基于不确定需求预测的概率空域拥挤管理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空运输业的飞速发展,空域系统运行压力日益增大、运行环境多变复杂,不确定性因素对空中交通态势的影响日益突出。从不确定性角度缓解空域运行压力,逐渐成为欧美等航空发达国家近年来关注的热点之一,也是精细化、科学化研究我国空域拥挤问题的重要课题。本论文在深入分析交通需求随机性变化机理的同时,从风险管理的角度定位空域拥挤管理,探讨传统确定性的空域拥挤管理方式向不确定性方式的转变过程,有助于进一步完善空中交通需求预测方法,改进空域拥挤管理理论,提高航空运输服务的经济效益和社会效益。
     本论文在借鉴国外先进研究成果的基础上,结合我国空域拥挤管理实际问题,利用空中交通流量管理、流量统计与预测、多目标优化、空域拥挤风险管理等技术,从不确定交通需求预测出发,将风险预测、风险解决和风险管理决策融入空域拥挤缓解过程中,通过整合空中交通流量的预测与调配过程,初步建立了一套较为完整的概率空域拥挤管理理论方法。主要研究内容包括:
     (1)系统论述了概率空域拥挤管理研究基础。首先,定义了概率空域拥挤管理的基本概念要素,包括空中交通管理、空中交通流量管理、风险管理、概率交通需求、不确定空域容量、空域拥挤风险和空域拥挤风险管理等,论述了各概念间的衍生推演关系,明确了概率空域拥挤管理概念要素体系。然后,分析了概率空域拥挤管理的基本原理,阐明了实施概率空域拥挤管理的具体流程。最后,介绍了所采用的空中交通流量管理、风险管理、空中交通流量统计与预测、空域容量评估、多目标优化,以及空域拥挤风险管理等主要技术。
     (2)研究了空域拥挤风险预测方法。首先,提取了影响扇区交通需求预测的主要因素,通过分析航空器的到达扇区时间、扇区飞行时间和离开扇区时间三因素的随机特征,建立了空域扇区概率需求预测模型。然后,将空域扇区概率需求预测模型先后与确定性和不确定性的空域容量相结合,建立了空域拥挤风险预测模型及方法。最后,通过算例仿真表明,所建模型和方法可以量化扇区交通需求的不确定性分布及变化机理,分析不确定性因素对空中交通需求与空域容量的影响,并掌握二者的变化与匹配,从而确定未来一段时间内空域范围中可能发生的空域拥挤风险问题。
     (3)研究了基于局部优化的空域拥挤风险解决方法。首先,将空域拥挤风险预测模型引入空域拥挤风险解决机制,完成了空域拥挤风险预测模型在风险解决过程中的转化;通过预测高风险拥挤空域及时段,以空域最高拥挤风险为对象,从平衡空域拥挤的运行成本与运行风险出发,建立了基于局部优化的空域拥挤风险解决模型和方法,综合处理空域内发生拥挤后续可能性、全体航班的总延误时间、不同空域用户延误分配公平性以及解决策略的影响等多个目标。然后,利用高维多目标优化的NSGA2改进算法,实现了高拥挤风险解决策略的初次优化。最后,通过算例仿真结果表明,所建模型及算法不仅能在合理的时间内为空域内航空器找到较优离场时间和较优飞行路径,还能降低空域拥挤后续发生的可能性和全体航空器的运行成本,提高空域用户延误分配的公平性,降低对原有航空器飞行计划的影响程度,缓解空域扇区的最高拥挤风险。
     (4)研究了基于全局优化的空域拥挤风险解决方法。首先,针对初次优化后尚未解决的空中交通流全局优化问题,综合考虑从交通需求分布、平衡以及管制员负荷等问题,建立了基于全局优化的空域拥挤风险解决模型,并利用多目标遗传算法,实现了空域拥挤风险解决策略的二次优化。结合空域拥挤风险解决策略,选取了符合实际运行需要的风险损失评价指标,建立了空域拥挤风险评价模型,并利用空域拥挤风险管理决策方法,确定了空域拥挤风险解决策略的实施时间和空域拥挤风险概率阈值。最后,通过算例仿真结果表明,所建模型和方法可以从空域运行的全局出发,从整体上进一步解决了交通流全局分布及各扇区的运行负荷等问题,有助于平衡与协调交通流运行全局,还可以获得较为适宜的空域拥挤风险解决策略实施时间和空域拥挤风险概率阈值,从而实现空域拥挤风险管理过程的进一步细化。
     最后,论文总结了基于不确定需求预测的概率空域拥挤管理方法研究成果,指出本文在不确定交通需求预测方面可以向更加细致的微观交通流层面拓展,在空域拥挤风险管理过程中可以更加深入地探讨人为因素的影响,在理论研究的基础上还需向实际应用系统转化,并展望了今后的研究方向。
With the rapid development of air transportation industry, airspace system performance presstureis increasing, and the airspace environment has been more and more complicated. Because uncertainfactors have increasingly been affacting the air traffic, how to releivate the airspace system pressturefrom uncertainty theory perspective is becoming a focus in the field of air traffic management amongsome advanced aviation counties. In order sophisticat the process of airspace congestion problem inChina, based on the current situation of airspace system, we deeply analyzed the random changemechamism of air traffic demand. Meanwhile, we investigate the airspace congestion managementfrom the point of risk management, and discussed how the traditional determinated airspacecongestion management gradually transferred to the uncertain management. The research is help toconsummate the method of air traffic demand prediction, to improve the theory of airtspacecongestion management, and promote the economic and social benifit
     In this paper, based on some abroad sophisticated experiences, we researched the praticalairspace congestion problem. We utilized the thecnologies in the field of air traffic flow management,air traffic flow stasatics and prediction, multi-objective optimization and airspace congestion riskmanagement, and discussed the process of uncertain air traffic demand prediction, and interegratedthe risk prediction, resolution and decision into the airspace congestion relievation. The main contentof the paper is as follows:
     (1) Reaserach base of airspace congestion risk management was introduced. We defined the basicconcepts including air traffic management, air traffic flow management, risk management, risk trafficprediction, uncertain airspace capacity, airspace congestion risk and airspace congestion riskmanagement, and also established the deviation relationship between these concepts. Then, weanalyzed the basic theory of airspace congestion management, and provided the probabilistic airspacecongestion management definition, and its specific process and inherent. Moreover, based on theconcepts of probabilisitic airspace congestion management, we developed the relationship betweenthe concepts and the technologies, and introduced the technologies including air traffic flowmanagement, risk management, air traffic flow statictics and prediction, airspace capacity evalution,multi-objective optimization, and airspace congestion risk management.
     (2) Methodology of airspace congestion risk prediction was studied. First, we exacted the mainfactors influenceing the airspace sector’s traffic demand prediction, and established the airspace sectorprobabilistic demand prediction model through analyzing the random features of the aircraft sector entry time, sector exit time and existing time in the airspace sectors. Based on the model, the airtraffic demand probabilistic distribution was obtained, and the prediction errors could be quantified.Then, based on the airspace sector probabilistic traffic demand prediction model, we combined certainand uncertain airspace capacity ecaluation respectively, and established the airspace congestion riskprediction model and method. The simulation results show that the model and method we establishedcan quantify the traffic demand prediction uncertainty and its changing rules, and the influences of theuncertain factors on the traffic demands and capacities can be found out.
     (3) Methodology of airspace congestion risk resolution based on partial optimization wasinvestigated. Based on the airspace congestion risk prediction, we established the airspace congestionresolution model. Through this model, we could comprehensively deal with several objectives,including the follow-up congestion, the total flight delay time, the different airspace users’ allocationequity and influence of the resolution strategies. Meanwhile, we designed high-dimensionalmultiobjective genetic NSGA2, realizing the initial optimization of the airspace congestion resolutionstrategies. The simulation results show that the model and algorithm established cannot only find outoptimum departure time and routes, but also reduce the risk of follow-up congestion, the operationcost and the influence, meanwhile, increase the equity of the airspace users.
     (4) Methodology of airspace congestion risk resolution based on overal optimization wasresearched. First, in order to deal with the remaining problem of airspace congestion globaloptimization, we established the airspace congestion risk decision model, considering the distributionand balance of the air traffic flow, the workload of the air traffic controlors. Meanwhile, usingmulti-objective genetic algorithm, we reoptimized the airspace congestion risk resolution strategies.Combined with the airspace congestion resolution, we developed the airspace congestion riskevulation model, and utilized the decision tree to resolve the operating time of the airspace congestionresolution strategies and the threshold of the airspace congestion probability. Finally, the simulationresults show that the model and method established can deal with the air traffic global distribution andthe operation workload in each sector, and can obtain the suitable operating time and the airspacecongestion risk threshold.
     Finally, in the thesis, we concluded the archievements of the probabilistic airspace congestionmanagement based on the uncertain traffic demand prediction, and pointed out the deficiency of thisresearch about microscopic traffic flow, human factors and performance system relization. Accordingto the conlusion above, we suggested the future study direction.
引文
[1]中国民航局,2010年民航机场生产统计公报[EB/OL],http://www.caac.gov.cn/I1/K3/201103/t20110315_38273.html,2011-03-15.
    [2]中国民航局,2010-2015年中国民用航空行业深度评估及投资前景预测报告[EB/OL],http://www.chinayearbook.com/report/book_29631.htm,2010-04.
    [3]南京航空航天大学,空域与飞行流量协同运行管理技术研究报告.
    [4]南京航空航天大学,协同流量管理核心技术(空域容量评估)研究报告.
    [5]南京航空航天大学,中南地区空中交通流量管理需求书.
    [6] H.Vandevenne, M.A.Lippert. Evaluation of Runway-Assignment and Aircraft-SequencingAlgorithms in Terminal Area Automation. The Lincoln Laboratory Journal,1994,7(02):215-238.
    [7] D.H.Williams, St.M.Green. Flight Evaluation of Center-TRACON Automation SystemTrajectory Prediction Process, NASA, TP-1998-208439, Langley Research Center, HamptonVirginia23681-2199,1998.
    [8] J.E.Evans. Tactical Weather Decision Support to Complement “Strategic” Traffic FlowManagement for Convective Weather.4thUSA/Europe Air Traffic Management R&D Seminar,Santa Fe: FAA,2001:1~10.
    [9] K.T.Muller, J.A.Sorensen, J.George. Couluris. Strategic Aircraft Trajectory PredictionUncertainty and Statistical Sector Traffic Load Modeling. AIAA, AIAA Guidance, Navigation,and Control Conference and Exhibit, Canada, Monterey: AIAA,2002:6~15.
    [10] E.R.Mueller, G. B.Chatterji. Analysis of Aircraft Arrival and Departure Delay Characteristics.Aircraft Technology. AIAA, The Integration, and Operations Technical Forum, Los Angeles:AIAA,2002:1~14.
    [11] J.Krozel, D.Rosman, S.R.Grabbe. Analysis of En Route Sector Demand Error Sources. AIAA,AIAA Guidance Navigation and Control Conference and Exhibit, Canada, Monterey: AIAA,2002:1~11.
    [12] S.Swierstra, S.M.Green. Common Trajectory Prediction Capability for Decision Support Tools.NASA, The5th USA/Europe Air Traffic Management R&D Seminar, Budapest: NASA,2003:25~37.
    [13] N.Pujet, B.Delcaire, E.Feron. Input-Output Modeling and Control of the Departure. Process ofCongested Airports. AIAA, The AIAA Guidance, Navigation and Control Conference. Portland,Oregon: AIAA,1999.
    [14] C.Gong, D.McNally. A Methodology for Automated Trajectory Prediction Analysis. AIAA, TheAIAA Guidance Navigation and Control Conference and Exhibit, USA, Rhode Island: AIAA,2004:1~14.
    [15] I.Lymperopoulos, J.Lygeros. A. Lecchini. Model Based Aircraft Trajectory Prediction duringTakeoff. AIAA, The AIAA Guidance Navigation and Control Conference and Exhibit. USA,Colorado: AIAA,2006:1~12.
    [16] Enhanced Traffic Management System (ETMS) Reference Manual, Version7.5, ReportNo.VNTSC-DTS56-TMS-004, Volpe National Transportation Systems Center, U.S. Departmentof Transportation, November2002.
    [17] M.Larry. Probabilistic Methods for Air Traffic Demand Forecasting. AIAA, The AIAA Guidance,Navigation, and Control Conference and Exhibit, Canada, Monterey: AIAA,2002:5~8.
    [18] Mueller, K.Tysen, J.A.Sorenson et a1. Strategic Aircraft Trajectory Prediction Uncertainty andStatistical Sector Traffic Load Modeling. AIAA, The AIAA Guidance, Navigation, and ControlConference and Exhibit, Canada, Monterey: AIAA,2002:1~11.
    [19] S.Roy, B.Sridhar, G. C.Verghese. An Aggregate Dynamic Stochastic Model for Air TrafficControl. FAA&Eurocontrol, The5thUSA/Europe ATM2003R&D Seminar. Budapest: FAA&Eurocontrol,2004:1~10.
    [20] C.Wanke, M.Callaham, D.Greenbaum, et a1. Measuring Uncertainty in Airspace DemandPredictions for Traffic Flow Management Applications. AIAA, The2003AIAA Guidance,Navigation, and Control Conference and Exhibit, USA, Austin: AIAA,2003:11~14.
    [21] C.Wanke, S.Mulgund, D.Greenbaum, et a1. Modeling Traffic Prediction Uncertainty for TrafficManagement Decision Support. AIAA, The AIAA Guidance, Navigation, and ControlConference and Exhibit, USA, Providence: AIAA,2004:16~19.
    [22] P. K.Menon, G.D.Sweriduk, K.D.Bilimoria. New Approach for Modeling, Analysis and Controlof Air Traffic Flow. Guidance, Control, and Dynamics,2003,27(05):737~744.
    [23] B.Sridhar, T.Soni, K.Sheth, et a1. An Aggregate Flow Model for Air Traffic Management. AIAA,The AIAA Guidance, Navigation and Control Conference, USA, Providence: AIAA,2002:1~13.
    [24] S.Grabbe, B.Sridhar. Congestion Management with an Aggregate Flow Model. AIAA, The AIAAGuidance, Navigation, and Control Conference and Exhibit, USA, San Francisco: AIAA,2005:1~14.
    [25] E.Gilbo, S.Smith. A New Model to Improve Aggregate Air Traffic Demand Predictions. AIAA,The AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head: AIAA,2007:1~11.
    [26] E.Gilbo, S.Smith. Probabilistic Prediction of Aggregate Traffic Demand Using Uncertainty inIndividual Flight Predictions. AIAA, The AIAA Guidance, Navigation, and Control Conference,USA, Chicago: AIAA,2009:1~20.
    [27] D.Sun, B.Sridhar, S.Grabbe. Disaggregation Method for an Aggregate Traffic Flow ManagementModel. Guidance, Control, and Dynamics,2010,33(03):666~676.
    [28] E.P.Gilbo, S.B.Smith. New Method for Probabilistic Traffic Demand Predictions for En RouteSectors Based on Uncertain Predictions of Individual Flight Events. FAA&Eurocontrol, TheNinth USA/Europe Air Traffic Management Research and Development Seminar (ATM2011),Berlin: FAA&Eurocontrol,2011:1~11.
    [29] S.Roy, B.Sridhar, G.C.Verghese. An Aggregate Dynamic Stochastic Model for an Air TrafficSystem. FAA&Eurocontrol, The5th USA/Europe Air Traffic Management R&D Seminar,Hungary, Budapest: FAA&Eurocontrol,2003:1~10.
    [30] R.Hoffman, J.Krozel, G.Davidson, et a1. Probabilistic Scenario-Based Event Planning for TrafficFlow Management. AIAA, The AIAA Navigation and Control Conference and Exhibit, USA,Hilton Head: AIAA,2007:1~11.
    [31] P.B.Liu, M.Hansen, A.Mukherjee. Scenario-based Air Traffic Flow Management-from Theory toPractice. Transportation Research,2008, Part B (42):685~702.
    [32] S.Mulgund, C.Wanke, D.Greenbaum, et a1.A Genetic Algorithm to Probabilistic AirspaceCongestion Management. AIAA, The AIAA Guidance, Navigation, and Control Conference andExhibit, USA, Keystone: AIAA,2006:1~17.
    [33] N.Sood, S.Mulgund, C.Wanke, et a1. A Multi-Objective Genetic Algorithm for Sloving AirspaceCongestion Problems. AIAA, The AIAA Guidance, Navigation, and Control Conference andExhibit, USA, Hilton Head: AIAA,2007:1~28.
    [34] J.Dearmon, C.Wanke, D.Greenbaum. Probabilistic TFM-Preliminary Benefits Analysis of anIncremental Solution Approach,07-0168, McLean: MITRE/CAASD.
    [35] C.Wanke, D.Greenbaum. Incremental, Probabilistic Decision Making for En Route TrafficManagement. The MITRE Corporation,2007.
    [36] C.Taylor, C.Wanke. A Generalized Random Adaptive Search Procedure for Solving AirspaceCongestion Problems. AIAA, The AIAA Guidance Navigation and Control Conference andExhibit, Honolulu: AIAA,2008:1~20.
    [37] S.Zobell, C.Wanke, L.Song. Continual, Probabilistic Airspace Congestion Management. AIAA,The AIAA Guidance, Navigation and Control Conference, USA, Chicago: AIAA,2009:1~13.
    [38]杨兆升,朱中.基于卡尔曼滤波理论的交通流量实时预测模型.中国公路学报,1999,12(03):63~67.
    [39]戴施华,周欣荣.Kalman滤波理论在短时交通预测上的应用.哈尔滨商业大学学报,2005,21(06):728~730.
    [40]张晓利,贺国光.考虑交通吸纳点的非参数回归组合型短时交通流预测方法.系统工程,2006,24(12):21~25.
    [41]黄大荣,宋军,汪达成等.基于ARMA和小波变换的交通流预测模型研究.计算机工程与应用,2006,42(36):191~194.
    [42]杨芳明,朱顺应.基于小波的短时交通流预测.重庆交通学院学报,2006,25(03):100~102.
    [43]姚智胜,邵春福,熊志华.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究.中国管理科学,2007,15(01):64~68.
    [44] Cheng Taoya, Cui Deguang, Cheng Peng. Data Mining for Air Traffic Flow Forecasting: AHybrid Model of Neural-Network and Statistical Analysis. IEEE, The2003IEEE IntemationalConfuence on Intelligent Transportation Systems, China, Shanghai: IEEE,2003:211~215.
    [45]由嘉.基于神经网络技术的空中交通管制辅助支持决策系统[硕士学位论文].西安:西北工业大学,2005.
    [46]王大海.末端区域4D导引的水平轨迹计算方法.飞行力学,1996,14(03):27~33.
    [47]王大海,苏彬,杨俊.终端区域4D导引的高度剖面与速度剖面研究.飞行力学,2000,18(01):14~18.
    [48]徐肖豪,刘建国.空中交通管制中轨迹预测的相互作用多模型算法的设计.中国民航学院学报,2001,19(02):6~9.
    [49]徐肖豪,杨国庆,刘建国.空管中飞行轨迹预测算法的比较研究.中国民航学报,2001,19(06):1~6.
    [50]徐肖豪,杨国庆,刘建国.空管中轨迹预测的一种变结构IMM算法.交通运输工程与信息学报,2003,1(01):70~74.
    [51]高彦杰,徐肖豪,杨国庆.飞行轨迹预测的两种变结构IMM算法.中国民航学院学报,2003,21(06):1~5.
    [52]刘玉梅.基于最小二乘估计原理的飞机流量预测.中国民航学院学报,2003,21(04):20~23.
    [53]崔德光,吴淑宁,徐冰.空中交通流量预测的人工神经网络和回归组合方法.清华大学学报,2005,45(01):96~99.
    [54]彭瑛,胡明华,张颖.动态航迹推测方法.交通运输工程学报,2005,5(01):61~65.
    [55]郭运韬,朱衍波,黄智刚.民用飞机航迹预测关键技术研究.中国民航大学学报,2007,25(01):20~24.
    [56]瞿英俊.空中交通流量动态预测与分析研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [57]殷允楠.空中交通流量统计预测技术研究,[硕士学位论文].南京:南京航空航天大学,2010.
    [58]田文,胡明华.空域扇区概率交通需求预测模型.西南交通大学学报,2011,46(2):340~346.
    [59]徐肖豪,韩峰,戴福青.空中交通流量统计和预测系统的设计与实现.中国民航学院学报,2005,23(04):1~5.
    [60]由嘉,白存儒,陶冶等.基于神经网络的空中交通管制决策支持系统.计算机仿真,2006,23(04):245~247.
    [61]徐冰,崔德光.空中交通流量管理预测分析系统的研究与开发.科学技术与工程,2006,6(07):840~847.
    [62]吕小平.中国民航新一代空中交通管理系统发展总体框架.中国民用航空,2007,08(80):24~26.
    [63]田勇.空中交通流量管理关键技术研究,[博士学位论文].南京:南京航空航天大学,2009.
    [64]胡明华.空中交通流量管理理论与方法.北京:科学出版社,2010:10~12.
    [65]国际民航组织,ICAO DOC4444,空中交通服务规则,蒙特利尔:国际民航组织,1999.
    [66]中国民用航空总局,CCAR-93TM-R2,中国民用航空空中交通管理规则,北京:中国民用航空总局,2000.
    [67]国家空管委办公室,出国考察飞行流量管理与空管研究开发机构情况报告,北京:国家空管委办公室,2006.
    [68] Tian Wen, Hu Minghua. The Application of Multi-objective Generic Algorithm in the AirspaceFlow Program. ICTE, The2nd International Conference on Transportation Engineering,Chengdu: ICTE,2009:2219~2224.
    [69]田文,胡明华.多目标流量管理优化模型及算法研究.系统工程学报,2011,26(04):442~450.
    [70] Tian Wen, Hu Minghua. Study of Air Traffic Flow Management Optimization Model andAlgorithm Based on Multi-Objective Programming. ICCMS, The ICCMS2010-2010International Conference on Computer Modeling and Simulation, Sanya: ICCMS,2010:210~214.
    [71]田文,胡明华.概率空域拥挤管理模型与方法研究.山东大学学报(工学版),2010,40(06):41~47.
    [72]田文,胡明华.空域拥挤风险管理时间决策模型与方法.南京航空航天大学学报,2011,43(04):565~571.
    [73]董湘宁,赵征,张洪海.空中交通管理基础.北京:科学出版社,2011:1~8.
    [74]邓铁军.工程风险管理.北京:人民交通出版社,2004:50~54.
    [75] G..W.Adams, CamPbell. Where Are You on the Journey to ERM. Risk Management,2005,3:8~11.
    [76]风险管理学术网站资料,International Risk Management Institute: httlp://www.irmi.com.
    [77] A.Jaafari. Management of Risk, Uncertains and Opportunities on Projects: Time for aFundanmental Shift. International Journal of Project Management,2001,19:89~101.
    [78] H.Steyn. Project Management Applications of the Theory of Constraints Beyond CriticalChainscheduling. International Journal of Project Management,2002,20:75~80.
    [79] J.H.M.Tah, V.Carr. Towards a Framework for Project Risk Knowledge Management in theConstruction Supply Chain. Advances in Engineering Software,2001,32:10~11.
    [80] R.W.Hayes, J.G.Rerry. Risk Management in Engineering Construction Implications for ProjectManagement. London: Thomas Telford Ltd,1986:31-52.
    [81] R.B.Belzer. Getting Beyond ‘Grin and Bear It’ in the Practice of Risk Management. ReliabilityEngineering and System Safety,2001,72(02):137~148.
    [82] T.Lyons, M.Skitmore. Project Risk Management in the Queensland Engineering ConstructionIndusty: a Survey. International Journal of Project Management.2004,22:51~61.
    [83] B.Mulholland, J.Christian. Risk Assessment in Construction Schedules. Joumal of ConstructionAnd Management, l999,125(01):8~15.
    [84] H.Steyn. Project Management Applications of the Theory of Constraints beyond Critical ChainScheduling. International Journal of Project Management,2002,20:75~80.
    [85] J.H.M.Tah, V.A.Carr. Proposal for Construction Project Risk Assessment Using Fuzzy Logic.Journal of Construction Management and Economics,2000,18:491~500.
    [86] S.Mak, D.Picken. Using Risk Analysis to Determine Construction Project Contingences. Journalof Construction Engineering and Management,2000,2:130~136.
    [87] R.Flanagn, G.Norman. Risk Management and Construction. Blackwell Scientific Publication,London: Oxford,1993:4~21.
    [88]范道津,陈伟珂.风险管理理论与工具.天津:天津大学出版社,2010:14~17.
    [89] FAA,第1100.1号令Organization-Policies and Standards.
    [91] FAA,第1100.5号令FAA Organization-Field.
    [92] FAA官方资料: www.fly.faa.gov/Products/Training/Traffic_Management_for_Polits.htm.
    [93] ETMS官方网站资料:www.fly.faa.gov/Products/Information/ETMS/etms.htm.
    [94] Eurocontrol ATFM官方网站:www.eurocontrol.int/ses/public/standard_page/sk_atfm.html.
    [95] D.J.Bertismas, S.Stock. The Air Traffic Flow Management Problem with Enroute Capacities.Operations Research,1998,46(03):406~422.
    [96] P.B.Vranas, D.J.Bertsimas, A.R.Odoni. The Multiairport Ground-Holding Program in Air TrafficControl. Operations Research,1994,42(02):249~261.
    [97] G.Andreatra, L.Brunetta. Multi Airport Ground Holding Program: A Computational Evaluationof Exact Algorithms. Operations Research,1998,46(01):57~64.
    [98] P.B.Vranas. Optimal Slot Allocation for European Air Traffic Flow Management. Air TrafficControl Quarterly,1997,04:249~280.
    [99] A.R.Odoni. The Flow Management Problem in Air Traffic Control Flow Control of CongestedNetworks. Berlin: Springer,1987:268~288.
    [100] Hu Xiao Bing, Chen Wen Hua. Receding Horizon Control for Aircraft Arrival Sequencingand Schedu1ing. IEEE Transactions on Intel1igent Transponation Systems,2005,6:189~197.
    [101] Walid Tfaili, Patrick Siarry. A New Charged Ant Colony Algorilhm for ContinuousDynamic Optimization.Applied Mathematics and Computation,2008,197:604~613.
    [102] Hu Xiao Bing, Ezequiel Di Paolo. An Efficient Genetic Algorithm with Unifornl Crossoverfor Air traffic Control. Computers&0peratiOns Research,2009,36:245~259.
    [103] Hu Xiao Bing, Chen Wen Hua. Genetic Algorithm Based on Receding Horizon Control forArrival Sequencing and Scheduling. Journal of Engineering App1ications of ArtificialInte1ligence,2005,18:633~642.
    [104] Hu Xiao Bing, Ezequiel Di Paolo. Binary-Representation-Based Genetic Algorithm forAircraft Arrival Sequencing and Scheduling. IEEE Transactions on Intelligent TransportationSystems,2008,9:30l~310.
    [105] M.Dixon. Automated Aircraft Routing Through Weather Impacted Airspace. AmericanMeteorological Society, The Fifth International Conference on Aviation Weather Systems.Vienna: American Meteorological Society,1993:295~298.
    [106] J.Krozel, T.Weidner, G.Hunter. Terminal Area Guidance Incorporating Heavy Weather.AIAA, The AIAA Guidance, Navigation and Control Conference, USA, New Orleans: AIAA,1997:411~421.
    [107] J.Krozel, C.Lee, J.S.B.Mitchell. Estimating Time of Arrival in Heavy Weather Conditions.AIAA, The AIAA Guidance, Navigation and Control Conference, USA, Portland: AIAA,1999:1481~1495.
    [108]宋柯.空中交通流量管理改航策略初步研究,[硕士学位论文].南京:南京航空航天大学,2002.
    [109] J.Krozel. Comparison of Algorithms for Synthesizing Weather Avoidance Routes inTransition Airspace. AIAA, The AIAA Guidance, Navigation and Control Conference, USA,Providence: AIAA,2004:1~16.
    [110] B.Sridhar. Integration of Traffic Flow Management Decisions. AIAA, The AIAA Guidance,Navigation and Control Conference, Canada, Monterey: AIAA,2002:1~9.
    [111] W.Love. Assessment of Prediction Error Impact on Resolutions for Aircraft and SevereWeather Avoidance. AIAA, The4th Technology,Integration,and Operations Forum, USA,Chicago: AIAA,2004:1~10.
    [112] X.Li.Establishment of Flight Rerouting Area and Air Route Planning Based on ConveyPolygon. CCDC, The2008Chinese Control and Decision Conference, China, Yantai: CDDC,2008:2999~3004.
    [113] S.Atkins. Concept Description and Development Plan for the Surface Management System.Air Traffic Control,2002,44(01):1~8.
    [114] S.Atkins, D.Walton. Functionalities, Displays and Concept of Use for the SurfaceManagement System. AIAA, The21’st AIAA/IEEE Digital Avionics Systems Conference, USA,Irvine: AIAA,2002:1~8.
    [115] S.Lockwood, S.Atkins, N.DoUghi. Surface Management System Simulations in NASA’sFuture Flight Central. AIAA, The AIAA Guidance, Navigation and Control Conference, Canada,Monterey: AIAA,2002.
    [116] S.Atkins, C.Brinton, D.Walton. Functionalities, Displays and Concept of Use for theSurface Management System. The21st Digital Avionics Systems Conference, USA, Irvine: ALRInternational,2002:1~12.
    [117] A.Spencer, P.Smith, C.Billings et a1. Decision Support Tools to Assist in Airport SurfaceManagement. IEEE, The Systems, Man and Cybernetics Conference2003, IEEE, WashingtonD.C.: IEEE,2003:1606~1611.
    [118] P.M.Moertl, J.M.Hitt, Factors for Predicting Airport Surface Characteristics and PredictionAccuracy of the Surface Management System. IEEE, The Systems, Man and Cybemetics IEEEInternational Conference, Washington D.C.: IEEE,2003:3798~3803.
    [119] D.Walton, C.Quinn, S.Atkins. Human Factors Lessons Learned from a Surface ManagementSystem Simulation. AIAA, The AIAA Aviation Technology Integration and OperationsConference, Los Angeles: AIAA,2002.
    [120] E.W.Dijkstra. A Note on Two Problems in Connection with Graph Theory. NumerischeMath.,1959,1:269~271.
    [121] C.Brinton, J.Krozel, B.Capozzi. Improved Taxi Prediction Algorithms for the SurfaceManagement System. AIAA, The AIAA Guidance, Navigation and Control Conference andExhibit, Canada, Monterey: AIAA,2002.
    [122]刘思峰.管理预测与决策方法.北京:科学出版社,2008:10~12.
    [123]阎威,张兆宁.空中交通数据统计分析软件的研究与开发.控制工程,2007,1:139~141.
    [124] T.Chenb, D.Cui, P.Cheng. Data Mining for Air Traffic Flow Forecasting: A Hybrid Model ofNeural Network and Statistical Analysis. IEEE, The2003IEEE Intemational Confuence onIntelligent Transportation Systems, Shanghai: IEEE,2003:211~215.
    [125]邓聚龙.灰预测与灰决策.武汉:华中科技大学出版社,2000:30~35.
    [126]刘思峰,邓聚龙.GM(1,1)模型的实用范围.系统工程理论与实践,2000,5:122~124.
    [127]崔逊学.多目标进化算法及其应用.北京:国防工业出版社,2006:4~6.
    [128] D.Veldhuizen, G.B.Lamount. Multi-Objective Evolutionary Algorithm: Analyzing theState-of-the-art. IEEE Trans. On Evolutionary Computation,2000,18(02):125~147.
    [129] K.Deb, U.B.Rao, S.Karthik. Dynamic Multi-objective Optimization and Decision-makingUsing Modified NSGA2: A Case Study on Hydro-thermal Power Scheduling. Springer-Verlat,The Evolutionary Multi-cirterion optimization. Berlin: Springer-Verlat,2007:803~817.
    [130] K.Deb, A.Pratap, S.Agarwal et al. A Fast, Elitist Multi-objective Genetic Algorithms:NSGA2. IEEE Transaction on Evolutionary Computation,2002,6(02):182~197.
    [131] C.M.Villasanti, C.V.Luken, B.Baran. Dispatch of Hydroelectric Generating Units UsingMulti-objective Evolutionary Algorithms. IEEE, The IEEE/PEA Transmission and DistributionConference and Exposition, Brazil: IEEE,2004:929~934.
    [132] E.Zitzler, L.Thiele. Multi-objective Evolutionary Algorithms: A Comparative Case Studyand the Strength Pareto Approach. IEEE Transaction on Evolutionary Computation,1999,3(4):257~271.
    [133] H.C.S.Rughooputh, Ah King. Environmental Economic Dispatch of Thermal Units Usingan Elitist Multi-objective Evolutionary Algorithm. ICIT, The IEEE ICIT2003, Maribor: ICIT,2003:48~53.
    [134] Abido M.A. Environment Economic Power Dispatch Using Multi-objective EvolutionayAlgorithms. IEEE Transactions on Power Systems,2003,18(04):1529~1537.
    [135] M.A.Abido. Multi-objective Evolutionay Algorithm for Electric Power Dispatch Problem.IEEE Transactions on Ebolutionary Computation,2006,10(03):315~329.
    [136] G.Gcelli, E.Ghiani, S.Mocci et al. A Multi-objective Evolutionary Algorithm for the Sizingand Siting of Distributed Generation. IEEE Transactions on Power Systems,2005,20(02):750~757.
    [137] F.Mendoza, J.L.Bernal-Agustin, Doming Navarro. NSGA, SPEA Applied to Multi-objectiveDesign of Power Distribution Systems. IEEE Transactions on Power Systems,2006,21(04):1938~1945.
    [138] J.Horn, N.Nafpliotis, D.E.Goldberg. A Niched Pareto Genetic Algorithm for Multi-objectiveOptimization. The First Conference on Evolutionary Computation, Piscataway,1994:82~87.
    [139] Z.H.Wang, X.G.Yin, Z.Zhang et al. Pseudo-Parallel Genetic Algorithm for Reactive PowerOptimization. IEEE, The Power Engineering Society General Meeting, Toronto: IEEE,2003:903~907.
    [140] Lei D.M., Wu Z.M. Tabu Search-based Approach to Multi-objective Machine-part CellFormation. International Journal of Production Research,2005,43(24):5241~5252.
    [141] Hung M.H., Shu L.S. et al. A Novel Intelligent Multi-objective Simulated AnnealingAlgorithm for Designing Robust PID Controllers. IEEE Transactions on Systems, Man andCybernetics,2008,38(02):319~329.
    [142] Kalyanmoy Deb, J.Sundar, Udaya Bhaskara Rao N. Reference Point Based Multi-ObjectiveOptimization Using Evolutionary Algorithms. Interantional Journal of ComputationalIntelligence Research,2006,2(03):273~286.
    [143]邓国强.基于参考点的演化多目标优化算法及性能评价研究[硕士学位论文].武汉:武汉理工大学,2007.
    [144] D.Bertsimas, G.Lulli, A.Odoni. The Air Traffic Flow Management Problem: An IntegerOptimization Approach. Computer Scinece,2008,5035:34~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700