薄膜晶体缺陷形成与控制的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜晶体缺陷主要形成于原子沉积生长过程之中,而现有实验分析手段的空间和时间分辨能力都无法胜任对原子尺度微观过程的研究。我们以面心立方金属为对象、采用三维分子动力学方法对几种薄膜缺陷形成的原子机理与控制方法进行了原子模拟研究。原子间相互作用力采用EAM多体势函数计算。研究内容包括:外延薄膜沉积生长的分子动力学模型、模拟方法与相应程序的建立及对原子沉积过程的基本研究;<111>外延生长薄膜中失配位错、孪晶与一种应力致生长织构的结构、形成机制及可能的控制方法;在纳米晶柱阵列衬底上外延生长高质量、易剥离薄膜晶体的可能性。研究发现:
     (1) 保持表面原子级平整可使薄膜在超过临界厚度数十倍的情况下仍不形成失配位错。但这种结构对微扰十分敏感,表面仅单原子层厚的微小凹凸或高温下的热扰动都能使失配位错迅速形成。
     (2) 负失配条件下,失配位错成核于一种发生在薄膜表层的类似于“局部熔融—重结晶”的过程,它起自薄膜内部压应力与表面台阶共同作用下被挤出的一个倒四面体构型的原子团。其结构为伯格斯矢量与失配方向一致的、滑移面与生长面平行的全刃位错,个别情况下也会呈现为由两个部分位错夹着一片层错组成的Shockley扩展位错。
     (3) 正失配条件下,失配位错的结构与成核机制出现两类情况。当失配度f_x≥0.05时,位错结构与成核机制与负失配条件下类似,不同之处是局部熔融源自与表面相交的滑移台阶;当f_x≤0.04时,失配位错直接形成于由表面向内部推进的局部滑移。其伯格斯矢量与失配方向成60°夹角。该位错形成后迅速从薄膜表层沿其滑移系向薄膜与衬底间界面滑移。
     (4) 在适当几何条件下,采用纳米晶柱阵列衬底可以在不形成失配位错的情况下释放外延薄膜中的失配应变,有效地抑制失配位错的形成,获得高质量、易剥离外延薄膜。
     (5) 在<111>生长中,表面沉积原子在入射碰撞和热运动迁移过程中随机占
Crystal defects in thin films mostly form in the atomic deposition processes, while current experimental means do not have enough resolution power in both space and time to analyze any processes at atomistic scale. Using three dimensional molecular dynamics method, and taking FCC metals as prototypes, we have carried out atomistic simulation studies of the formation mechanisms of thin film crystal defects and their control. EAM many-body potentials are adopted to calculate the inter-atomic forces. The work conducted mainly include establishing the molecular dynamics model, the simulation methods and codes for deposition of thin films; fundamental studies of the atomistic deposition; the structures, formation mechanisms and possible control methods of misfit dislocations, twins, and a stress-driven growth texture in <111> epitaxial films; the possibility of growing high quality and easy-to-peel-off epitaxial films on nano pillar crystals arrays. The results show that
    (1) An epitaxial film can maintain dislocation-free if its surface maintain flat at atomic scale, even when it is tens times thicker than its critical thickness. This structure is, however, very sensitive to disturbances. A single atomic layer variation on surface or merely thermal disturbances at elevated temperatures will trigger formation of the misfit dislocations.
    (2) For the epitaxial films with negative mismatch, the misfit dislocation nucleates in a local surface fusion-crystallization process. The local fusion begins with a surface step triggered squeeze-out of an inverse mini-tetrahedron. The dislocation formed is a perfect edge dislocation with its Burgers vector paralleled to the misfit and its sliding plane paralleled to the interface. Occasionally, the dislocation appears in form of Shockley type extended dislocation.
    (3) For the epitaxial films with positive mismatch, two kinds of structures and nucleation mechanisms have been identified for the misfit dislocations, depending on
    magnitude of the mismatch f_x. When f_x ≥0.05, they are similar to those in the films with negative mismatch, except that the local fusion is originated from a cross-surface glide; When f_x ≤0.04, the misfit dislocation forms directly as a result of a partial
引文
[1] 吴自勤,王兵.薄膜生长.北京:科学出版社,2001,122
    [2] 王力衡,黄运添,郑海淘.薄膜技术.北京:清华大学出版社,1991
    [3] Binnig G, Rohrer H, Gerber Ch, Weibel E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 1982, 49(1): 57-61
    [4] Ozawa S, Sasajima Y, Heermann D W. Monte Carlo Simulations of Film Growth. Thin Solid Films, 1996, 272(2): 172-183
    [5] Sugihara T, Kuba K. Selection of Kinetic Energy of Laser-Ablated Particles and Its Application for Deposition of Au, Pt and Ag Thin Films. Nuclear Instruments and Methods in Physics Research Section B, 1997, 121 (1-4): 392-395
    [6] Godfroid T, Gouttebaron R, Dauchot J P, Leclere P, Lazzaroni R, Hecq M. Growth of Ultrathin Ti Films Deposited on SnO_2 by Magnetron Sputtering. Thin Solid Films, 2003, 437(1-2): 57-62
    [7] Hasan M A, Barnett S A, Sundgren J E, Greene J E. Nucleation and Initial Growth of In Deposited on Si_3N_4 Using Low-Energy (300 eV) Accelerated Beams in Ultrahigh Vacuum. Journal of Vacuum Science and Technology A, 1987, 5(4): 1883-1887
    [8] Koch R, Wedler G, Wassermann B. Evolution of Stress and Strain Relaxation of Ge and SiGe Alloy Films on Si(001). Applied Surface Science, 2002, 190(1-4): 422-427
    [9] 唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003,203
    [10] Akira S, Sunakawa H. Defect Structure in Selectively Grown GaN Films with Low Threading Dislocation Density. Applied Physics Letters, 1997,71(16): 2259-2281
    [11] 杨顺华.晶体位错理论基础(第一卷).北京:科学出版社,1998
    [12] 余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001
    [13] Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals. London: CRC Press, 1999
    [14] 陈光华,邓金祥.新型电子薄膜材料.北京:化学工业出版社,2002 368
    [15] 朱贤方,Williams J S,Lim L C,Zhang Sam,吴自勤.物理汽相淀积薄膜的微结构和内应力.物理,1998,27(1):37-47[16] Thornton J A. The Microstructure of Sputter-Deposited Coatings. Journal of Vacuum Science and Technology A, 1986, 4(6): 3059-3065
    [17] Russell M, Joseph E Y. Geometry of Thin-Film Morphology. Journal of Applied Physics, 1985, 58(10): 3739-3746
    [18] Barna P B, Adamik M. Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models. Thin Solid Films, 1998, 317(1-2): 27-33
    [19] Carel R, Thompson C V, Frost H J. Computer Simulation of Strain Energy Effects vs. Surface and Interface Energy Effects on Grain Growth in Thin Tilms. Acta Materialia, 1996, 44(6): 2479-2494
    [20] Zhang J M, Xu K W, Vincent J. Dependence of Stresses on Grain Orientations in Thin Polycrystalline Films on Substrates: an Explanation of the Relationship Between Preferred Orientations and Stresses. Applied Surface Science, 2001, 180(1-2): 1-5
    [21] Lesueur J, Aprili M, Horton T J. Properties of Thin and Ultra-Thin YBCO Films Grown by a Co-Evaporation Technique. Journal of Alloys and Compounds, 1997, 251(1-2): 156-160
    [22] MUller K H. Monte Carlo Calculation for Structural Modifications in Ion-Assisted Thin Film Deposition due to Thermal Spikes. Journal of Vacuum Science and Technology A, 1986 4(2): 184-188
    [23] Adamik M, Barna P B, Tomov I. Correlation Between Texture and Average Grain Size in Polycrystalline Ag Thin Films. Thin Solid Films, 2000, 359(1): 33-40
    [24] Zeng Y X, Zou Y L, Alford T L. Texture in Evaporated Ag Thin Films and Its Evolution During Encapsulation Process. Thin Solid Films, 1997, 307(1-2): 89-95
    [25] Shi Z, Craib G R G, Player M A, Tang C C. Texture Development of Evaporated Nickel Films on Molybdenum Substrates. Thin Solid Film, 1997, 304(1-2): 170-176
    [26] 张建民,徐可为,张美荣.薄膜中异常晶粒生长理论及能量各向异性分析.物理学报,2003,52(5):1207-1212
    [27] 张建民,徐可为.银和铜膜中异常晶粒生长和织构变化的实验研究.物理学报,2003,52(1):145-149
    [28] Alejandro B, Rodriguez N. Model of Texture Development in Polycrystalline Films Growing on Amorphous Substrates with Different Topographies. Thin Solid Films, 2001,??389: 288-295
    [29] Thompson C V, Roland C. Texture Development in Polycrystalline Thin Films. Materials Science and Engineering B, 1995, 32: 211-219
    [30] Chiu K F, Barber Z H, Texture Development in Silver Films Deposited by Ionized Magnetron Sputter Deposition. Thin Solid Films, 2000, 358: 264-269
    [31] Nine X J, Chien F R, Pirouz P, Growth Defects in GaN Films on Sapphire: the Probable Origin of Threading Dislocations. Journal of Materials Research, 1996, 11(3): 580-592
    [32] Hawley M, Kalstrick I D, Beery J G, Houlton K J. Growth Mechanism of Sputtered Films of YBa)2/Sub 3/0_7 Studied by Scanning Tunneling Microscopy. Science, 1991, 251 (5001): 1587-1585
    [33] Gerber C, Anselmetti D, Bednorz J G, Mannhart J, Schlom D G. Screw Dislocations in High-To Films. Nature, 1991, 350: 279-280
    [34] Rocher A, Snoeck g. Misfit Dislocations in (001) Semiconductor Hetero-Structures Grown by Epitaxy. Materials Science and Engineering B, 1999, 67(1-2): 62-69
    [35] Zhou X W, Wadley H N G. Twin Formation During the Atomic Deposition of Copper. Acta Materialia, 1999, 47(3): 1063-1078
    [36] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 2004, 304: 422-426
    [37] 沈晓明,付羿,冯淦,张宝顺,冯志宏,杨辉.用侧向外延生长法降低立方相GaN中的层错密度.半导体学报,2002,23(10):1093-1097
    [38] 刘明海,张亮,硅外延片(111)面层错腐蚀显微图象分析.四川师范大学学报(自然科学版),1996,19(5):50-54
    [39] 周灵平,靳九成,李绍禄,颜永红,朱正华.CVD金刚石薄膜表面的缺陷研究.人工晶体学报,1998 27(2):126-131
    [40] 韩培德.半导体ZnTe外延层中三重位错带的显微结构研究.电子显微学报,1998,17(1):44-50
    [41] 李嘉席,孙军生,陈洪建,张恩怀.第三代半导体材料生长与器件应用的研究.河北工业大学学报,2002,31(2):41-51
    [42] Olin H, grorsson G, Davidson P. Scanning Tunneling Microscopy of Laser-Deposited??YBCO Thin Films. Uitranicroscopy, 1992, 42-44: 734-740
    [43] Savvides N, Katsaros A. Growth and Evolution of Microstructure of Epitaxial YBa_2/Cu sub 3/0_(7-x) Ultrathin and Thin Films on MgO. Physica C, 1994, 226(1-2): 23-26
    [44] 于梅芳,巫艳,陈路,乔怡敏,杨建荣,何力.ZnCdTe衬底上HgCdTe分子束外延的位错密度,固体电子学研究与进展,2002,22(2):215-218
    [45] Wu X H, Fini P, Tarsa E J. Dislocation Generation in GaN Heteroepitaxy. Journal of Crystal Growth, 1998, 189-190: 231-243
    [46] Grandjcan N, Massies J, Lerous M. Nitridation of Sapphire: Effect on the Optical Properties of GaN Epitaxial Overlayer. Applied Physics Letters, 1996, 69(14): 2071-2073.
    [47] Wadley H N G, Zhou X W, Johnson R A, Neurock M. Mechanisms, Models and Methods of Vapor Deposition. Progress in Materials Science, 2001, 46: 329-377
    [48] 廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社,1984
    [49] Mcweeny R, Sutcliffe B T. Methods of Molecular Quantum Mechanics. Lodon: Acad. Press, 1969
    [50] Witten T A, Sander L M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters, 1981, 47(19): 1400-1402.
    [51] Salik J. Monte Carlo Study of Reversible Growth of Clusters on a Surface. Physical Review B, 1985, 32(3): 1824-1829
    [52] Bruschi P, Cagnoni P, Nannini A. Temperature-Dependent Monte Carlo Simulations of Thin Metal Film Growth and Percolation, Physical Review B, 1997,55(12): 7955-7963
    [53] Yang Y G, Johnson R A, Wadley H N G. A Monte Carlo Simulation of the Physical Vapor Deposition of Nickel. Acta Materialia, 1997, 45(4): 1455-1468
    [54] Knizhnik A A, Bagaturyants A A, Below I V. An Integrated Kinetic Monte Carlo Molecular Dynamics Approach for Film Growth Modeling and Simulation: ZrO_2 Deposition on Si (100) Surface. Computational Materials Science, 2002, 24(1-2): 128-132
    [55] Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters, 1985, 55(22): 2471-2474
    [56] Laasonen K, Pasquarello A, Car R, Vanderbilt O. Car-Parrinello Molecular Dynamics with Vanderbilt Ultrasoft Pseudopotentials. Physical Review B, 1993, 47(16):??10142-1053
    [57] Van Swygenhoven H, Farkas D, Caro A. Grain-Boundary Structures in Polycrystalline Metals at the Nanoscale, Physical Review B, 2000, 62(2): 831-838
    [58] Muller K H. Role of Incident Kinetic Energy of Adatoms in Thin Film Growth. Surface Science Lettes, 1987, 184(1-2): 375-383
    [59] Zhou X W, Johnson R A, Wadley H N G. A Molecular Dynamics Study of Nickel Vapor Deposition: Temperature, Incident Angle, and Adatom Energy Effects. Acta Materialia, 1997, 45(4): 1513-1524
    [60] Zhou X W, Wadley H N G. The Low Energy Ion Assisted Control of Interfacial Structure; Ion Incident Angle Effects. Surface Science, 2001, 487(1-3): 159-170
    [61] 张庆瑜,马腾才,潘正英,汤家镛.Au/Au(100)外延薄膜生长的计算机模拟及其微观机制研究.物理学报,2000,49(2):297-305.
    [62] Kataoka Y, Wittmaack K. Ion-Induced Electron Emission as a Means of Studying Energy and Angle-Dependent Compositional Changes of Solids Bombarded with Reactive Ions Ⅱ. Nitrogen Bombardment of Silicon. Surface Science, 1999, 424(2-3): 299-310
    [63] Gilmore C M, Sprague J A. Molecular-Dynamics Simulation of the Energetic Deposition of Ag Thin Films. Physical Review B, 1991, 44(16): 8950-8956
    [64] Jeong W K, Ho J H. Molecular Dynamics Simulations of Energetic Aluminum Cluster Deposition. Computational Materials Science, 2002, 23(1-4): 105-114
    [65] 张庆瑜,马腾才,潘正英,汤家镛.载能原子沉积Au/Au(100)外延薄膜生长的计算机模拟.物理学报,2000,49(6):1124-1131.
    [66] Ju S P, Weng C I, Chang J G, Huang C C. A Molecular Dynamics Study of Deposition Rate Dependence of Film Morphology in the Sputtering Process. Surface and Coatings Technology, 2002, 149(2-3): 135-142
    [67] Kaneko Y, Hiwatari Y, Ohara K, Murakami I. Computer Simulation of Thin Film Growth with Defect Formation. Surface and Coationgs Technology, 2003, 169-170: 215-218
    [68] Klaver P, Thijsse B. Thin Ta Films: Growth, Stability, and Diffusion Studied by Molecular-Dynamics Simulations. Thin Solid Film, 2002, 413(1-2): 110-129
    [69] Alder B J, Wanwright T E. Phase Transition for a Hardsphere System. The Journal of Chemical Physics, 1957, 27: 1208-1209[70] Ciccotti G, Hoover W G. Molecular-Dynamics Simulation of Statistical-Mechanical Systems. Amsterdam: North-Holland, 1986
    [71] Liang D, Schnitker J, Smith R W, Srolovitz D J. Stress Relaxation and Misfit Dislocation Nucleation in the Growth of Misfitting Films: a Molecular Dynamics Simulation Study. Journal of Applied Physics, 1998, 83(1): 217-227
    [72] Feng Y, Smith R W, Srolovitz D J. The Mechanism of Texture Formation During Film Growth: the Roles of Preferential Sputtering and Shadowing. Applied Physics Letters, 1996, 69(20): 3007-3016
    [73] Liang D, Smith R W, Srolovitz D J. A Two-Dimensional Molecular Dynamics Simulation of Thin Film Growth by Oblique Deposition. Journal of Applied Physics, 1996, 80(10):5682-5690
    [74] Smith R W, Srolovitz D J. Void Formation During Film Growth: a Molecular Dynamics Simulation Study. Journal of Applied Physics, 1996, 79(3): 1448-1457
    [75] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smiths G D W, Clifton P H, Martens R L, Kelly T F. Atomic Scale Structure of Sputtered Metal Multilayers. Acta Materialia, 2001, 49(19): 4005-4015
    [76] Zhou X W, Wadley H N G. Low Energy Ion Assisted Control of Interfacial Structure:Ion Fluence Effects. Journal of Applied Physics, 2000, 88(10): 5737-5743
    [77] Zhou X W, Wadley H N G. Atomistic Simulations of Low Energy Ion Assisted Vapor Deposition of Metal Multilayers. Journal of Applied Physics, 2000, 87 (5): 2273-2281
    [78] Huang H C, Zhou L G. Atomistic Simulator of Polycrystalline Thin Film Deposition in Three Dimensions. Journal of Computer-Aided Materials Design, 2004, 11(1): 59-74
    [79] Huang H C, Wei H L, Woo C H, Zhang X X. Copper Thin Film of Alternating Textures.Applied Physics Letters, 2003, 82(24): 4265-4271
    [80] Liu WC, Shi S Q, Huang H C, Woo C H. Dislocation Nucleation and Propagation During Thin Film Deposition under Compression. Computational Materials Science, 2002,23(1-4): 155-165
    
    [81] Liu W C, Shi S Q, Woo C H, Huang H C. Dislocation Nucleation and Propagation During Thin Film Deposition under Tension. Computer Modeling in Engineering and Sciences, 2002, 3(2): 213-218[82] Huang H C, Gilmer G H. Atomistic Simulation of Texture Competition During Thin Film Deposition. Journal of Computer-Aided Materials Design, 2000, 7(3): 203-16
    [83] Raabe D著,项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002,59
    [84] 李之杰.碳团簇沉积类金刚石薄膜机制的分子动力学模拟研究:[博士学位论文].上海:复旦大学,2004,12
    [85] Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967, 159(1-5): 98-103
    [86] Swope W C, Andersen H C, Berens P H, Wilson K R. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters. Journal of Chemical Physics, 1982, 76(1): 637-649
    [87] Honeycutt R W. The Potential Calculation and Some Applications. Methods in Computational Physics, 1970, 9:136-211
    [88] Beeman D. Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics, 1976, 20(2): 130-139
    [89] Gear C W. Numerical Initial Value Problems in Ordinary Differential Equation. Englewood Cliffs, NJ: Prentice-Hall, 1971, 1-54
    [90] Frenkel and Smit著,汪文川等译.分子模拟—从算法到应用.北京:化学工业出版社,2002,365-374
    [91] 文卫无.纳米单晶铜杆的分子动力学模拟与性能研究:[硕士学位论文].西安:西北工业大学,2004,15-17
    [92] Daw M S, Baskes M I. Embedded-atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Physical Review B, 1984, 29(12): 6443-6453
    [93] Baskes M I. Modified Embedded-Atom Potentials for Cubic Materials and Impurities. Physical Review B, 1992, 46(5): 2727-2742
    [94] Doyama M, Kogure Y. Embedded Atom Potentials in Fcc and Bcc Metals. Computational Materials Science, 1999, 14(1-4): 80-83
    [95] Schmid M, Hofer W, Varga P, Stoltze P, Jacobsen K W, Norskov J K. Surface Stress, Surface Elasticity, and the Size Effect in Surface Segregation. Physical Review B, 1995, 51(16): 10937-10946[96] Fabrizio C, Vittorio R. Tight-Binding Potentials for Transition Metals and Alloys. Physical Review B, 1993, 48(1): 22-33
    [97] Finnis M W, Sinclair J E. A Simple Empirical N-Body Potential for Transition-Metals.Philosophic Magazine A, 1984, 50(1): 45-55
    [98] Ackland G J, Vitek V. Many-Body Potentials and Atom-Scale Relaxations in Noble-Metal Alloys. Physical Review B, 1990, 41(15): 10324-10333
    [99] Ackland G J, Tichy G, Vitek V, Finnis M W. Simple N-Body Potentials for the Noble Metals and Nickel. Philosophic Magazine A, 1987, 56: 735-756
    [100] Foiles S M, Baskes M I, Daw M S. Embedded-Atom-Method Function for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt and Their Alloys. Physical Review B, 1986, 33(12): 7983-7991
    [101] Manninen M, Johnson R A. Interatomic Interactions in Solids. Physical Review B, 1986, 34(12): 8486-8495
    [102] Ercolessi F, Adams J B. Interatomic Potentials From First-Principles Calculations:the Force-Matching Method. Europhysics Letters, 1994, 26(8): 583-590
    [103] Hoffmann K H, SchreiberM. Computational Physics. Berlin Heidelberg: Springer-Verlag, 1996, 268-326
    [104] Berendsen H J C, Postma J P M, van Gunsteren W F, Dinola A, Haak J R. Molecular Dynamics with Coupling to an External Bath. Journal of Chemical Physics, 1984, 81(8):3684-3690
    [105] Nose S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods.Journal of Chemical Physics, 1984, 81(1): 511-519
    [106] Hoover W G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Physical Review A, 1985, 31(3): 1695-17027
    [107] Schneider T, Stoll E. Molecular Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions. Physical Review B, 1978, 17(3): 1302-1322
    [108] Schneider T, Stoll E. Molecular-Dynamics Study of Second Sound. Physical Review B,1978, 18(12): 6468-6482
    [109] Anderson H C. Molecular Dynamics Simulations at Constant Press and / or Temperature. The Journal of Chemical Physics, 1980, 72: 2384-2393
    [110] ParrinelloM, Rahman A. Polymorphic Transitions in Single Crystals: a New Molecular??Dynamics Method. Journal of Applied Physics, 1981, 52(12): 7182-7190
    [111] Parrinello M, Rahman A. Strain Fluctuations and Elastic Constants. Journal of Chemical Physics 1982, 76(5): 2662-2667
    [112] 吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,56
    [113] 文玉华.纳米晶体微观结构与力学性质的分子动力学模拟:[博士学位论文].北京:中国科学院力学研究所,2001,42-45
    [114] 段香梅,龚新高.分子动力学模拟粒子在表面上的俘获过程.计算物理,2000,17(6):641-644
    [115] Zhou L, Wei X Q. Formation of Nodular Defects as Revealed by Simulation of a Modified Ballistic Model of Depositional Growth. Journal of Materials Science, 1998, 33(6): 1487-1490
    [116] 田民波,刘德令.薄膜科学与技术手册.北京:机械工业出版社,1991,414
    [117] Noriaki T, Hiroaki K, Norihisa H, Takaaki A Jiro M isao Y. Angular Distributions of the Particles Sputtered with Ar Cluster Ions. Materials Chemistry and Physics, 1998, 54: 262-265
    [118] Peng B, Cai M, Li G, Wu X J, Zhou F. Molecular Dynamics Study of the Microstructure and Properties of Nanocrystalline Copper. Nanostructured Materials, 1994, 4(4): 475-484
    [119] Wen Y H, Zhou F X, Liu Y W. Molecular Dynamics Simulation of Microstructure of Nanocrystalline, Chinese Physics Letters, 2001, 18(3): 411-413
    [120] Li M, Chu W Y, Gao K W, Qiao L J. Molecular Dynamics Simulation of Healing of an Ellipsoid Crack in Copper under Compressive Stress. Materials Letters, 2004, 58: 543-546
    [121] 张永伟,王自强.分子动力学方法在研究材料力学行为中的应用进展.力学进展,1996,26(1):14-27
    [122] 文玉华,周富信,刘日武,周承恩.纳米晶铜单向拉伸变形的分子动力学模拟.力学学报,2002,34(1):29-36
    [123] Zhou L, Zhang S H, Ye R Z, Gao L. Investigation on Defects in High-Rate Magnetron Sputtered CoCr Coatings. Chinese Journal of Metal Science and Technology, 1989, 5: 346-350[124] Ishii K, Naoe M, Yamanaka S. Deposition of Ferromagnetic Metal Thin Films by Ion Beam Sputtering. Transactions on Magnetics, 1979, 15(6): 1830-1831
    [125] Thompson C V. Structure Evolution During Processing of Polycrystalline Films. Annual Review of Materials Science, 2000, 30: 159-190
    
    [126] Nakamura S, Pearton S, Fasol G. The Blue Laser Diode. Berlin: Springer, 2000, 47
    [127] Krost A, Dadgar A. GaN-Based Optoelectronics on Silicon Substrates. Materials Science and Engineering B, 2002, 93: 77-84
    [128] Pal S, Jacob C. Silicon-a New Substrate for GaN Growth. Bulletin of Materials Science, 2004, 27(6): 501-504
    [129] Van der Merwe J H. Crystal Interfaces. Part Ⅱ. Finite Overgrowths. Journal of Applied Physics, 1963, 34(1): 123-127
    [130] Ichimura M, Narayan J. Role of Surface Step on Misfit Dislocation Nucleation and Critical Thickness in Semiconductor Heterostructures. Materials Science and Engineering B, 1995, 31(3): 299-303.
    [131] Wunderlich W, Fujimoto M, Ohsato H. Formation of Stacking Faults from Misfit Dislocations at the BaTiO_3/SrTiO_3 Interface Simulated by Molecular Dynamics.Materials Science and Engineering A, 2001, (309-310): 148-151
    [132] Gao F, Wang C M, Maheswaran S, Thevuthasan S. Atomic-Level Simulations of Misfit Dislocation at the Interface of Fe_2O_3/Al_2O_3 System. Nuclear Instruments and Methods in Physics Research B, 2003, 207: 63-71
    [133] Zhou X W, Wadley H N G. Misfit Dislocation in Gold/Permalloy Mutlilayers.Philosophical Magazine, 2004, 84(2): 193-212.
    [134] Voter A F, Chen S P. Accurate Interatomic Potentials for Ni.Al and Ni_3Al. In:Characterization of Defects in Materials Symposium. Boston, USA, 1987, 175-180
    [135] Rohrer C L. Interatomic Potentials for Al-Cu-Ag Solid Solutions. Modelling and Simulation in Materials Science and Engineering, 1994, 2(1):119-134
    [136] Oh D J, Johnson R A. Simple Embedded Atom Method Model for FCC and HCP Metals. Journal of Materials Research, 1988, 3(3): 471-478.
    
    [137] Bockstedte M, Liu S J, Pankratov O, WooCH, Huang H C. Diffusion of Clusters Down(111) Aluminum Islands. Computational Materials Science, 2002, 23(4): 85-94.[138] 周耐根,周浪.<111>铜膜中孪晶形成与出现几率的分子动力学模拟.金属学报,2004,40(9):897.
    [139] Wang R, Fang Q F. Core Structure and Mobility of an Edge Dislocation in Aluminium. Journal of Alloys and Compounds, 2000, 310(1-2): 80-84
    [140] Frank F C, van der Merwe J H. One-Dimensional Dislocation. I. Static Theory. Proceedings of the Royal Society of London, 1949, 198(1053): 205-216
    [141] Matthews J W, Blakeslee A E. Defects inEpitaxial Multilayers I. Misfit Dislocations. Journal of Crystal Growth, 1974, 27: 118-125
    [142] People R, Bean J C. Calculation of Critical Layer Thickness Versus Lattice Mismatch for Ge_xSi_(1-x)/Si strained-Layer Heterostructures. Applied Physics Letters, 1985, 47(3): 322-324
    [143] Dodson B W, Tsao J Y. Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow. Applied Physics Letters, 1987, 51(17): 1325-1331
    [144] Hirth J P. Some Current Topics in Dislocation Theory. Acta Materialia, 2000, 48(1): 93-104
    [145] Wegscheider W, Cerva H. Effect of Compressive and Tensile Strain on Misfit Dislocation Injection in SiGe Epitaxial Layers. Journal of Vacuum Science and Technology B, 1993, 11(3): 1056-1063
    [146] Sasaki A. Islands and Critical Thickness of InAs grown by MBE on Nominally and Misoriented GaAs Substrates. Thin Solid Films 1995, 267(1-2): 24-31
    [147] Lee G H, Shin B C, Kim I S. Critical Thickness of BaTiO_3 Film on SrTiO_3(001) Evaluated by Reflection High-Energy Electron Diffraction. Materials Letters, 2001, 50(2-3): 134-137.
    [148] Yao T. Lattice Strain in Heteroepitaxial Films. Optoelectronics-Devices and Technologies, 1991, 6(1): 37-72.
    [149] Bean J C. The Growth of Novel Silicon Materials. Physics Today, 1986, 39(10): 36-42.
    [150] Read W T. Dislocations in Crystals, New York: Mcgraw-Hill, 1953, 131
    [151] Gerold V主编,王佩璇等译.固体结构.北京:科学出版社,1998,393-400
    [152] Maree P M J, Barbour J C, van der Yeen J F, Kavanagh K L, Bulle-Lieuwma C W T. Viegers M P A. Generation of Misfit Dislocations in Semiconductors. Journal of Applied??Physics, 1987, 62(11): 4413-4420
    [153] Rosenberg R, Edelstein D C, Hu C K, Rodbell K P. Copper Metallization for High Performance Silicon Technology. Annual Review of Materials Science, 2000, 30(1): 229-264
    [154] Badzian A, Badzian T. Defects in CVD Diamonds. Ceramics International, 1996, 22(3): 223-230.
    [155] 冯端等著.金属物理学.北京:科学出版社,1998:333
    [156] Grujicic M, Dang P. Computer Simulation of Martensitic Transformation in Fe-Ni Face Centered Cubic Alloys. Materials Science and Engineering A, 1995, 201(1-2): 194-204
    [157] Fleming S D, Parkinson G M, Rohl A L. Predicting the Occurrence of Reflection Twins. Journal of Crystal Growth, 1997, 178: 402-409
    [158] Smith D L. Thin-Film Deposition. New York: McGraw Hill Inc, 1995:156
    [159] Gilmer G H, Huang H C, Rubia T D, Dalla T J, Baumann F. Lattice Monte Carlo Models of Thin Film Deposition. Thin Solid Films, 2000, 365(2): 189-200
    [160] Bai P, Yang G P, Lu T M. Low-Resistivity Cu Thin-Film Deposition by Self-Ion Bombardment. Applied Physics Letters, 1990, 56(2): 198-200
    [161] Gudmundson P, Wikstrom A. Stresses in Thin Films and Interconnect Lines. Microelectronic Engineering, 2002, 60(1-2): 17-29
    [162] 毛卫民,张弘.大规模集成电路导电薄膜的织构效应.北京科技大学学报,2000,22(6):539-542
    [163] 周浪,周耐根,朱圣龙.内应力对金属薄膜生长织构的影响.金属学报,2002,38(8):795-798
    [164] Zhou L, Zhu S L. Development of a Strain Induced Planar Film Texture as Revealed by Molecular Dynamics Simulation. Scripta Materialia, 2002, 47: 677-682
    [165] Watanabe T, TsureKawa S. The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering. Acta Materialia, 47(15-16): 4171-4185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700