感应电机无速度传感器直接转矩控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以与辽宁赛沃斯节能技术有限公司合作的“无速度传感器直接转矩控制方法的研究”课题为工程背景,研究无速度传感器的直接转矩控制的关键技术。主要围绕减小无速度传感器直接转矩控制系统的转矩波动问题,研究速度自适应磁链观测器、转矩和磁链的非奇异终端滑模控制。通过对传统的SVPWM算法进行改进,抑制PWM电机驱动系统的共模干扰。主要工作体现在以下几个方面:
     本文首先简要介绍了基于极点配置理论的速度自适应定子磁链观测器,并分析了其优缺点。为了克服电机运行过程中电机参数变化对观测精度和稳定性的不良影响、提高观测器的鲁棒性,设计了一个同时考虑定、转子电阻不确定性的速度自适应定子磁链观测器。它以定子电流和定子磁链为状态变量,把磁链观测和速度辨识结合在一起,可以将定子磁链观测值应用于直接转矩控制算法中,速度的辨识值用于无传感器控制系统的速度反馈。定义了李亚普诺夫函数,根据其稳定性理论推导出速度自适应收敛率。采用二次稳定性理论将观测器的增益矩阵的设计问题转化成了H∞状态反馈问题,通过对H∞状态反馈控制器的求解,进而得到了观测器的增益矩阵。为了验证观测器的有效性,进行了系统仿真研究并对仿真结果进行了分析。
     针对直接转矩控制技术以容差形式的Bang-Bang控制模式给系统的稳态运行带来的转矩脉动大、电流谐波成分重、定子磁链轨迹畸变等问题,将非奇异终端滑模控制应用到了转矩和磁链控制中。为了提高传统滑模控制的收敛性,分别独立设计了转矩控制器和磁链控制器的非奇异终端滑模平面。转矩控制器和磁链控制器由等效控制项和非线性切换项组成,非线性切换项中的符号函数sgn(S)通过积分作用削弱了控制量的抖振,从而获得了低抖振的转矩控制器和磁链控制器。通过系统仿真验证了控制器的有效性。
     为了降低PWM电机驱动系统的共模干扰,深入地研究了SVPWM算法产生共模干扰的原因和现有的改进的SVPWM算法对共模干扰的抑制机理。综合考虑了共模电压的减小、共模电流的减小以及直流母线电压利用率,通过对传统SVPWM算法的改进来抑制系统的共模干扰,改进的SVPWM方法不采用零电压矢量,利用方向相反的两个电压矢量作用相同的时间t0/2相当于零电压矢量作用了时间t0的关系,用三个有效的电压矢量来合成参考电压矢量。详细阐述了改进的SVPWM算法的DSP实现过程。给出了改进的SVPWM的仿真,验证了算法的有效性。
     开发出了一套以数字信号处理器TMS320F2812为控制核心额定功率为3kW,额定转速为1420r/min的无速度传感器直接转矩控制系统。完成了相关的软硬件设计,完成了对上述研究内容进行试验验证的同时,使系统的性能指标满足:稳态转矩波动小于4%,阶跃输入的转矩响应时间小于10ms,稳态速度波动小于0.5%,系统的共模电压不大于直流母线电压的1/5。
Taking the project "Study on Sensorless Direct Torque Control Method" cooperating with Liaoning Saves Energy Technology Co., LTD as engineering background, this dissertation researches on key technologies of sensorless direct torque control for induction motors. In order to reduce torque ripple of conventional DTC, speed adaptive stator flux linkage observer and nonsingular terminal sliding mode control for stator flux linkage and electromagnetic torque are studied extensively and intensively in this dissertation. The traditional SVPWM algorithm is improved to reduce the common-mode interference of PWM motor drive system. The main work is described in detail as follows:
     A speed adaptive stator flux linkage observer based on pole assignment is presented firstly in this dissertation. Then, advantages and existing problems of the observer are analysed. In order to improve the robustness of the state observer and restrain bad effect of parameter perturbation, the stator and rotor resistance uncertainties are considered simultaneously in the proposed speed adaptive stator flux observer. The observer uses stator current and stator flux linkage as state variable, the observation of flux linkage and estimation of speed were proceeding at the meantime. The observed flux linkage could be applied to direct torque control system and the observed speed could be used as speed feedback for the sensorless system. The speed adaptive scheme of speed estimation was obtained utilizing Lyapunov's stability theory. Quadratic stability theory is used to transfer gain matrix design problem into standard H∞design problem. The gain matrix is obtained based on H∞state feedback theory. System simulation is given to verify the effectiveness of the observer.
     For its inherent drawbacks of classic DTC, such as torque, flux linkage, and current ripples, a novel DTC scheme is presented, in which a terminal sliding mode variable structure control (TSMVSC) method is applied to electromagnetic torque and stator flux linkage control. In order to improve convergence performance of the conventional sliding mode variable structure control, the nonsingular terminal sliding mode surfaces of torque controller and flux linkage controller are independently designed in this dissertation. The torque controller and flux linkage controller are composed of equivalent control item and nonlinear switch item. The chattering of symbolic function sign(S) is reduced by integral action. Then, lower chattering torque controller and flux linkage controller are obtained. System simulation is given to verify the effectiveness of the controllers.
     In order to reduce the common mode interference of PWM motor drive system, the causes of SVPWM algorithm generating the common mode interference and suppression mechanism of improved SVPWM algorithm are researched in depth. Considering the reduction of the common mode voltage and common mode currents and DC bus voltage utilization, an improved SVPWM algorithm employing three effective voltage vectors without using zero voltage vectors to suppress common mode interference is improved in this dissertation. Its working principle based on that two opposite direction voltage vector function the same time to/2 equivalent to zero voltage vector function to. DSP implementation process of the improved SVPWM is described in detail. System simulation is given to verify the effectiveness of the improved SVPWM algorithm.
     Sensorless direct torque control system for induction motor is built based on digital signal processor TMS320F2812, the hardware and software design described in detail. The effectiveness of the above methods is verified by experiment results. System performances meet static torque ripple less than 4%, torque rise time less than 10ms, static speed ripple less than 0.5% and common-mode voltage of the system not more than one-fifth of the dc bus voltage.
引文
[1]Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron,1988,3 (4):420-490.
    [2]Takahashi L, Noguchi T. A new quick response and high-efficiency control strategy of an induction motor, IEEE Trans. Ind. Appl.,1986,22 (5):820-827.
    [3]胡虎,李永东.交流电机直接转矩控制策略——现状与趋势,电气传动,2004(3):3-8.
    [4]杨文昭,刘可安,何多昌.“中华之星”高速动力车主变流器及其控制系统,机车电传动,2003(5):62-66
    [5]黄松涛,陈高华,邹仁,等.“中原之星”号电动车组主变流器传动控制单元的研制,机车电传动,2002(2):13-16
    [6]冯江华,陈高华,黄松涛.异步电动机的直接转矩控制,电工技术学报,1999,14(3):29-33
    [7]Zakdy S., Philip T.K. Formal derivation of direct torque control for induction machines. IEEE Trans. on power electronics,2006,21(5):1428-1436.
    [8]王成元,夏加宽,杨俊友,等.电机现代控制技术.北京:机械工业出版社,2006.
    [9]姬志艳,李永东,司保军,等.无速度传感器异步电动机直接转矩控制系统的研究,电工技术学报,1997,12(4):15-19
    [10]尚敬,刘可安.无速度传感器异步电动机直接转矩控制,铁道学报,2006,28(5):41-45
    [11]Kerkman R J, Skibinski G L, Schlegel D W. Voltage harmonics generated by voltage-fed inverters using PWM natural sampling. IEEE Trans. on Power Electronics,1988,3(3):297-301.
    [12]Ma Hongfei, Xu Dianguo, Chen Xiyou et al. A novel common-mode sinusoidal inverter output filter with variable inductor. Power Conversion Conference, Osaka, Japan,2002:710-715.
    [13]姜艳姝,徐殿国,陈希有.一种消除PWM逆变器驱动系统中的电动机端轴电压和轴承电流的前馈有源滤波器.中国电机工程学报,2003,23(7):134-138.
    [14]姜艳姝,徐殿国,陈希有.一种新颖的用于消除PWM逆变器输出共模电压的有源滤波器[J].中国电机工程学报,2002,22(10):125-129.
    [15]Idris N. R. N., Yatim A. H. M. An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans. Ind. Appl.,2002,38 (1):110-116.
    [16]Jun Hu and Bin Wu. New integration algorithms for estimating motor flux over a wide speed range. IEEE Transaction on Power Electronies.1998,13(5):969-977.
    [17]Umanand L., Bhat S.R. Online estimation of stator resistance of an induction motor for speed control applications. Proc. Inst. Elect. Eng.-Elect. Power Application,1995,14 (2):97-103.
    [18]Choi Y.O., Lee K.Y., Seo K.S, et al. Performance analysis of the DTC using a closed loops stator flux observer for induction motor in the low speed range. Proceedings of International Conference on Electrical Machines and Systems, Shenyang China,2001, (1):89-93.
    [19]Hur N., Hong K., Nam K. A robust adaptive sensorless field-oriented control using a modified stator flux observer. Proceedings of 28th Annual IEEE Power Electronics Specialists Conference, St. Louis,1997, (2):1050-1054.
    [20]Namho H., Kichul H., Kwangee N. Sensorless vector control in the presence of voltage and current measurement errors by dead-time in induction motors. IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, New Orleans LA,1997, (1):433-438.
    [21]NIedA., Seleme I., Panna G., et al. On-line training algorithms for an induction motor stator flux neural observer. Proceedings of 29th Annual Conference of IEEE Industrial Electronics, Roanoke, Virginia. USA,2003:129-134.
    [22]Cristian L., Gheorghe D.A. Sliding-mode observer and improved integrator with DC-offset compensation for flux estimation in sensorless-controlled induction motors. IEEE Trans on Industrial Electronics,2006,53(3):785-794.
    [23]Hori Y. A novel induction machine flux observer and its application at high performance AC drive system, Proceedings of International Federation of Automatic Control,1987,363-368.
    [24]奚国华,高宏洋,许为,等.定子磁链全阶观测器增益矩阵的确定方法.中南大学学报(自然科学版),2008,39(4):793-798.
    [25]Xiaohong Nian, Tao Wang, Jian Wang. et al. "Adaptive stator resistance estimation method for speed sensorless DTC controlled IM drives", Proceedings of Applied Power Electronics Conference and Exposition, Anaheim, CA, United states,2007:214-221.
    [26]冯培涕.模糊控制器在异步电机直接转矩控制中应用.电工技术学报,2001,12(6):10-14.
    [27]Domenieo Casadei, Giovanni Serra, etc. Improvement of a direct torque control algorithm for induction motors based on discrete space vector modulation. IEEE Trans on Power Electronics, 2000,15(4):769-777.
    [28]Cristian Laseu, Ion Boldea and Frede Blaabjerg. A modified direct torque control for induction motor sensorless drive, IEEE Transaction on Industry Application,2000,36(1):122-130.
    [29]Jehudi Maes and Jan A, Melkbeek. Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Transaction on Industry Application,2000,36(3):778-785.
    [30]Mario Marehesoni, Paolo Segarichi, etc. A simple approach to flux and speed observation in induction motor drives, IEEE Transaction on Industry Application.,1997,44(4):528-535.
    [31]Valter Lovati, Mario Marchesoni, etc. A microcontroller-based sensorless stator flux-oriented asynchronous motor drive for traction application. IEEE Transaction on Power Electronics,1998, 13(4):777-784.
    [32]Mehmet Dal. Sensorless sliding mode direct torque control (DTC) of induction motor, Proceedings of International Symposium on Industrial Electronics 2005, Dubrovnik, Croatia,2005:911-916.
    [33]王焕钢,徐文立,黎坚,等.一种新型的感应电动机直接转矩控制,中国电机工程学报,2004,21(1):107-111.
    [34]童克文,张兴,张昱,等.基于新型趋近律的永磁同步电动机滑模变结构控制,中国电机工程学报,2008,28(21):102-106.
    [35]严文垒,王耀青,陆长胜.基于神经网络的感应电机无速度传感器直接转矩控制系统的研究.电气传动,2006,36(3):19-22.
    [36]Young A.K., Sung H.K. A new scheme for speed-sensorless control of induction motor. IEEE Transactions on Industrial Electronics,2004,51(3):545-550.
    [37]Shin M.H., Hyun D.S. Speed sensorless stator flux-oriented control of induction machine in the field weakening region. IEEE Trans. On Power Electronics,2003,18(2):580-586.
    [38]Leppanen V.M., Jorma L. Speed sensorless induction machine control for zero speed and frequency. IEEE Trans. on Industrial Electronics,2004,51(5):1041-1047.
    [39]佘致廷,肖岸文,孙炜,等.基于MRAS理论的无速度传感器直接转矩控制调速系统.电工技术学报,2006,21(4):98-101.
    [40]Derdiyok A., Guven M.K., Rahman H., et al. Design and implementation of a new sliding mode observer for speed sensorless control of induction motor. IEEE Trans. on Industry Electronics, 2002,49(5):1177-1182.
    [41]Baader U. Direct self control of inverter Induction machine, a basis for speed control without speed measurement. IEEE Trans. On Industry Applications,1992,28(3):581-588.
    [42]Sehauder C. Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans. on industry Applications,1992,28(5):1054-1061.
    [43]Peng F.Z., Fukao T. Robust speed identification for speed-sensorless vector control of induction motors. IEEE Trans. on Industry Applications,1994,30(5):1234-1240.
    [44]姬志艳,李永东.应用异步电机全阶模型的无速度传感器直接转矩控制系统的仿真研究.电气自动化,1997,27(3):8-19.
    [45]何志伟,薛峰.感应电动机自适应速度辨识及其在直接转矩控制系统中的应用.电气传动,1999,29(3):11-15.
    [46]Valter L., Mario. A microcontroller-based sensorless stator flux oriented asynchronous motor drive for traction application. IEEE Transaction on Power Electronics,1998,13(4):777-784.
    [47]Kubota H. Speed sensorless field-oriented control of induction motor with rotor resistance adaptation. IEEE Trans. on Industry Applications,1994,30(5):1219-1224.
    [48]Ha J.I., Sui S.K. Sensorless field-orientation control of an induction machine by high-frequency signal injection. IEEE Trans. on Industry Applications,1999,35(1):45-51.
    [49]Degner M. W., Lorenz R.D. Using multiple for the estimation of flux, position and velocity in AC machines. IEEE Trans. on Industry Applications,2002,34(5):1097-1104.
    [50]Hinkkanen M., Leppanen V.M., Luomi J. Flux observer enhanced with low frequency signal injection allowing sensorless zero frequency operation of induction motors. IEEE Trans. on Industry Applications,2005,41:52-59.
    [51]Heath H., Seth R.S. Speed-sensorless vector torque control of induction machines using a two-time-scale approach. IEEE Trans. On Industry Applications,1998,34(1):169-177.
    [52]Adnan D. Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer. IEEE Trans. on Industrial Electronics,2005,52(4):1170-1176.
    [53]Kubota H., Matsue K. DSP-based speed adaptive flux observer of induction motor. IEEE Trans. On Industry Applications,1993,29(2):344-348.
    [54]Yang G, Chin T.H. Adaptive speed identification scheme for a vector controlled speed sensorless inverter induction motor drive. IEEE Trans. on Industry Applications,1993,29(4):820-825.
    [55]Maes J., Melkebeek J.A. Speed sensorless direct torque control of induction motor using an adaptive flux observer. IEEE Trans. on Industry Applications,2000,36(3):778-785.
    [56]奚国华,沈红平,喻寿益,等.异步电机无速度传感器直接转矩控制系统.中国电机工程学报,2007,27(21):76-82.
    [57]奚国华,沈红平,喻寿益,等.基于全阶状态观测器的无速度传感器DTC系统,电气传动,2008,38(7):22-25.
    [58]Ogassawara S, Akagi H. Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems. IEEE Trans. on Industry Applications,1996,32(5): 1105-1114.
    [59]Rendusara D, Enjeti P. An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems[J]. IEEE Trans on Power Electronics,1998,13(6):1135-1143.
    [60]Jouanne A V, Zhang H, Wallace A. An evaluation of mitigation technique for bearing currents, EMI and overvoltages in ASD applications. IEEE Trans. on Industry Applications,1998,34(5): 1113-1122.
    [61]Julian A L, Oriti G, Lipo T A. Elimination of common mode voltage in three phase sinusoidal power converters. IEEE Trans on Power Electronics,1999,14(5):982-989.
    [62]A. M. D. Broe, A. L. Julian et al. Neutral-to-ground voltage minimization in a PWM-rectifier/inverter configuration. Proceedings of International Conference on Power Electronics and Variable-Speed Drives, Nottingham, UK,1996:564-568.
    [63]H. D. Lee, S. K. Sul. A Common-mode voltage reduction in boost rectifier/inverter system by shifting active voltage vector in a control period. IEEE Trans on Power Electronics,2000, 6(15):1094-1101.
    [64]H. D. Lee, Y. C. Son. A new space vector pulse width modulation strategy for reducing ground to stator-neutral voltage in inverter-fed AC motor drives. Proceedings of Applied Power Electronics Conference and Exposition, New Carolina, USA,2000, (2):918-923.
    [65]M. Zigliotto, A. M. Trzynadlowski. Effective random space vector modulation for EMI reduction in low-cost PWM inverters. Proceedings of the 7th International Conference on Power Electronics and Variable Speed Drives, Boston, USA,2006:163-167.
    [66]Y. S. Lai. Investigations into the effects of PWM technique on common-mode voltage for inverter-controlled induction motor drives. IEEE Engineering Society, New York, AUS,2005, (1):35-40.
    [67]Y. S. Lai. Common-mode voltage reduction technique for wide speed range control of induction motor drives fed by inverter with diode front end. Conference Record-IAS Annual Meeting-IEEE Industry Applications Society,2003, (1):424-431.
    [68]陈景熙,袁鹏,周璟,等.一种低共模电磁干扰SVPWM法的研究.高压电技术,2008,34(6):1214-1219.
    [69]贾英民.鲁棒H∞控制,北京:科学出版社,2007.
    [70]申铁龙.H∞控制理论及应用.北京:清华大学出版社,1996.
    [71]解学书,钟宜生.H∞控制理论.北京:清华大学出版社,1994.
    [72]褚健,俞立,苏宏业著.鲁棒控制理论及应用.浙江大学出版社,2000.
    [73]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003.
    [74]俞立.鲁棒控制一线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [75]飞思科技产品研发中心编著.MATLAB7辅助控制系统设计与仿真.北京:电子工业出版社,2005.
    [76]周渊深.交直流调速系统与MATLAB仿真.北京:中国电力出版社,2003.
    [77]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [78]Zhuang K Y, Zhang K Q, SuHY, et al. Terminal sliding mode control for high-order nonlinear dynamic systems. Journal of Zhejiang University,2002,36(5):482-485.
    [79]Yu X H, Man z H. Fast terminal sliding mode control design for nonlinear dynamical systems. IEEE Trans on Circuits and Systems:Fundamental Theory and Applications.2002, 49(2):261-264.
    [80]Man z, Yu X H. Terminal sliding mode control of MIMO linear systems. IEEE Trans on Circuits and Systems(1):Fundamental Theory and Application.1997,44(11):1065-1070.
    [81]Wu Y, Yu X. Man X. Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters.1998,34(5):281-288.
    [82]冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法,控制与决策,2002,17(2):194-198.
    [83]FENG Y, YU X, MAN Z. Non-singular adaptive terminal slidingmode control of rigid manipulators. Automatic,2002,38(12):2159-2167.
    [84]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [85]苏健勇,杨贵杰,李铁才PMSM扩展状态滑模观测器及转子位置和速度估算,电机与控制学报,2008,12(5):524-528.
    [86]苏建勇.基于磁链观测器的永磁同步电动机无传感器控制技术研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2009
    [87]郑剑飞,冯勇,陆启良.永磁同步电机的高阶终端滑模控制方法,控制理论与应用,2009,26(6):697-700.
    [88]Leonid M.Fridman. Chattering analysis in sliding mode systems with inertial sensory. International Journal of Control,2003,76(9):906-912.
    [89]杨普,张曾科.一类滑模变结构控制系统的抖振控制.清华大学学报(自然科学版),2005,45(1):93-95.
    [90]Chung S C Y, Len C L. A transformed Lure problem for sliding mode control and chattering reduction. IEEE Transactions on, Automatic Control,1999,44(3):563-568.
    [91]谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005.
    [92]陈景熙.PWM变频调速系统相关技术问题研究: (硕士学位论文).武汉:华中科技大学,2007.
    [93]陈伯时.电力拖动自动控制系统——运动控制系统.北京:机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700