钢铁企业典型生产工艺颗粒物排放特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业在我国各工业部门中是废气污染环境的大户之一。全国钢铁企业每年废气排放量可达12000亿立方米左右,而颗粒物是钢铁企业废气排放中的重要污染物,对环境和人体的健康都有着非常重要的影响。因此,研究钢铁企业颗粒物排放特征,对于了解钢铁企业污染物排放规律,有效地控制和管理污染物排放,从技术和管理上根本推进钢铁行业污染物排放现状的改善都有着积极的意义。
     鉴于钢铁行业在国家工业行业中的典型性,本文选取了钢铁行业中的烧结和炼铁过程作为研究对象,在综合分析国内现有的研究状况和成果后,制定了详细的研究计划,并选取了国内具有一定规模且工艺设备和废气处理设备均比较典型的某钢铁企业进行实测,通过实测数据对颗粒物排放特征进行了相关的研究。
     本研究使用了以ELPI为主体的固定源可吸入颗粒物采样系统,此系统能捕集的最小粒径为0.03μm,最大粒径为10μm,同时经过本次实测验证,该采样系统能较好地覆盖钢铁行业典型工艺过程中排放的颗粒物粒径范围,可以有效地应用于钢铁企业污染物排放中的颗粒物采样测量。
     在正常工况下,实测烧结厂机头、机尾和炼铁厂出铁场三个排放点的烟(粉)尘排放浓度分别为:4.8 mg/m~3、9.93 mg/m~3、9.5mg/m~3,远低于国标规定的排放标准限值,排放状况良好。
     根据实测的排放浓度,本文计算了三个特征排放点的单位产品的烟(粉)尘产生量分别为:1.031 kg/t-烧结矿、6.490 kg/t-烧结矿、4.415 kg/t-铁,排放量分别为:0.026 kg/t-烧结矿、0.019kg/t-烧结矿、0.032kg/t-铁;并进一步研究了在分粒径上的单位产品颗粒物产生量和排放量,其中PM_(10)的产生量为0.528 kg/t-烧结矿、0.507 kg/t-烧结矿、0.209kg/t-铁,排放量为:0.025 kg/t-烧结矿、0.008 kg/t-烧结矿、0.016kg/t-铁;PM_(2.5)的产生量为0.451 kg/t-烧结矿、0.402kg/t-烧结矿、0.180kg/t-铁,排放量为:0.022 kg/t-烧结矿、0.007kg/t-烧结矿、0.014kg/t-铁。由此得出:在三个特征点烟(粉)尘产生量中PM_(10)的比例分别为51.23%、7.81%、4.74%,排放量中PM_(10)的比例分别为99.38%、43.20%、50.84%;在三个特征点烟(粉)尘产生量中PM_(2.5)的比例分别为43.73%、6.20%、4.09%;排放量中PM_(2.5)的比例分别为85.00%、36.46%、45.68%。这些数据反应了钢铁企业特征工艺排放的颗粒物中各粒径的比例,可作为计算钢铁行业污染物排放因子的基础参考数据。
     通过各点分级除尘效率研究得出,烧结厂机头颗粒物中PM_(2.5)、PM_(10)、烟(粉)尘的除尘效率为96.55%、96.56%、98.22%,机尾颗粒物中PM_(2.5)、PM_(10)、烟(粉)尘的除尘效率分别为98.30%、98.41%、99.71%,出铁场颗粒物中PM_(2.5)、PM_(10)、烟(粉)尘的除尘效率为93.20%、93.38%、99.39%,在本研究的所有点位上,除尘效率所体现出的规律均为PM_(2.5)<PM_(10)<烟(粉)尘。文中通过组分研究还归纳总结了不同组分对除尘效率的影响和贡献。
     钢铁企业排放的颗粒物粒径分布是有其显著特征的,烧结厂机头、机尾除尘器后PM_(2.5)在PM_(10)中的质量百分比为85.61%、84.38%,炼铁厂出铁场除尘器后PM_(2.5)在PM_(10)中的质量百分比为89.70%,即:钢铁企业典型工艺排放的颗粒物主要成分为PM_(2.5)。
     通过对三个特征点排放的颗粒物中的化学组分进行测试分析发现,各特征点主要的污染物组分大致相同,都含有Fe、Si、Ca、K、Al、Na元素,SO_4~(2-)、Cl~-和较高比例的有机碳。但各组分在各个点的含量排序不太相同,主要取决于各排放点对应的工艺及其相关参数的差异。
     通过上述由宏观至微观的研究,本文从颗粒物排放浓度及典型除尘设备的去除效率特征、颗粒物的粒径分布特征、颗粒物中各组分的分布特征三个方面归纳和总结了钢铁企业颗粒物排放的基本特征,为进一步研究钢铁企业污染物的排放因子和建立钢铁企业污染物排放清单提供了必要的理论基础。
The iron and steel industry is one of the major sources of waste gas pollution among each industrial department in China.The emission amount of waste gas from iron and steel enterprises every year adds up to 1,200 billion cubic meters,among which particulate is the major pollutant that exerts crucial influence on both environment and human health.Hence,the research of emission characteristics of particulates from iron and steel enterprises is of positive significance to understand the emission rules of pollutants from iron and steel enterprises,effectively control and manage pollutant emission,and technically and administratively promote the improvement on pollutant emission status of iron and steel enterprises.
     In the light of the typicality of iron and steel industry in national industries,the present paper selected the processes of sintering and iron-making in iron and steel industry as the object,fabricated detailed research plan after comprehensively analyzing the prior research status and outcomes, measured in certain enterprises having certain scale and typical processing apparatus and waste gas treatment apparatus,and researched the emission characteristics of particulates based on the measured data.
     The present research employed a fixed-source inhalable particulate sampling system mainly on ELPI with trapping particle size 0.03μm at minimum and 10μm at maximum.Verified by the measurement,the sampling system could better cover the particle size range of particulates from the typical process of iron and steel industry,and be effectively applied to the sampling and measurement of particulates from the iron and steel industry.
     Under normal conditions,the measured emission concentrations of dust from three emission points of machine head and machine tail of sintering plant and tapping field of iron-making plant were 4.8 mg/m~3,9.93 mg/m~3,and 9.5mg/m~3,far lower than the emission limits of National Standard, indicating a good emission result.
     According to the measured emission concentrations,the paper calculated the dust production amounts of unit product at the three characteristic emission points:1.031 kg/t sinter,6.490 kg/t sinter, and 4.415 kg/t iron,and emission amounts:0.026 kg/t sinter,0.019 kg/t sinter,and 0.032 kg/t iron, and further researched the particulate production amounts and emission amounts of unit product in terms of particle size,wherein the amounts of PM_(10) produced were 0.528 kg/t for sinter,0.507 kg/t sinter,and 0.209 kg/t iron,and the emission amounts of PM_(10) were 0.025 kg/t sinter,0.008 kg/t sinter,and 0.016 kg/t iron,and the production amounts of PM_(2.5) were 0.451 kg/t sinter,0.402 kg/t sinter,and 0.180 kg/t iron,and the emission amounts of PM_(2.5) were 0.022 kg/t sinter,0.007 kg/t sinter,and 0.014 kg/t iron.It was therefore concluded that the percentages of PM_(10) in production amount of dust at the three characteristic points were 51.23%,7.81%,and 4.74%,and those of PM_(10) in emission amount were 99.38%,43.20%,and 50.84%,and that the rates of PM_(2.5) in production amount of dust at the three characteristic points were 43.73%,6.20%,and 4.09%,and those of PM_(2.5) in emission amount were 85.00%,36.46%,and 45.68%.These data reflected the rate of each particle size in particulates from the characteristic process of iron and steel enterprises,and could be used as the basic reference data for calculating pollutant emission factors of the iron and steel industry.
     Based on the research of fractional collection efficiency at each point,the collection efficiencies of PM_(2.5),PM_(10),and dust in particulates from machine head of sintering plant were 96.55%,96.56%, and 98.22%,those from machine tail were 98.30%,98.41%,and 99.71%,and those from tapping field of iron-making plant were 93.20%,93.38%,and 99.39%.All of the points disclosed the rule of collection efficiency:PM_(2.5)<PM_(10)<dust.The paper also concluded the effect and contribution of different fractional collection efficiencies via fractional research.
     The particle size distribution of particulates from iron and steel enterprises had its own significant characteristic that the mass percentages of PM_(2.5) in PM_(10) after the dust collectors of machine head and machine tail of sintering plant were 85.61%and 84.38%,and that after the dust collector of tapping field of iron-making plant was 89.70%,i.e.,the major particulate from typical process of iron and steel enterprises was PM_(2.5).Judged from the chemical component analysis of the particulates from the three characteristic points,the major components of each characteristic point were substantially the same,all comprising Fe,Si,Ca,K,Al,Na,SO_4~(2-),Cl~-,and high-ratio organic carbon,but the contents of each component at each point varied in ordering,which was dependent on the process and related parameters corresponding to each emission point.
     Via the above research from macroscopically to microscopically,the present paper induced and concluded the basic characteristics of particulate emission of iron and steel enterprises from the three aspects covering the emission concentration of particulates and the collection efficiency characteristics of typical dust collectors,the particle size distribution characteristics of particulates, and the distribution characteristics of each component of particulates,thereby laying the necessary theoretical foundation for further researching the emission factors of iron and steel enterprises and establishing pollutant lists of iron and steel enterprises.
引文
[1]刘志强,陈纪玲.中国大气环境质量现状与趋势分析[J],电力环境保护,2007,23(1):23-27.
    [2]张红婴,刘伟.浅谈我国城市大气污染[J].硅谷,18.
    [3]陈建华,薄以匀等.北京市工业污染源大气污染物排放特征[J].工业安全与环保,2003,29(2):3-5.
    [4]《钢铁产业调整和振兴规划》,中华人民共和国国务院办公厅,2009.
    [5]刘铁男.钢铁产业发展政策指南[M].经济科学出版社,2005.
    [6]孙玉贤.中国钢铁强国不是梦[J].武汉冶金管理干部学院学报,2007,17(3):3-6.
    [7]韩剑宏.钢铁工业环保技术手册[M].化学工业出版社,2006.
    [8]肖娅珩.浅谈钢铁工业粉尘的治理与回收利用[J].江西冶金,2007,27(5):28-31.
    [9]朗晓珍,冶金环境保护及三废治理技术[M].东北大学出版社,2009.
    [10]吕建燚,李定凯.可吸入颗粒物研究现状及发展综述[J].环境保护科学,2005,31(128):5-8.
    [11]Whitby,K.T.The physical characteristics of sulfur aerosols.Atmos.Environ.1978(12):135-159.
    [12]韩志伟,张美根等.重庆市总悬浮颗粒物来源及分布特征[J],气候与环境研究.2000,5(1):45-50.
    [13]胡勇.空气中总悬浮颗粒物来源的研究[J],云南环境科学.1999,18(4):37-38.
    [14]王淑兰,柴发合等.成都市大气可吸入颗粒物来源解析研究[J],地理科学,2006,26(6):717-721.
    [15]赵越,潘钧,张红远等.北京地区大气中可吸入颗粒物的污染现状分析[J].环境科学研究,2004,17(1):67-69.
    [16]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境,2000(4):32-34.
    [17][美]J.H.塞思费尔德.空气污染-物理和化学基础[M].北京:科学出版社,1986.
    [18]蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态,2001(1):11-15.
    [19]邵龙义,杨书申等.大气颗粒物单颗粒分析方法的应用现状及展望[J].古地理学报,2005,7(4):536-548.
    [20]Berube K A.Electron microscopy of urban air borne particulate matter[J].Microscopy Anal,1997:11-13.
    [21]吴国平,胡伟等.室外空气污染对成人呼吸系统健康的影响[J].中国环境监测,2001,(17):33-38.
    [22]董兆举,潘小川等.皖西南农村地区空气污染水平调查[J].环境与健康,2001,18(5):286-288.
    [23]魏复盛,胡伟等.空气污染对儿童肺功能指标影响的初步分析[J].中国环境监测,2001:61-66.
    [24]Costa D L.Particulate matter and cardiopulmonary health:a perspective[J].Inhalation Toxicol,2000(12):35-44.
    [25]董雪玲.大气可吸入颗粒物对环境和人体健康的危害[J].资源·产业,2004,6(5):50-53.
    [26][英]得利克·埃尔森.烟雾警报-城市空气质量管理[M].北京:科学出版社.1999.
    [27]邵龙义,时宗波等.都市大气环境中可吸入颗粒物的研究[J].环境保护,2000(1):24-29.
    [28]王小刚,李海滨.燃烧源中可吸入颗粒物排放特征及测量方法的研究进展[J].能源环境保护,2006,20(2):14-18.
    [29]Glenn C England,Barbara Zielinska,Karl Loos,et al.Characterizing PM2.5 emission profiles for stationary sources:comparison of traditional and dilution sampling techniques.Fuel Processing Technology,2000,65-66:177-188.
    [30]易红宏.电厂可吸入颗粒物排放特征研究[D].北京:清华大学,2006.
    [31]Corio LA,Sherwell J.2000.In-stack condensable particulate matter measurements and issues.Journal of Air & Waste Management Association,50:207-218.
    [32]易帆,徐明厚等.燃烧过程中超细颗粒物的研究现状与发展趋势[J].世界科技研究与发展,2002,(2):57-63.
    [33]CEN,Evaluation of the designated CEN field tact procedure to demonstrate equivalence of sampling methods for the thoracic fraction of suspended particulate matter(SPM) with a reference sampling method for the thoracic fraction of SPM,Report No.CEN/TC264/WG6,CEN/Kommossion Reinhaltumg der Luft im VDI and DIN,Dusseldorf,Germany,vp,April 1966.
    [34]国家环境保护局.GB/T16157-1996.中华人民共和国国家标准——固定污染源排气中颗粒物测定与气态污染物采样方法.北京:中国环境科学出版社,1992.
    [35]Lesley L Sloss,Irene M Slnith.PM10 and PM2.5:an international perspective.Fuel processing Technology,2000,65-66:127-141.
    [36]S Win Lee.A new methodology for source characterization of oil combustion particulate matter.Fuel Processing Technology,2000,65-66:177-188.
    [37]Hidemann L M,Cass G R,Markowski G R.1989.A dilution stack sampler for collection of organic aerosol emissions:design,characterization and field tests.Aerosol Science and Technology,10:193-204.
    [38]Hidemann L M,Markowski G R,Cass G R.1991.Chemical composition of emissions from urban sources of fine organic aerosol.Environmental Science & Technology,25:744-759.
    [39]Waston J G,Chow J C,Houck J E.2001.PM2.5 chemical source profiles for vehicle exhaust,vegetative burning,geological material,and coal burning in Northwestern Colorado during 1995.Chemosphere,43:1141-1151.
    [40]Fine P M,Cass G R,Simoneit B R T.2001.Chemical characterization of fine particle emissions from fireplace combustion of wood grown in the northeastern United States.Environmental Science & Teclmology,35:2665-2675.
    [41]Hinds W C.Properties,behaviors and measurement of airborne particles.Aerosol Technology,1982,424.
    [42]施泽明,倪师军等.城市环境近地表大气尘研究的意义及进展[J].广东微量元素科学,2007,14(2):1-5.
    [43]易红宏,郝吉明等.电厂除尘设施对PM10排放特征影响研究[J].环境科学,2006,27(10):1921-1927.
    [44]高翔鹏,徐明厚等.燃煤锅炉可吸入颗粒物排放特性及形成机理的试验研究[J].中国电机工程学报,2007,27(17):11-17.
    [45]唐小玲,毕新慧等.不同粒径大气颗粒物中有机碳(UC)和元素碳(EC)的分布[J].环境科学研究,2006,19(1):104-108.
    [46]王淑兰,柴发合等.北京市不同尺度大气颗粒物元素组成的特征分析[J].环境科学研究,2005,15(4):10-12.
    [47]薄以匀,北京市火电厂排放颗粒污染物的粒径分布[J].过程工程学报,2004,4(增刊):766-771.
    [48]黄伟,骆仲泱等,电厂排放烟气中的小颗粒分布及多环芳烃研究[J].能源与环境,2003,(2):29-32.
    [49]龙正伟,姚强等,用ELPI测量颗粒物的分级荷电量[J].工程物理学报,2006,27(2):354-356.
    [50]岳勇,陈雷等,燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J].中国电机工程学报,2005,25(18):74-79.
    [51]刘道清,季学李,钢铁企业典型污染源颗粒物污染特征研究[J].环境科学与管理,2006,31(4):53-55.
    [52]姜兆春,汪安璞,北京大气悬浮颗粒物中的硫的化学状态[J].环境化学,1982,1(4):292-295.
    [53]吴成宝,胡小芳等,我国大气颗粒物表征研究进展[J].广州环境科学,2006,21(2):1-5.
    [54]郭璇华,高瑞英等,大气颗粒物中无机元素特性的研究[J].环境科学与技术,2006,29(6):49-51.
    [55]刘燕,贺克斌,珠江三角洲大气颗粒物研究进展[J].环境保护科学,2006,32(5):1-4.
    [56]Zhuang,H.,Chan,K.K.Size distributions of particulate sul-fate,nitrate,and ammonium at a coastal site in Hong Hong.Atmospheric Environment 1999,33:843-853.
    [57]仇志军,王基庆,上海市钢铁工业尘单颗粒分析[J].核技术,2001,24(6):461-467.
    [58]陶俊,陈刚才等,重庆市大气总悬浮颗粒物中有机碳和元素碳污染特征[J].过程工程学报,2004,4(增刊):760-765.
    [59]MoisioM,LaitinenA,Hautanen J,et al.Fine particle size distributions of seven different combustion power plants[J].J AerosolSci.,1998,29(S1):S459-S460.
    [60]Terttaliisa Lind,Jouni Hokkinen,Jonnak.Jokiniemi.Electrostatic precipitator collection efficiency and trace element emissions from co-combustion of biomass and recovered fuel in Fluidized-bed combustion[J].Environ.Sci.Technol.,2003,37(12):2842-2846.
    [61]Thomas Ferge,Jurgen Maguhn,Hannes Felber,et al.Particle Collection efficiency and particle re-entrainment of an Electrost(?)tica precipitador in a Newage sludge incineration plant.[J].Environ.Sci.& Technol.2004,38(5):1545-1553.
    [62]Marko Marjamaki,Jorma Keskinen,Da-Ren Chen,et al.Performance evaluation of the electrical low-pressure impactor[J].J.AerosolSci.,1999,31(2):249-261.
    [63]Dekati Ltd.10LPM impactor data sheet.Dekati Ltd,Finland,2003.
    [64]余学春,贺克斌等.气溶胶水溶性无机物及有机物的离子色谱测定[J].环境化学,2004,23(2):218-222.
    [65]许绿薇,李培省等.分级采样测定污染源颗粒物排放的探讨[J].安全,2002,(3):13-15.
    [66]国家环境保护局科技标准司.工业污染物产生和排放系数手册[M].中国环境科学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700