溅射铜和铜合金薄膜的微观结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路制造工艺的发展,铜由于具有低的电阻率和较高的抗电迁移能力而逐渐取代了铝作为互连线材料。当互连线特征尺寸减小到0.5μm以下,相比于互连线材料本身的固有性能,互连线的微观结构对互连线的性能以及可靠性的影响越来越大。合金化作为一种常用的控制薄膜结构,改善薄膜性能的方法引起了越来越多的人的注意。铜合金薄膜的基础研究对预测和改善铜互连线特性,提高未来高性能硅基集成电路可靠性具有指导意义。
     本研究自制嵌镶组合铜合金靶材,优化制备参数,采用磁控溅射法在不同基底上制备Cu(Cr)和Cu(Zr)合金薄膜,研究Cr、Zr合金掺杂对溅射Cu薄膜微观组织结构及性能的影响。这些研究不仅为Cu(Cr)和Cu(Zr)合金薄膜在微电子领域的应用提供新的支持,而且对设计和开发适合电子材料用的高强度高导电铜合金薄膜具有指导意义。
     结合磁控溅射仪特点,自制Cu1-xMx(M=Cr, Zr)嵌镶组合靶材。通过溅射法分别制备不同合金含量的Cu1-xMx(M=Cr, Zr, x<0.05,原子百分比)薄膜。合金薄膜纯度高,成分可控;且制备工艺简单,能够随时调节合金含量,为不互溶铜合金薄膜的制备提供了一种设计思路。
     改变溅射气压P和靶材与基底之间的距离(镀距)D,研究了溅射参数P、D,合金掺杂以及退火温度对溅射铜薄膜织构的影响。铜薄膜(111)织构随溅射气压P和镀距D的增加先升高而后下降。在溅射气压为0.5 Pa,镀距为200 mm时,溅射铜薄膜具有最强的(111)织构,且晶粒细小,薄膜致密度和平整度高。硅基底铜薄膜最终的生长织构不仅与薄膜表面能(界面能)有关,而且与体系的应变能有关。Cr、Zr合金掺杂显著提高硅基底溅射铜薄膜的(111)织构,并且在一定范围内合金薄膜的(111)织构随退火温度的升高而升高。合金薄膜(111)织构的增强与薄膜晶粒的细化、界面能增大有关,同时它们也涉及到内应力的变化。
     系统研究退火过程中Cu(2.6 at.%Cr)合金薄膜的微观组织结构演变。Cu(Cr)薄膜中晶粒的明显长大发生在450℃左右,薄膜晶粒尺寸呈现双峰分布。退火后合金薄膜内并没有明显的Cr相析出,Cu(2.6 at.%Cr)薄膜的双峰晶粒尺寸分布与Cu晶粒的择优生长有关。
     薄膜横截面透射电镜结果表明,退火后的纯Cu薄膜呈现粗大的竹节状晶粒结构,薄膜在膜/基界面处发生明显的晶界沟槽化。相比之下,退火态Cu(2.6 at.%Cr)合金薄膜晶粒为细小柱状晶,薄膜结构符合典型的PVD薄膜结构区域模型(Structural Zone Model)。Cr掺杂显著阻碍了薄膜的晶粒长大,有效抑制了退火Cu薄膜的晶界沟槽化。相比于纯Cu薄膜,Cu(Cr)合金薄膜中{111}孪晶界密度显著增加,孪晶宽度和孪晶片间距明显减小,平均的孪晶片间距约为6 nm。统计结果表明Cu(Cr)合金薄膜的孪晶界密度约为18.6×108 m2/m3,是纯Cu薄膜的20倍。Cu(Cr)薄膜中高密度纳米孪晶的形成与薄膜内应力的增加以及薄膜<111>取向晶粒的择优生长有关。退火后Cu(2.6 at.%Cr)合金薄膜的硬度和弹性模量远高于纯Cu薄膜,而退火电阻率与纯Cu薄膜接近。
     考察磁控溅射硅基底Cu、Cu(Cr)以及Cu(Zr)合金薄膜在退火过程中的形貌以及微观组织结构演变后可知,500℃退火时,Cu膜在硅基底上发生团聚,薄膜与基底之间发生明显的扩散和反应。Cr掺杂细化了退火铜薄膜的晶粒,抑制了薄膜的晶界团聚,提高了硅基底Cu薄膜的热稳定性。相反,Zr掺杂加速了铜薄膜与硅基底的扩散与反应,降低了硅基底铜薄膜的热稳定性。Cu(Zr)薄膜低的热稳定性与Zr掺杂对硅基底表面的“净化效应”有关。Cu(Cr)薄膜的退火电阻率与纯Cu膜相近。而Cu(Zr)薄膜由于界面铜硅化合物的形成,电阻率急剧上升。
     与Si基底相反,SiO2基底上的Cu(Zr)薄膜退火时,Zr向薄膜/基底界面偏聚,形成有效的富Zr界面阻挡层,阻碍了薄膜与基底间的扩散,提高了薄膜的热稳定性。界面阻挡层的形成与二元铜合金体系中掺杂元素的种类和含量有着密切的关系。
     Cr合金掺杂显著提高Cu导线的抗电迁移性能。相同条件下,Cu(Cr)导线的电迁移寿命是Cu导线的10-100倍。Cu(Cr)合金导线的抗电迁移性能的提高与退火后合金元素在薄膜表面(界面)的富集、薄膜晶粒{111}纳米孪晶界密度的增加以及(111)织构的增强有关。
As the development of the manufacture techniques for integrated circuits, Cu has replaced Al as the interconnect material owing to its low resistivity and high electromigration resistance. However, microstructure control is becoming increasingly important as interconnect line-widths decrease below 0.5μm, because performance and reliability become more critically affected by specific microstructure than by average bulk properties. Much attention has been paid to the method of alloying, which could both control the microstructure and improve the properties of thin films. The basic researches of Cu alloy films play an important role in predicting the performance of Cu interconnects, optimizing the damascene technology and enhancing the reliability of Si-ICs.
     In this study, Cu(Cr) and Cu(Zr) films were deposited by magnetron sputtering by using the mosaic structure target with optimizing parameters. Effects of the Cr and Zr dopants on the microstructure and properties of Cu films were investigated. The research results could provide a guideline not only for the expanded application of Cu(Cr) and Cu(Zr) alloy films, but also for the design and the developmentof Cu alloy films with high strength and electrical conductivity.
     The Cu1-xMx(M=Cr, Zr) alloy targets with the mosaic structure were originally designed and manufactured. Cu1-xMx(M=Cr, Zr, x<0.05, at.%) alloy films with different thickness and composition were deposited on Si(100) substrates by using our mosaic structure target. The composition of alloy films with high purity is in control. Results presented here provide a new method for magnetron sputtering Cu film contain insoluble substances.
     Effects of the sputtering pressure P, the distance between the target and the substrate D, the alloying dopant and the annealing temperature on the texture and morphology of films were investigated. The (111) texture, as the increase of D and P, increases first and decreases subsequently. When the P is 0.5 Pa and the D is 200 mm, the films have the strongest (111) texture and the fine morphology. The texture of sputtered films is determined by both the surface energy and the strain energy of the system. In a certain range of temperature, Cr or Zr dopant increases the (111) texture of Cu films, which is related with the refinement of grains in alloy films and the increase of internal stress of alloy films.
     Evident grain growth in Cu(2.6 at.%Cr) alloy films occurs at the temperature above 450℃. After annealing at 450℃, Cu(Cr) alloy films exhibit a bimodal grain size distribution with fine grains. Annealing at higher temperatures results in an abnormal grain growth. No evident Cr precipitates are found in Cu(Cr) alloy films after annealing. The bimodal grain size distribution is considered to be ascribed to the growth of favorably oriented grains.
     Cross-section TEM images show that the annealed Cu films exhibit a‘bamboo’grain structure, and grain boundary grooves have formed at the film/substrate interface. By contrast, a typical columnar structure can be seen in Cu(Cr) alloy films, which is in good agreement with the structure zone model. Cr dopant inhibits the grain growth and the grooving process in annealed Cu films. Moreover, an extremely high density of {111} twin boundary is found in Cu(Cr) alloy films, in which the estimated twin spacing and twin lamella are about 6 nm. The twin boundary density in Cu(Cr) films is about 18.6×108 m2/m3, which is 20 times as much as that of annealed Cu films. The formation of nano-twin is related with the internal stress and the preferential <111>-orientated grain growth. As a result, the hardness and young’s modulus of alloy films increase markedly, without degrading the conductivity much after annealing.
     After annealing at 500℃, Cu films agglomerate on Si(100) substrates because of the significant grain growth. However, Cr dopant refines the grains, inhibits the agglomeration and enhances the thermal stability of Cu films on Si(100) substrates. In contrast, Zr dopant accelerates the diffusion and reaction between the Cu film and the Si(100) substrate and degrades the thermal stability of Cu films, which are related with the‘purifying effect’of Zr. As a result, the final resistivity of Cu(Cr) films is approached to that of Cu films, while the resistivity of Cu(Zr) films increases sharply after annealing.
     On the contrary, for the Cu(Zr) films on SiO2 substrates, Zr segregates at the film/substrate interface, thus, an effective Zr-rich layer at the interface is formed, which inhibits the diffusion between the film and the substrate. As a result, the thermal stability and adhesion between the film and the substrate are improved. The formation of the interfacial barrier layer is depended on the alloying element and its content in alloy films.
     Cr dopant improves the electromigration resistance remarkably. The electromigration lifetimes of Cu(Cr) lines are 10-100 times longer than those of Cu lines. The improvement of electromigration resistance of Cu(Cr) alloy lines is related with the segregation of Cr on the film surface, the increase of {111} twin boundaries density and the Cu(111) texture of alloy lines.
引文
[1] Murarka S. P. Multilevel interconnections for ULSI and GSI era. Materials Science and Engineering R: Reports, 1997, 19 (3-4): 87-151.
    [2] Sinha A. K., J. A. Coopper Jr., Levinstein H. J. Speed Limitations due to Interconnect Time Constants in VLSIIntegrated Circuits. IEEE Electron DeviceLetters, 1982, (4): 90-92.
    [3] Murarka S. P. Transition Metal Silicides. Ann. Rev. Mater. Sci., 1983, 13: 117-137.
    [4]王阳元,康晋峰.超深亚微米集成电路中的互连问题-低K介质与Cu的互连集成技术.半导体学报, 2002, 23 (11): 1121-1134.
    [5] Chien-Tai Lin, Kwang-Lung. Lin. Preparation of Cu1?xTax films and the material interaction in the Si/Cu1?xTax/Cu structure. Mater. Chem. Phys., 2003, 82: 306-315.
    [6] Lanford W. A., Ding P. J., Wang W. Low-temperature passivation of copper by doping with Al or Mg. Thin Solid Films, 1995, 262 (1-2): 234-241.
    [7] Lee W. H., Cho H. L., Cho B. S. Diffusion barrier and electrical characteristics of a self-aligned MgO layer obtained from a Cu(Mg) alloy film. Appl. Phys. Lett., 2000, 77(14): 2192-2194.
    [8] Atford T. L., Daniel Adams, N. D. Theodore, Laursen T., Kim M. J. Influence of interfacial copper during the dealloying and nitridation of Cu-Ti films. Mater. Chem. Phys., 1996, 46: 248-251.
    [9] Clevenger L. A., Arcot B., Ziegler W. Interdiffusion and phase formation in Cu(Sn) alloy films. J. Appl. Phys., 1998, 83 (1): 90-99.
    [10] Wang H., Zaluzec M. J., Rigsbee J. M. Microstructure and mechanical properties of sputter-deposited Cu1-xTax alloys. Metall. Mater. Trans. A, 1997, 28 (4): 917-925.
    [11]克里斯托弗.D.托马斯,瓦莱丽. M.迪宾.用于集成电路的铜合金互连线及其制造方法.英特尔公司, 2005,公开号:CN1575508A.
    [12]赵继业,杨旭.纳米级工艺对物理设计的影响.中国集成电路, 2008, 8 (111): 39-47.
    [13]刘洪图,吴自勤.超大规模集成电路的一些材料物理问题(1)-Cu互连和金属化物理.物理, 2001, 30 (12): 757-761.
    [14]吴德馨.迈向二十一世纪德集成电路.世界科技研究与发展, 1999, 21 1-4.
    [15] J. R. Lloyd, J. Clements, R. Snedeb. Copper Metallization Reliability. Microelectronics Reliability, 1999, 39: 1595-1602.
    [16] Murarka S. P., Hymes S. W. Copper metallization for ULSI and beyond. Critical Reviews in Solid State and Materials Sciences, 1995, 20 (2): 87-124.
    [17] Torres J., Mermet J. L., Madar R., Crean G., Gessner T., Bertz A., Hasse W., Plotner M., Binder F., Save D. Copper-based metallization for ULSI circuits. Microelectronic Engineering, 1996, 34 (1): 119-122.
    [18] Edelstein D., Heidenreich J., Goldblatt R., Cote W., Uzoh C., Lustig N., Roper P., McDevitt T., Motsiff W., Simon A., Dukovic J., Wachnik R., Rathore H., Schulz R., Su L., Luce S., Slattery J. Full copper wiring in a sub-0.25μm CMOS ULSI technology. Electron Devices Meeting, IEDM '97. Technical Digest., International, 1997, 773-776.
    [19] Murarka S. P., Gutman R. J., Kaloyeros A. E., Lanford W. A. Advanced multilayer metallizati- on schemes with copper as interconnection metal. Thin Solid Films, 1993, 236 (1-2): 257-266.
    [20] Alvin L., Loke S., Jeffrey T. Wetzel, Paul H. Townsend, Tsuneaki Tanabe, Raymond N. Vrtis, Melvin P. Zussman, Devendra Kumar. Kinetics of copper drift in low-k polymer interlevel dielectrics. IEEE Transaction Electronics, 1999, 46 (11): 2178-2187.
    [21] Istratov A.. A., Flink C., Hieslmair H., McHugo S. A., Weber E. R.. Diffusion, solubility and gettering of copper in silicon. Mater. Sci. Eng. B, 2000, 72: 99-104.
    [22] Ching-Yu Yang, Jeng. S. J., Chen J. S. Grain Growth Agglomeration and Interfacial Reaction of Copper Interconnects. Thin Solid Films, 2002, 420-421: 398-402.
    [23] Hu C-K., Harper J. M. E. Copper interconnections and reliability . Mater. Chem. Phys., 1998, 52: 5-16.
    [24] Murarka S. P., Neirynck J. M., Lanford W. A., Wang W., Ding P. J. Copper Interconnection Schemes: Elimination of the Need of Diffusion Barrier/Adhesion Promoter by the Use of Corrosion-Resistant Low-resistivity-doped Copper. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 2335: 80-90.
    [26] Li J., Mayer J. W., Colgan E. G. Oxidation and Protection in Copper and Copper Alloy Thin Films. J. Appl. Phys., 1991, 71 (5): 2820-2827.
    [27] Itow H., Nakasakiy. Y., Minamihaba G., Suguro K., Okano H. Self-aligned passivation on copper interconnection durability against oxidizing ambient annealing. Appl. phys. lett., 1993, 63 (7): 934-936.
    [28] Ding P. J., Wang W., Lanford W. A. Thermal Annealing of Buried Al Barrier Layers to Passivate the Surface of Copper Films. Appl. Phys. Lett., 1994, 65 (14): 1778-1780.
    [29]王晓震,王二敏,赵新清.离子注入铜膜后的氧化行为.航空材料学报, 1999, 19 (4): 22-26.
    [30]陈苏,张楷亮,宋志棠,封松林.多层互连工艺中铜布线化学机械抛光研究进展.半导体技术, 2005, 30 (8): 21-24.
    [31]宋登元,宗晓萍,孙荣霞,王永青.集成电路铜互连线及相关问题的研究.半导体技术, 2001, 26 (2): 29-32.
    [32] Yuan Z. L., Zhang D. H., Li C. Y., Prasada K., Tan C. M., Li. J. Tang. A New Method for Deposition of Cubic Ta Diffusion Barrier for Cu Metallization. Thin Solid Films, 2003, 434 (1-2): 126-129.
    [33] Rosenberg R., Tu K. N. Mass Transport in Layered Polycrystalline Thin Films. Thin Soild Films, 1972, 13: 163-167.
    [34] Reid J. S., Liu R. Y., Paul M. S., Ruiz R. P., Nicolet M-A. W-B-N diffusion Barriers for Si/Cu Metallizations. Thin Solid Films, 1995, 262 218-223.
    [35] Kohn A., Eizenberg M., Shacham-Diamand Y. Evaluation of electroless deposited Co(W,P) thin films as diffusion barriers for copper metallization. Microelectronic Engineering, 2001, 55 297-303.
    [36] Nicolet M-A. Diffusion barriers in thin films. Thin Solid Films, 1978, 52 (3): 415-443.
    [37] Reid J. S., Kolawa. E., Garland C. M., Nicolet M-A., Cardone F., Gupta D., Ruiz R. P. Amorphous (Mo Ta or W)-Si-N diffusion barriers for Al metallization. J. App. Phys., 1996, 79 (2): 1105-1119.
    [38] Kim S-H, Oh. S-S., Kim K-B, Kang D-H, Li W. M, Marko H. S. Atomic-layer-deposited WNxCy Thin Films as Diffusion Barrier for Copper Metallization. Appl. Phys. Lett., 2003, 82 (25): 4486-4488.
    [39]沃森J. L.,克恩W.薄膜加工工艺[M]. 1st ed.北京:机械工业出版社, 1989.
    [40]张国海,夏洋.,龙世兵,钱鹤. ULSI中铜互连线技术的关键工艺.微电子学, 2001, 31(2): 146-149.
    [41]田民波,刘德令.薄膜科学与技术手册(上册)[M]. 1st ed.北京:机械工业出版社, 1991.
    [42] H. Fujiyama, T. S., T. Endo. Effect of O2 gas partial pressure on mechanical properties of SiO2 films deposited by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A, 2002, 20(2): 356-361.
    [43] Movchan B. A., Demchishin A. V. Investigations of the structure and properties of thick Ni, Ti, W, Al2O3 and ZrO2 Vacuum Condensates. Fizika Metalov i Metalovedenije, 1969, 28 (4).
    [44] Gignac L. M., Rodbell K. P., C. Cabral Jr., Andricacos P. M., Rice R. B., Beyers P. S., Locke S. J. Characterization of Plated Cu Thin Film Microstructures. Mat. Res. Soc. Symp. Proc., 1999, 564 373-378.
    [45] Detavernier C., Deduytsche D., Meirhaeghe Van R. L., Baerdemaeker De J., Dauwe C. Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett., 2003 82 (12): 1863-1865.
    [46] Petrov I., Barna P. B., Hultman L. Microstructural evolution during film growth. J. Vac. Sci. Techno. A, 2003, 21 (5): S117-S128.
    [47]毛卫民,张弘.大规模集成电路的织构效应.北京科技大学学报, 2000, 22 539-542.
    [48] Lee W. H., Ko Y. K., Jang J. H., Kim C. S., Reucroft P. J., Lee J. G. Microstructure control of copper films by addition of mo in an advance metallization. J. Electro. Mater., 2001, 30 (8): 1042-1048.
    [49] W-M. Kusche,A. Kreschman, R.-M. K. Texture of Thin Films. J. Mater. Res., 1998, 13 (10): 2962-2968.
    [50] Barmak K., Gungor A., Cabral Jr C., Harper J. M. E. Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity. J. Appl. Phys., 2003, 94 (3): 1065-1616.
    [51] Tamura S., Carpenter H. C., Experiments on the Production of Large Copper Crystals. Proceedings of the Royal Society A, 1926, 113: 28-43.
    [52] Tamura S., Carpenter H. C., The Formation of Twinned Metallic Crystals. Proceedings of the Royal Society of London. Series A, 1926, 113 (763):161-182.
    [53] Fuman R. L. Crystallography and Interfacial Free Energy of Noncoherent Twin Boundaries in Copper. J. Appl. Phys., 1951, 22: 456-460.
    [54] Lu L., Shen Y. F., Chen X. H, Qian L. H, Lu K. Ultrahigh Strength and High Electrical Conductivity in Copper . Science, 2004, 304: 422-426.
    [55] Wu B. Y. C., Ferrera P. J., Schuh C. A. Nanostructured Ni-Co alloys with tailorable grain size and twin density. Metall. Mater. Trans. A, 2005, 36:1927-1936.
    [56] Yang N. Y. C., Headley T. J., Kelly J. J., Hruby J. M.. Metallurgy of high strength Ni–Mn microsystems fabricated by electrodeposition. Scr. Mater., 2004, 51:761-766..
    [57] Lu L., Schwaiger R., Shan Z. W., Dao M., Lu K., Suresh S. Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 2005, 53:2169-2179.
    [58] Liu L. X., Chen X. H. Lu L. Strain Rate Sensitivity of Ultrafine-Grained Cu With Nanosized Twins. Acta Metall. Sin. (Engl. Lett.), 2006, 19 (5):313-318.
    [59] Chen X. H., Lu. L., Lu K., Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys., 2007, 102: 0837081-7.
    [60] Zhang X., Wang H., Chen X. H., Lu L., Lu K., Hoagland R. G., Misra A. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett.,2006, 88:1731161-3.
    [61] Hall P. M., Morabito J. M., Poate. J. M. Diffusion mechanisms in the Pd/Au thin film system and the correlation of resistivity changes with Auger electron spectroscopy and Rutherford backscattering profiles. Thin Solids Films, 1976, 33:107-134.
    [62]张树人,陈国良,郭太良.高性能导电薄膜的制备.真空, 2007, 44 (3): 24-27.
    [63] Alford T. L., Jaquez E. J., Theodore N. David, Russell S. W., Diale M., D. Adams, Simone Anders. Influence of interfacial copper on the room temperature oxidation of silicon. J. Appl. Phys., 1996, 79 (4): 2074-2078.
    [64] Liu C. S., Chen L. J., Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films onatomically cleaned (11 I)Si. II. Oxidation of silicon catalyzed by Cu3Si at room temperrature. J. Appl. Phys., 1993, 74 (9): 5507-5509.
    [65] Liu C. S., Chen L. J., Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on atomically cleaned (il11)Si. I. base formation and interface structure. J. Appl. Phys., 1993, 74 (9): 5501-5506.
    [66] Harper J. M. E., Charai A., Stolt L., d'Heurle F. M., Fryer P. M. Room-temperature oxidation of silicon catalyzed by Cu3Si. Appl. Phys. Lett., 1990, 56 (25): 2519-2521.
    [67] Cros A., Aboelfotoh M. O., Tu K. N. Formation, oxidation, electronic, and electrical properties of copper silicides. J. Appl. Phys., 1990, 67 (7): 3328-3336.
    [68] Chang C.-A. Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111). J. Appl. Phys., 1990, 67 (1): 566-569.
    [69] Benouattas N., MosseA. r, Raiser D., Faerber J., Bouabellou A.. Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Applied Surface Science, 2000, 153: 79-84.
    [70] Benouattas N., Mosser A., Bouabellou A. Surface morphology and reaction at Cu/Si interface—Effect of native silicon suboxide. Appl. Sur. Sci., 2006, 252: 7572-7577.
    [71] Lanford W. A., Ding. P. J., Wang W., Hymes S., Murarka S. P. Alloying of copper for use in microelectronic metallization. Mater. Chem. Phys., 1995, 41 (3): 192-198.
    [72] Black J. R. Physics of Electromigration. Proc. of the IEEE Int. Reliab. Phys. Symp. C, 1974, 12: 142-149.
    [73] Hu C.-K., Rodbell K. P., Sullivan T. D., Lee K. Y., Bouldin D. P. Electromigration and stress induced voiding in fine AI and AI-alloy thin-film lines. IBM J. RES. DEVELOP, 1995, 39 (4): 465-497.
    [74] Attardo M. J., Rosenberg R. Electromigration damage in Aluminum film conductors. J. Appl. Phys., 1970, 41 (6): 2381-2386.
    [75] Gangulee A, D'heurle F. M. H. F. M. Effects of alloy additions on electromigration failure in thin Al films. Appl. Phys. Lett., 1971, 19 (3): 76-77.
    [76] Blatt F. J. Physics of electronic conduction in solids. McGraw-Hill, New York, 1968.
    [77] Yousuke Koike, Inase T., Takayama S. J. Temperature Dependence of Internal Stress and Crystal Growth of Dilute Cu Alloy Films. Solid State Phenomena, 2007, 127: 147-152.
    [78] Y. K. Ko, Jang. H. J., Lee S., Yang H. J., Lee W. H., Reucroft P. J., Lee J. G.. Effects of molybdenum, silver dopants and a titanium substrate layer on copper film metallization. J. Mater. Sci. 2003, 38: 217-222.
    [79] Gungor A., Barmak K., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) allow thin films. J. Vac. Sci. Techno. B: Microelectronics and Nanometer Structures, 2002, 20 (6): 2314-2319.
    [80] Barmak K., Gungor A., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of Cu and dilute Cu alloy films. In San Francisco, United states, 2002; 51-59.
    [81] Barmak K., Gungor A., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture of Cu and dilute binary Cu-alloy films: impact of annealing and solute content. Mater. Sci. Semi. Proc., 2003, 6:175-184.
    [82] Zhao B., Kim H., Yukihiro S. G. Effects of Ag Addition on the Resistivity, Texture and Surface Morphology of Cu Metallization. Jpn. J. Appl. Phys., 2005, 44 (41): L1278-L1281.
    [83] Barmak K., Gungor A., Cabral Jr C., Lavoie C., Harper J. M. E. Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys., 2000, 87 (5): 2204-2214.
    [84] Chu J. P., Lin C. H., Thermal stability of Cu(W) and Cu(Mo) films for advanced barrierless Cu metallization: Effects of annealing time. J. Electro. Mater., 2006, 35(11): 1933-1936.
    [85] Lin C. H., Chu J. P. Thermal Stability of Sputtered Copper Films Containing Dilute Insoluble Tungsten: Thermal Annealing Study. J. Mater. Res., 2003, 18 (6): 1429-1434.
    [86] Liu C. H., Jeng J. S., Chen J. S., Lin, Y. K. Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO2. J. Vac. Sci. Techno. B: Microelectronics and Nanometer Structures, 2002, 20 (6): 2361-2366.
    [87] Hoon Kim, Toshihiko Koseki, Takayuki Ohba, Tomohiro Ohta, Yasuhiko Kojima, Hiroshi Sato, Yukihiro Shimogaki. Process design of Cu(Sn) alloy deposition for highly reliable ultra large-scale integration interconnects. Thin Solid Films, 2005, 491: 221-227.
    [88] Mori K., Maekawa K., Amou N. Reliability improvement and its mechanism for Cu interconnects with Cu-Al alloy seeds. In San Diego, CA, United states, 2006; 467-473.
    [89] Tu K. N. Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys., 2003, 94 (9): 5451-5473.
    [90] Makoto Ueki, Masayuki Hiroi, Nobuyuki Ikarashi, Takahiro Onodera, Naoya Furutake, Naoya Inoue, and Yoshihiro Hayashi Effects of Ti Addition on Via Reliability in Cu Dual Damascene Interconnects. IEEE Tran. Electro. Dev., 2004, 51 (11): 1883-1890.
    [91] Yasushi Igarashi, Toshio Ito. Electromigration properties of copper-zirconium alloy interconnects. J. Vac. Sci. Technol., 1998, B (16) (5): 2745-2750.
    [92] Hu C.-K., Luther B., Kaufman F. B., Hummel J., Uzoh C., Pearson D. J. Copper intercnnection integration and reliablity. Thin Solid Films, 1995, 262: 84-92.
    [93] Barmak K., Cabral Jr C., K. P. Rodbell, Harper J. M. E. On the use of alloying elements for Cu interconnect applications. J. Vac. Sci. Technol., 2006, B(24): 2485-2498.
    [94] Cabral Jr, C., Harper J. M. E., Holloway K., Smith D. A., Schad R. G. Preparation of low resistivity Cu-1at.%Cr thin films by magnetron sputtering. J. Vac. Sci. Technol., 1992, A10 (4): 1706-1712.
    [95] Thouless M. D. Modeling the Development and Relaxation of Stresses in Films. Annu. Rev. Mater. Sci., 1995, 25 (69-96).
    [96] Jian L., Mayer J. W., Colgan E. G. Oxidation and protection in copper and copper aljoy thinfilms. J. Appl. Phys., 1991, 70 (5): 2820-2827.
    [97] Liu C. Chen J. S. Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films. Journal of Materials Research, 2005, 20 (2): 496-503.
    [98] Bo Liu, Z. S., Kewei Xu. The effect of zirconium dopant on the properties of copper films. Surface and Coatings Technology, 2007, 201:5419-5421.
    [99] Zhang X., Misra A., Wang H., Shen T. D., Nastasi M., Mitchell T. E., Hirth J. P., Hoagland R. G., Embury J. D. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004, 52: 995-1002.
    [100] Frederick M. J., Ramanath G. Kinetics of interfacial reaction in Cu-Mg alloy films on SiO2. J. Appl. Phys., 2004, 95 (1): 363-366.
    [101] Tsukimoto S., Morita T., Moriyama M., Ito K., Murakami M. Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films. J. Electro. Mater. 2005, 34 (5): 592-599.
    [102] Koike J., Wada M. Self-forming diffusion barrier layer in Cu-Mn alloy metallization. Appl. Phys. Lett., 2005, 87 (4): 041911-3.
    [103] McCusker N. D., Gamble H. S., Armstrong B. M. Surface electromigration in copper interconnects. Microelectronics Reliability, 2000, 40: 69-76.
    [1]田民波,刘德令.薄膜科学与技术手册(上册)[M]. 1st ed.北京:机械工业出版社, 1991.
    [2] Feng Y. C., Laughlin D. E., Lambeth D. N., Formation of crystallographic texture in r.f. sputter-deposited Cr thin films. J. Appl. Phys., 1994, 76 (11): 7311-7316.
    [3]毛卫民,张弘.大规模集成电路的织构效应.北京科技大学学报, 2000, 22 539-542.
    [4] Lee W. H., Ko Y. K., Jang J. H., Kim C. S., Reucroft P. J., Lee J. G. Microstructure control of copper films by addition of mo in an advance metallization. J. Electro. Mater., 2001, 30 (8): 1042-1048
    [5] Hu C-K, Rodbell K. P., Sullivan T. D., Lee K. Y., Bouldin D. P. Electromigration and stress induced voiding in fine Al and Al-alloy thin-film lines. IBM J. RES. DEVELOP, 1995, 39 (4): 465-497.
    [6] Attardo M. J., Rosenberg R. Electromigration damage in Aluminum film conductors. J. Appl. Phys., 1970, 41 (6): 2381-2386.
    [7]王贺权,沈辉,巴德纯,汪保卫,闻立时.靶基距对直流反应磁控溅射制备TiO2薄膜光学性质的影响.真空, 2005, 42 (1): 11-14.
    [8]徐均琪,易红伟,蔡长龙,杭凌侠.磁控溅射膜厚均匀性与靶基距关系的研究.真空, 2004, 41 (2):25-28.
    [9]马志伟,张铭,王波,严辉.工作气压对磁控溅射Ta2O5薄膜电学性能的影响.河南师范大学学报(自然科学版), 2007, 35 (4): 75-78.
    [10]温培刚,颜悦,张官理,望咏林.磁控溅射沉积工艺条件对薄膜厚度均匀性的影响.航空材料学报, 2007, 27 (3): 66-68.
    [11] Craig S., Harding G. L. Effects of argon pressure and substrate temperature on the structure and properties of sputtered copper films. J. Vac. Sci. Technol., 1981, 19 (2): 205-215.
    [12]戴永年.二元合金相图. In 1,科学出版社:北京, 2009.
    [13] Chu J. P., Lin, C. H., Hsieh Y. Y. Thermal performance of sputtered insoluble Cu(W) films for advanced barrierless metallization. J. Electro. Mater., 2006, 35 (1): 76-80.
    [14] Benouattas N., MosseA. r, Raiser D., Faerber J., Bouabellou A.. Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Applied Surface Science, 2000, 153: 79-84.
    [15]王英华. X光衍射技术基础[M]. 1 ed.原子能出版社, 1993.
    [16] Jakkaraju R., Greer A. L. Texture and hillocking in sputter-deposited copper thin films. Journal of Materials Science:Materials in Electronics, 2002, 13:285-294
    [17]朱继国,丁万昱,王华林,张树旺,张粲,张俊计,柴卫平. Ar气压强对直流脉冲磁控溅射制备Mo薄膜性能的影响.微细加工技术, 2008, (4): 35-38.
    [18]洪剑寒,王鸿博,魏取福,高卫东.磁控溅射法制备纳米Ag薄膜的AFM分析和导电性能.纺织学报, 2006, 27 (9): 14-17.
    [19] Knuyt G., Quaeyhaegens C., D’Haen J., Stals L. M. A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth. Thin Solid Films, 1995,258:159-169.
    [20]王春青,田艳红,孔令超.电子封装和组装中的微连接技术[OL]. http://mwjl.hit.edu.cn/Micro/Pdf_Files/Conclusion/Microjoining-9.pd
    [21] Zhang J. M., Xu K. W., He J. W. Effects of grain orientation on preferred abnormal grain growth in copper flms on silicon substrates. J. Mater. Sci. Lett., 1999, 18: 471-473
    [22] Nix W. D. Mechanical properties of thin films. Metall. Trans. A, 1989, 20: 2217-2222.
    [23] Hoffman R. W. Stress in thin films: the relevance of gain boundaries and impurities. Thin Soild Films, 1976, 34:185-190.
    [24] Zhang X., Misra A. Residual stresses in sputter-deposited copper/330 stainless steel multilayers. JOURNAL OF APPLIED PHYSICS, 2004, 96 (12): 7173-7178.
    [25] Ko Y. K., Jang. H. J., Lee S., Yang H. J., Lee W. H., Reucroft P. J., Lee J. G.. Effects of molybdenum, silver dopants and a titanium substrate layer on copper film metallization. J. Mater. Sci. 2003, 38: 217-222.
    [26] Kittle C. Introduction to Solid State Physics., 7th ed. Wiley, New York, 1996, P:78.
    [27] Gungor A., Barmak K., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) allow thin films. J. Vac. Sci. Techno. B: Microelectronics and Nanometer Structures, 2002, 20 (6): 2314-2319.
    [28] Barmak K., Gungor A., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture of Cu and dilute binary Cu-alloy films: impact of annealing and solute content. Mater. Sci. Semi. Proc., 2003, 6:175-184.
    [1] Harper J. M. E., Rodbell K. P. Microstructure control in semiconductor metallization. J. Vac. Sci. Technol., 1997, B(15) (4): 763-779.
    [2] Barmak K., Gungor A., Cabral Jr C., Lavoie C., Harper J. M. E. Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys., 2000, 87 (5): 2204-2214.
    [3] Gungor A., Barmak K., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) allow thin films. J. Vac. Sci. Techno. B: Microelectronics and Nanometer Structures, 2002, 20 (6): 2314-2319.
    [4] Barmak K., Gungor A., Rollett A. D., Cabral Jr C., Harper J. M. E. Texture of Cu and dilutebinary Cu-alloy films: impact of annealing and solute content. Mater. Sci. Semi. Proc., 2003, 6:175-184.
    [5] Yousuke Koike, Inase T., Takayama S. J. Temperature Dependence of Internal Stress and Crystal Growth of Dilute Cu Alloy Films. Solid State Phenomena, 2007, 127: 147-152.
    [6] Harper J. M. E., Gupta J., Smith D. A., Chang J. W., Holloway K. L., Tracy D. P., Knorr D. B. Crystallographic texture change during abnormal grain growth in Cu-Co thin films. Appl. Phys. Lett., 1994, 65 (2): 177-179.
    [7] Sun Z. B., Zhang C.Y., Zhu Y. M., Yang Z. M., Ding B. J., Song X. P. Microstructures of melt-spun Cu-Cr (x=3.4–25) ribbons. J. Alloys Comp., 2003, 361: 165-168.
    [8] Cabral Jr, C., Harper J. M. E., Holloway K., Smith D. A., Schad R. G. Preparation of low resistivity Cu-1at.%Cr thin films by magnetron sputtering. J. Vac. Sci. Technol., 1992, A10 (4): 1706-1712.
    [9] Li J., Mayer J. W., Colgan E. G. Oxidation and Protection in Copper and Copper Alloy Thin Films. J. Appl. Phys., 1991, 71 (5): 2820-2827.
    [10] Nagamachi Shinji, Yamakage Y., Ueda Masahiro, Maruno Hiromasa, Shinada Kei, Fujiyama Yoichi, Asari Masatoshi, Ishikawa Junzo. Focused ion beam direct deposition of superconductive thin film. Appl. Phys. Lett., 1994, 65 (25): 3278-3280.
    [11] Gnaser H., Kallmayer C., Oechsner H. Focused-ion-beam implantation of Ga in elemental and compound semiconductors. J. Vac. Sci. Technol. B, 1995, 13 (1): 19-26.
    [12] Langford R. M., A. K. P.-L. Low-damage specimen preparation technique for transimission electron microscopy using iodine gas-assisted focused ion beam milling. J. Vac. Sci. Technol. A, 2001, 19 (5): 2186-2193.
    [13] Akira Yamaguchi, Takeshi Nishikawa. Low-damage specimen preparation technique for transimission electron microscopy using iodine gas-assisted focused ion beam milling. J. Vac. Sci. Technol. B, 1995, 13 (3): 962-966.
    [14] Rubanov S., Munroe P. R. Investigation of the structure of damage layers in TEM samples prepared using a FIB. J. Mater. Sci. Let., 2001, 20 (13): 1181-1183.
    [15] Nakahara S. Recent development in a TEM specimen preparation technique using FIB for semiconductor devices. Sur. Coat. Technol., 2003, 169-170 (2): 721-727.
    [16] Malzbender J., den J. M. J. Toonder, Balkenende A. R., With G. de. Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass. Mater. Sci. Eng. R: Reports, 2002, 36 (2-3): 47-103.
    [17] Barna P. B., Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films, 1998, 317 27-33.
    [18] Barmak K., Gungor A., Cabral Jr C., Harper J. M. E. Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity. J. Appl. Phys., 2003, 94 (3): 1065-1616.
    [19] Barmak K., Gungor A., Cabral Jr C., Lavoie C., Harper J. M. E. Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys., 2000, 87 (5): 2204-2214.
    [20] Haji L., Joubert P., Stoemenos J., Economou N. A. Mode of growth and microstructure of polycrystalline silicon obtained by solid-phase crystallization of an amorphous silicon film. J. Appl. Phys. , 1994, 75 (8): 3944-3952.
    [21] Hong T. K., Lee S., Lee J. G., Kim C., Bang H. J., Kang C. H., Lee J. H., Kim D. H., Jeong C. O., Kim S. Y., Lim S. K., Ruh H. Effects of boron depletion on the microstructure evolution of Cu(B) alloys deposited on Ti underlayer. Thin Solid Films, 2007, 515 7945-7949.
    [22] Kim J., Wen S. H., Yee D. Coevaporation of Cr-Cu and Mo-Ag. J. Vac. Sci. Technol., 1988, A6 (4): 2366-2370.
    [23] Wang Y. M., Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia, 2004, 52: 1699-1709.
    [24] Zhao M-C, Yin. F-X Toshihiro Hanamura, Kotobu Nagai, Andrej Atrens. Relationship between yield strength and grain size for a bimodal structural ultrafine-grained ferrite/cementite steel. Scripta Materialia, 2007, 57: 857-860.
    [25] Zhu B., Asaro R. J., Krysl P., Zhang K., Weertman J. R. Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II. Acta Materialia, 2006, 54 3307-3320.
    [26] Gupta, D. Diffusion, Solute Segregations and Interfacial Energies in Some Material: An Overview. Interface Science, 2003, 11: 7-20.
    [27] McIntyre D., Sundgren J. E., Greene J. E. Growth, structure, and physical properties of single-phase metastable fcc Cu1-xCrx solid solutions. J. Appl. Phys., 1988, 64 (7): 3689-3696.
    [28] Hu C-K. Electromigration failure mechanisms in bamboo-grained Al(Cu) interconnections. Thin Soild Films, 1995, 260: 124-134.
    [29] Walton D. T., Frost H. J., Thompson C. V. Development of near-bamboo and bamboo microstructures in thin-film strips. Appl. Phys. Lett., 1992, 61 (1): 40-42.
    [30] Jakkaraju R., Greer A. L. Texture and hillocking in sputter-deposited copper thin films. J. Mater. Sci.: Mater. in Electron., 2002, 13: 285-294.
    [31] Barna P. B., Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films, 1998, 317 27-33.
    [32] Chen X. H., Lu. L., Lu K., Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys., 2007, 102: 0837081-7.
    [33] Lu L., Shen Y. F., Chen X. H, Qian L. H, Lu K. Ultrahigh Strength and High Electrical Conductivity in Copper . Science, 2004, 304: 422-426.
    [34]万剑锋,陈世朴,徐祖耀. Fe-30Mn-6Si-xN形状记忆合金层错能的热力学计算.金属学报, 2000, 36 (7): 679-683.
    [35] Yakubtsov I. A., Ariapour A., Perovic D. D. Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater., 1998, 47 (4): 1271-1279.
    [36] Dinsdale A.T. SGTE data for the pure elements. Calphad, 1991, 15 317-435.
    [37] Miedia A. R, De Chatel P. F., De Boer F. R. Cohesion in alloy-fundamentals of a semi-empirical model. Physica, 1980, 100B: 1-23.
    [38] Ishida K. Phys. Status Solidi, 1976, 36:717-720.
    [39] Petrov Y. N., Yakubstsov I. A. Metallofizika, 1986, 8:56-61
    [40] Zhang J. M., Xu K. W., He J. W. Effects of grain orientation on preferred abnormal grain growth in copper flms on silicon substrates. J. Mater. Sci. Lett., 1999, 18: 471-473.
    [41] Weihnacht V., Bru¨ckner W. Abnormal grain growth in {111} textured Cu thin films. Thin Solid Films, 2002, 418: 136-144.
    [42] Di Xu, Wei Lek Kwan, Kai Chen, Xi Zhang, Vidvuds Ozoli??, and K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Appl. Phys. Lett. 91: 2541051-3
    [43] Liu L. X., Chen X. H. Lu L. Strain Rate Sensitivity of Ultrafine-Grained Cu With Nanosized Twins. Acta Metall. Sin. (Engl. Lett.), 2006, 19 (5):313-318.
    [44] Zhang X., Wang H., Chen X. H., Lu. L, Lu K., Hoagland R. G., Misra A. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett., 2006, 88: 1731161-3.
    [45] Chen X. H., Lu L., Lu K. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys., 2007, 102: 0837081-7.
    [1] Cros A., Aboelfotoh M. O., Tu K. N. Formation, oxidation, electronic, and electrical properties of copper silicides. J. Appl. Phys., 1990, 67 (7): 3328-3336.
    [2] Chang C.-A. Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111). J. Appl. Phys., 1990, 67 (1): 566-569
    [3] Lanford W. A., Ding. P. J., Wang W., Hymes S., Murarka S. P. Alloying of copper for use in microelectronic metallization. Mater. Chem. Phys., 1995, 41 (3): 192-198.
    [4] Kohama K., Ito K., Tsukimoto S., Mori K., Maekawa K., Murakami M. Characterization of self-formed Ti-rich interface layers in Cu(Ti)/Low-k samples. J. Electro. Mater., 2008, 37 (8): 1148-1157.
    [5] Frederick M. J., Ramanath G. Interfacial phase formation in Cu-Mg alloy films on SiO2. J. Appl. Phys., 2004, 95 (6): 3202-3205.
    [6]刘贵民,徐滨士.薄膜层表面形貌的定量表征.中国表面工程, 1999, 2 5-7.
    [7] Leprince-Wang Y., Zhang K-Y. Study of the growth morphology of TiO2 thin films by AFM and TEM. Sur. Coat. Tech., 2001, 140: 155-160.
    [8] Chang, C.-A. Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111). J. Appl. Phys., 1990, 67 (1): 566-569.
    [9] Benouattas N., Mosser A., Bouabellou A. Surface morphology and reaction at Cu/Si interface—Effect of native silicon suboxide. Appl. Sur. Sci., 2006, 252: 7572-7577.
    [10] Barna P. B., Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films, 1998, 317: 27-33.
    [11] Abhijit Majumdar, Marina Ganeva, Daniel Ko¨pp, Debasish Datta, Puneet Mishra,Satyaranjan Bhattacharayya, Debabrata Ghose, Rainer Hippler. Surface morphology and composition of films grown by size-selected Cu nanoclusters. Vacuum, 2008, 83: 719-723.
    [12]贾嘉.溅射法制备纳米薄膜材料及进展.半导体技术, 2004, 29 (7): 70-73.
    [13] Witten T. A., Sander L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phycal Review Letters, 1981, 47 (19): 1400-1403.
    [14] Kim J., Wen S. H., Yee D. Coevaporation of Cr-Cu and Mo-Ag. J.Vac.Sci.Technol., 1988, A6 (4): 2366-2370.
    [15] Detavernier C., Deduytsche D., Meirhaeghe Van R. L., Baerdemaeker De J., Dauwe C. Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett., 2003 82 (12): 1863-1865.
    [16] Benouattas N., Mossea. R., Raiser D., Faerber J., Bouabellou A. Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Appl. Surf. Sci., 2000, 153: 79-84.
    [17] Chu J. P., Lin C. H. Thermal stability of Cu(W) and Cu(Mo) films for advanced barrierless Cu metallization: Effects of annealing time. J. Electro. Mater. 2006, 35 (11): 1933-1936.
    [18]常铁军.材料近代分析测试方法[M]. 2rd ed.哈尔滨工业大学出版社, 2005.
    [19] Grundner M., Jacob H. Investigations on hydrophilic and hydrophobic silicon (100) wafersurfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy . Appl. Phys. A, 1986, 39 (2): 73-82.
    [20] Alford T. L., Jaquez E. J., Theodore N. David, Russell S. W., Diale M., D. Adams, Simone Anders. Influence of interfacial copper on the room temperature oxidation of silicon. J. Appl. Phys., 1996, 79 (4): 2074-2078.
    [21] Kenji Hinode, Ken'i chi Takeda, Seiichi Kondo. Abnormal room-temperature oxidation of silicon in the presence of copper. J. Vac. Sci. Technol. A, 2002, 20 (5): 1653-1658.
    [22] Barin. Thermochemical Data of Pure Substances[M]. 3rd ed. Federal Republic of Germany: Wiley-Vch Verlag GmBH, Weinheim, 1995.
    [23] Murarka, S. P.著.赵英译.硅化物及其在超大规模集成电路中的应用[M]. 1 ed.天津:南开大学出版社1987.
    [24] Nolan T. P. and Sinclair R., Beyers R. Modeling of agglomeration in polycrystalline thin films: Application to TiSi2 on a silicon substrate. J. Appl. Phys., 1992, 71 (2): 720-724.
    [25] Rost M. J., Quist D. A., Frenken J. W. M. Grains, Growth, and Grooving. Physical R eview Letters, 2003, 91 (2): 026101-4.
    [26] Kwon J-Y, Yoon T-S, Kim K-B, Min S-H Comparison of the agglomeration behavior of Ag and Cu films sputter deposited on silicon dioxide. J. Appl. Phys., 2003, 93 (6): 3270-3278
    [27] Russell S W, Rafalski S A, Spreitzer R L, Li J, Moinpour M, Moghadam F, Alford T L. Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions.. Thin Solid Films 1995, 262:154-167.
    [28] Yu Z. M. and Zhao L. C. Preparation and electrochemical properties of LiMn1.95M0.05O4 (M = Cr, Ni). Rare Metals, 2007, 26:62-67.
    [29] Yasushi Igarashi, Toshio Ito. Electromigration properties of copper-zirconium alloy interconnects. J. Vac. Sci. Technol., 1998, B (16) (5): 2745-2750.
    [30] Liu C. J., Chen J. S. Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films. J. Mater. Res., 2005, 20 (2): 496-503.
    [31] Burton J. J., Machlin E. S. Prediction of Segregation to Alloy Surfaces from Bulk Phase Diagrams. Phys. Rev. Lett., 1976, 37 1433-1436
    [32] Koike, J., Wada, M. Self-forming diffusion barrier layer in Cu-Mn alloy metallization. Appl. Phys. Lett., 2005, 87 (4): 041911-3.
    [1] Poate J. M., Tu K. N., Mayer J. W. Thin Films-Interdiffusion and Reaction. In John Wiley and Sons Inc.: 1978.
    [2] McCusker N. D., Gamble H. S., Armstrong B. M. Surface electromigration in copper interconnects. Microelectronics Reliability, 2000, 40: 69-76.
    [3] Tu K. N. Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys., 2003, 94 (9): 5451-5473.
    [4] Hu C-K., Luther B. Electromigration in two-level interconnects of Cu and Al alloys. Mater. Chem. Phys., 1995, 41: 1-7.
    [5] Hu C-K., Gignac L., Liniger E., Herbst B., Rath D. L., Chen S. T., Kaldor S., Simon A., Tseng W-T. Comparison of Cu electromigration lifetime in Cu interconnects coated with various caps. Appl. Phys. Lett., 2003, 83 (5): 869-871.
    [6] Yokogawa S. Electromigration-Induced Void Growth Kinetics in SiNx-Passivated Single-Damascene Cu Lines. Jpn. J. Appl. Phys., 2004, 43 (9): 5990-5996.
    [7] Sung W-L, Chiou B-S. Barrier layer effect of tantalum on the electromigration in sputtered copper films on hydrogen silsesguioxane and SiO2. J. Electron. Mater., 2002, 31 (5): 472-477.
    [8] YOUNG BAE PARK, DUK WON LEE. Effects of Ti and TiN underlayers on electromigration reliability of Al-Cu interconnects. Mater. Sci. Engi. B, 2001, 87 (1): 70-76.
    [9] Yasushi Igarashi, Toshio Ito. Electromigration properties of copper-zirconium alloy interconnects. J. Vac. Sci. Technol., 1998, B (16) (5): 2745-2750.
    [10] Hoshino K., Tsuchikawa H. Effect of titanium addition to copper interconnect on electromi- gration open circuit failure. In VLSI Multilevel Interconnection Conference, 1990.
    [11] Lee K. L., Hu C-K., Tu K-N. In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects. J. Appl. Phys., 78 (7): 4428-4437.
    [12] Vairagar A. V., Gan Z. H., Shao W., Mhaisalkar S. G., Li H. Y., Tu K. N., Chen Z., Engelmann H. J., Zhang S. Improvement of Electromigration Lifetime of Submicrometer Dual-Damascene Cu Interconnects Through Surface Engineering. J. Electrochem. Soc., 2006, 153 (9): G840-G845.
    [13] Black J. R. Physics of Electromigration. Proc. of the IEEE Int. Reliab. Phys. Symp. C, 1974, 12: 142-149.
    [14]吴丰顺,王磊,吴懿平,张金松,姜幼卿.集成电路互连线电迁移测试方法与评价.微电子学, 2004, 34 (5): 489-492.
    [15] Mirpuri K., Szpuna J. Impact of annealing, surface/strain energy and linewidth to line spacing ratio on texture evolution in damascene Cu interconnects. Mater. Charact., 2005, 54: 107-122.
    [16] Chen K-C, Wu W-W, Liao C-N, Chen L-J, Tu K-N. Observation of atomic diffusion at twin modified grain boundaries in copper. Science, 2008, 321, 1066-1068.
    [17] Vaidya S, Sinha A. K. Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films. Thin Solid Film, 1991, 75: 253-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700