soft soil and Zhuhai soft soil. Mercury injection measured from the accumulation of test into mercury quantity curve, the soil samples obtained the retreat mercury efficiency, total aperture area, average aperture and twists factor. Test results show that the main natural soft soil pore distribution is 40nm ~ 2.5 muon m, accounting for soil more than 80 percent of the total pore diameter, among them the small pore between 500 ~ 1100nm is main parts.
     (4) Pore characteristic test of remolded soft soil. This paper test the pore characteristic of remolded Shenzhen soft soil、remolded Nansha soft soil and remolded Zhuhai soft soil. Mercury injection measured from the accumulation of test into mercury quantity curve, the soil samples obtained the retreat mercury efficiency, total aperture area, average aperture and twists factor. Test results show that the main pore distribution of remolded Shenzhen soft soil is 40nm ~ 2.5 muon m and 10 muon m ~ 34.4 muon m, accounting for soil more than 85.8 percent of the total pore diameter, among them the micro pore of 183nm is main parts.,the main pore distribution of remolded Nansha soft soil and remolded Zhuhai soft soil is 40nm ~ 2.5 muon Clay accounted for the total porosity 52.8 and 82.9%, among them the small pore of 3187nm is main parts of remolded Nansha soft soil,and the small pore of 1621nm is main parts of remolded Zhuhai soft soil. After reshape the soil, big porosity and pore content increased obviously , Small pore content is reduced obviously, micro pore and superfine pore content basically unchanged. Meanwhile soft soil after remodeling , the permeability coefficient increases dramatically . In remolded soft soil, big porosity and pore content increased is the main reason for the sharp increase of permeability of soils.
     (5) Study the micropore structure characteristics of the soil added with different bentonite content.The test results show that just adding a little bentonite can reduce the quantity of the large pore abruptly. With the increase of bentonite content, the pore-scale distribution changes gradually, the quantity of the middle pore increases, the quantities of the small pore , the micro-pore and the supermicro-pore increase gradually,and the pore diameter size corresponding the peak decreases.After kaolin added with different bentonite content, the main soil pore distribution is 40nm ~ 2.5 muon m, accounting for soil more than 81 percent of the total pore diameter, among them the small pore between 553 ~ 1313nm is main parts. After quartz added with different bentonite content, the main soil pore distribution is 300nm ~ 11 muon m, accounting for soil more than 78 percent of the total pore diameter, among them the small pore porosity and pore between 1051 ~ 6037nm is main parts.
     (6) Under different load of soft soil consolidation of pore characteristic test. For the same soil, porosity ratio reduced significantly as consolidation pressure increase at first, then with the increase of consolidation pressure, porosity ratio decreases slowly,finally the pore change remained stable; along with the consolidation pressure increases gradually, twists factor increases slowly, average aperture constantly decreases. To remolded quartz, shenzhen soft soil, nansha soft soil and zhuhai soft soil in any one kind of soil samples, as consolidation pressure increase, the percentage of large scale pore (such as big pore,pore) reduced, and the percentage of small scale pore (small pore, micro pore, utrasmall pore) increased. The above results indicate that under the action of the pressure, large scale pore crushed split into smaller scale of porosity, finally small scale pore (small and micro, utrasmall hole) hold dominant position.
引文
[1]张功新,真空预压加固大面积超软弱吹填淤泥土试验研究及实践[D].广州:华南理工大学, 2006.
    [2]谷任国,房营光.极细颗粒黏土渗流离子效应的试验研究[J].岩土力学, 2009b, 30(6): 1595-1598.
    [3]柴寿喜,王沛,韩文峰,等.高分子材料固化滨海盐渍土的强度与微结构研究[J].岩土力学, 2007, 28(6): 1067-1072.
    [4]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报, 1996, 4(1): 39-44.
    [5] Bazant Z. P., Ozaydin K. and Krizek R. J. Microplane model for creep of anisotropic clay[J]. Journal of Engineering Mechanics Division,ASCE, 1975, 101(EM1): 57-78.
    [6]高国瑞.中国红土的微结构和工程性质[J].岩土工程学报, 1985, 7(5): 10-21.
    [7]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报, 1990, 12(4): 1-10.
    [8]李生林,粘土结构、构造研究中的理论与实践课题[C].国际交流地质学论文集,第三册,北京:地质出版社,1985.
    [9]谭罗荣.土的微观结构研究概况和发展[J].岩土力学, 1983, 4(1): 73-86.
    [10]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报, 1988, 10(6): 80-87.
    [11]雷华阳.饱和软黏土固结变形的微结构效应[J].水利学报, 2004, (4): 91-95.
    [12]张敏江,阎婧,初红霞.结构性软土微观结构定量化参数的研究[J].沈阳建筑大学学报(自然科学版), 2005, 21(5): 455-459.
    [13]唐益群,张曦,周念清,等.地铁振动荷载作用下饱和软粘土性状微观研究[J].同济大学学报(自然科学版), 2005, 33(5): 626-630.
    [14]房后国,刘娉慧,袁志刚.海积软土固结过程中微观结构变化特征分析[J].水文地质工程地质, 2007, (2): 49-52.
    [15]李建红,沈珠江.结构性土的微观破损机理研究[J].岩土力学, 2007, 28(8): 1525-1550.
    [16]韩飞,赵瑞斌,张冬,等.天津滨海新区全新世湖沼相沉积土微观结构特征及定量化研究[J].天津城市建设学院学报, 2008, 14(3): 163-167.
    [17]周晖,房营光,禹长江.广州软土固结过程微观结构的显微观测与分析[J].岩石力学与工程学报, 2009, 28(S2): 3830-3837.
    [18] Casagrande, A., 1932. The structure of clay and its importance in foundation engineering. [J]. Journal of Boston Society of Civil Engineers 19 (4), 168-209.
    [19] Kubiena. W. L.,Micropedology [M]. Ames.Iowa. Collegiate Press. 1938.
    [20] Lambe T. The engineering behavior of compacted clay. [J]. Soil Mech. Found. Div. 1958. 84, 1655.1-1655.35.
    [21] H. B. Seed, and C.K.Chan.,“Structure and Strength Characteristics of Compacted Clays”, [J]. Soil. Mech. Found. Div. ASCE, Vol. 85, No. SM5(October)(1959).
    [22] Brewer.R.Fabric and Mineral analysis of Soils[M].New york.John Wiley&Sons.!964.
    [23]张宗枯.我国黄土显微结构的研究[J].地质学报,1964(3): 57-64.
    [24]高国瑞.兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1979(1):42-47.
    [25]高国端.中国黄土的微结构[J].科学通报,1980(20):945-948.
    [26]罗鸿禧,陈守义.湛江灰色粘土的工程地质特性[J].水文地质工程地质,1981, (05) 1-6.
    [27]谭罗荣,张梅英一种特殊土微观结构特性的研究[J].岩土工程学报1982 (2).28-37.
    [28]施祖元,曾国熙.原状土各向异性变形特性的微观结构[J].工程勘查,1988(3).90-96.
    [29]高国瑞.近代土质学[M].南京:东南大学出版社, 1990.
    [30]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学, 1987.12(B辑): 309-318.
    [31]杨运来.对湿陷性黄土一些特殊性质的研究,兰州大学学报(自然科学版),1987 (1). 124-132.
    [32]肖树芳.泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版化,1991.
    [33]吴义祥.工程粘性土微观结构的定量评阶[J].中国地质利学院院报.1991,23:143-150 .
    [34]刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(l):23-30.
    [35]胡瑞林,李向全等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995
    [36]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996(04):60-65
    [37]蒋明镜.结构性粘土的本构模型和土体逐渐破损分析[D].南京:南京水利科学研究院,1996.
    [38]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):6-8.
    [39]陈嘉鸥,叶斌,郭素杰.珠江三角洲粘性土微结构与工程特性初探[J].岩石力学与工程学报,2000,(5):132-136.
    [40]陈正汉,卢再华,蒲毅彬.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报,2001,(4):4-9.
    [41]王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,(2):41-46.
    [42]王冠英.不同地区海积软土前期固结压力与结构强度的关系及其成因分析[D].吉林:吉林大学,2004.
    [43]杨健.工程降水引发的地面沉降研究[D].北京:中国地质大学(北京),2005.
    [44]房后国.深圳湾结构性淤泥土固结机理及模型研究[D].吉林:吉林大学,2005.
    [45]许勇.饱和软土地基动力排水固结预处理技术的研究与应用[D].广州:广州大学,2006.
    [46]阿里哈桑.真空堆载联合预压软土地基加固机理研究[D].南京:河海大学,2005.
    [47]袁中夏,王兰民,邓津.电镜图像在黄土结构性研究中应用的几个问题[J].工程勘察,2005,(4):3-6.
    [48]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报,2006,(10):92-96.
    [49]梁健伟,房营光.极细颗粒黏土渗流特性试验研究[J].岩石力学与工程学报, 2010, 29(6): 1222-1230.
    [50]梁健伟.软土变形和渗流特性的试验研究与微细观参数分析[D].广州:华南理工大学,2010.
    [51]刘晓漩.软粘土等向固结过程中微观孔隙结构演化机制的定量研究[D].武汉:武汉理工大学,2010.
    [52]美国麦克仪器公司广州办事处.AutoporeΙV 9500压汞仪操作手册[M].广州:美国麦克仪器公司广州办事处,2007: 5-6.
    [53]孔令荣,黄宏伟,张冬梅,等.不同固结压力下饱和软粘土孔隙分布试验研究[J].地下空间与工程学报, 2007, 3(6): 1036-1040.
    [54]冯晓腊,沈孝宇.饱和黏性土的渗透固结特性及其微观机制的研究[J].水文地质工程地质, 1991, 18(1): 6-12.
    [55] Shear D L, Olsen H W, Nelson K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship fora natural clay[R]. Transportation research record, NRC, National Academy Press.Washington D C,1993: 1365-1370.
    [56] GB/T50123-1999,土工试验方法标准[S].北京:中国计划出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700