自动引导车运动分段控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非完整约束是指一种用不可积分的微分方程来表示的约束,它的存在使得系统更难控制;另一方面,非完整约束又广泛存在于自动引导车(AGV-Automatic Guided Vehicle)、太空机器人、欠驱动的水下舰船系统等实际系统中,在军事、工业、民用、深海太空业等领域具有很强的应用背景。AGV作为一种典型的非完整系统,研究其控制问题具有重要的理论意义和良好的实用价值。本文在对相关研究现状进行分析的基础上,对三轮AGV运动控制问题进行了深入研究,内容主要包括基于神经动力学模型的初期跟踪控制、结合能量优化策略的中段跟踪控制、镇定和跟踪统一的后期运动控制以及AGV整体运动分段控制(IMSC-Integrated Motion Sectionalized Control)等。
     在系统调研AGV国内外研究现状的基础上,对AGV的结构及分类以及路径跟随、轨迹跟踪、点镇定等三种基本运动的若干关键运动控制技术进行了分析和梳理,指出了目前存在的问题及需要进一步研究的内容。
     引入微分几何和非线性控制理论的一些基本概念和定理,给出了非完整系统以及约束的相关知识,综合归纳出了一套用于分析非完整系统的数学工具。用该工具分析了AGV的非完整性,并以三轮AGV为例,建立了AGV的运动学和动力学模型。
     根据AGV系统的硬件组成和软件设计原理,对AGV控制系统进行合理的功能分配和模块划分,提出了所研究AGV的控制体系结构。
     针对当AGV存在初始位姿误差或AGV的参考轨迹不连续时传统轨迹跟踪控制器会产生一个较大初始速度跳变的问题,在建立AGV跟踪误差系统模型的基础上,引入神经动力学思想,提出了一种基于生物激励神经动力学模型的AGV轨迹跟踪控制器。该控制器首先由运动学控制器产生一个理想控制律,接着利用神经动力学解决初始速度跳变问题,最后用快速终端滑模控制器进一步提高跟踪精度。仿真结果表明,该控制器能很好地解决跟踪过程中出现的初始速度跳变问题,最终实现系统全局渐进稳定。
     针对AGV在运动中段能耗大的问题,在深入分析系统能耗情况的基础上,建立了AGV的能耗模型及运动学模型,提出了一种基于能量优化策略的AGV轨迹跟踪控制算法。能量优化控制器是上述控制算法的核心,设定电机能量效率函数为其目标函数,电机电枢等效电路电压平衡方程式和转矩方程式组成的方程组为其系统状态方程,使AGV能准确跟踪参考轨迹的条件为其状态约束,再加上一个控制输入约束,组成优化问题的三个约束,最后用遗传算法解优化问题得出一个最优速度控制律。仿真结果表明,该控制策略可以在使AGV顺利实现轨迹跟踪的同时达到能量优化的效果。
     针对AGV系统的后期轨迹跟踪和镇定问题,在深入分析预测控制机理和稳定性的基础上,认真研究了存在非完整约束和控制输入约束的AGV轨迹跟踪的非线性模型预测控制问题,设计了基于模型预测终端控制器的终端镇定控制算法,并结合AGV的运动模型,使用状态观测器对含噪声的动态系统进行状态估计,进一步增强了轨迹跟踪控制的效果。同时,考虑到AGV需有避障功能,为镇定控制器设计了一个避障控制模块。计算机仿真结果证实了所设计轨迹跟踪算法的正确性和有效性。
     为了实现对AGV整个运动过程的高精度和低能耗控制,本文提出了一种整体运动分段控制方法,即对AGV运动的初、中和后期三个不同阶段的运动,根据其各自特点分别采用上述三种控制方法,且将三种方法有机地组合成一种方法,并通过计算和仿真确定了各种方法所使用的运动区间,从而能更好地实现AGV在整个轨迹跟踪过程中的平滑性、节能性、鲁棒性及全局稳定性。
Non-holonomic constraint is characterized by non-integrable differential equations, making the system more difficult to control. On the other hand, non-holonomic constraint exists widely in practical systems, such as automatic guided vehicle (AGV), space robot, and under-actuated underwater ship system and so on, with a great potential for applications in military, industry, civil-application, deep-sea, outer-space and other fields. Since AGV is a typical non-holonomic system, it is of great theoretical and practical importance to study its control issue. Based on the current research status of the AGV, the present work aims to perform in-depth investigation of the motion control problem for tricycle AGV. Specifically, the main tasks of this study include neural dynamic model-based early stage tracking control, energy-efficient strategy-based middle stage tracking control, and last stage tracking and stabilization unified control, as well as the integrated motion sectionalized control (IMSC) in the entire AGV motion process.
     Based on the systematic research of the current situation around the world, the dissertation systematically analyzes the AGV's structure and category, and several key motion control technologies for AGV's three basic motion forms (path following, trajectory tracking and point stabilization). Finally, several problems needing further investigation are pointed out.
     By introducing some basic concepts and theorems of differential geometry and non-linear control theories, related knowledge for the non-holonomic system and non-holonomic constraint is given. Besides, a set of math tools for non-holonomic system are generalized, which are used for analyzing the AGV's non-holonomic properties. Taking tricycle AGV as an example, the kinematic and dynamic models for the AGV are developed.
     According to the hardware structure and software design principle of the AGV system, a reasonable function module partition is proposed and the control architecture of AGV is presented.
     In view of the initial velocity jump of the traditional tracking controller upon AGV's initial posture error or discontiguous reference trajectory, on the basis of tracking error model, a neural dynamic ideology is introduced and a trajectory tracking controller for AGV, which is based on the biologically inspired neural dynamics model, is proposed. First of all, the proposed tracking controller generates an ideal velocity law using the kinematic controller. Then, the problem of initial velocity jump is solved using the neural dynamics ideology. Finally, the tracking accuracy is further improved using a fast terminal sliding mode controller. Simulation results show that the tracking controller solves the initial velocity jump problem successfully and guarantes the global asymptotic stability of the system.
     With consideration of the AGV's excessive energy consumption in motion, in light of the thorough analysis of the energy consumption status for the AGV system, an energy consumption model and a kinematic model are developed and a trajectory tracking controller basing on the energy-efficiency strategy is proposed. The core of the proposed controller is an energy optimal control module, which is with the motor energy efficiency function as the objective function. The constraint equations for this module are as follow:the voltage balance equation of the motor armature equivalent circuit and the torque equation are the system state equations, the condition equation of tracking the reference trajectory is the state constraint equation, and a control constraint equation. Finally, the above optimal problem is solved by genetic algorithm and an optimal velocity law is obtained. Simulation results show that the proposed controller achieves trajectory tracking and optimizes the energy consumption.
     In order to resolve the AGV's tracking and stabilization unified control problem in the final stage, the non-linear model predictive control (NMPC) problem with non-holonomic constraints and control constraints is investigated based on the thorough analysis of the principle and stability of the predictive control method. Also a terminal stability control algorithm based on model predictive terminal control is proposed. In order to improve the tracking accuracy, a state observer is designed to estimate the AGV's state in the dynamic system. Besides, considering the fact that the AGV should have obstacle-avoidance function, an obstacle-avoidance module is designed. The validity of the controller is validated by computer simulation.
     In order to achieve control with high precision and low energy consumption for the entire AGV tracking process, a method called integrated motion sectionalized control (IMSC) is proposed. In this method, the three forementioned control methods are adopted for the early, middle and last state motion of AGV respectively, according to their characteristics. Through combining the three control methods into one and determining the applicable motion interval for each method by calculation and simulation, IMSC is capable of providing smoothness, energy saving, robustness and global stability for the AGV system.
引文
[1]孙亮,李益春.图的着色理论在自动导引小车调度规划系统中的应用[J].组合机床与自动化加工技术,2005(7):103-107
    [2]张培忠.柔性制造系统[M].北京:机械工业出版社,1998
    [3]张正义.AGV技术发展综述[J].物流技术与应用,2005(7):66-73
    [4]袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法[J].机器人,2000,22(2):81-88
    [5]王荣本,储江伟,冯炎,等.一种新型视觉AGEV的研究[C].中国机械工程学会会论文集,2001,221-225
    [6]李兵.基于视觉的智能车辆自主导航控制的研究[D].吉林大学博士学位论文,1995
    [7]Meystel A. Autonomous mobile robots:vehicles with cognitive control[M].Singapore:World Scientific Series In Automation,1991
    [8]王玉峰.自主移动机器人地图创建、探索及定位研究[D].大连理工大学硕士学位论文,2004
    [9]蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994
    [10]庄严.移动机器人基于多传感器数据融合的定位及地图创建研究[D].大连理工大学博士学位论文,2004
    [11]王荣本.图像识别自动引导车辆系统的研究[D].吉林工业大学博士学位论文,1995
    [12]欧青立,何克忠.室外智能移动机器人的发展及其相关技术研究山[J].机器人,2000,22(6):519-526
    [13]吴东晖.智能移动机器人的视觉导航技术[D].浙江大学博士论文,2001
    [14]龚建伟.移动机器人横向与纵向控制方法研究[D].北京理工大学博士论文,2002
    [15]徐友春.基于机器视觉的汽车主动安全技术的研究[R].清华大学博士后出站报告,2004
    [16]Campion G, Bastin G, Dapos, D'addrea-Novel B. Structure properties and classification of kinematic and dynamic models of wheeled mobile robots [J]. IEEE Transactions on Robotics and Automation,1996,12(1):47-62
    [17]Watanabe K. Control of an omnidirectional mobile robot[J]. IEEE 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems,Adelaide,Australia,1998: 51-60
    [18]Watanabe K, Shiraishi Y, Tzafestas S G, et al. Feedback control of an omnidirectional autonomous Platform for mobile service robots [J]. Journal of Intelligent and Robotic systems, 1998,22:315-330
    [19]Liu Y, Wu X, Zhu J J, et al. Omni-directional mobile robot controller design by trajectory linearization[C]. Proceedings of American Control Conference,Denver,Colorado,2003,4: 3423-3428
    [20]刘振山.移动机器人运动控制系统的设计与实现[D].中国海洋大学硕士学位论文,2004
    [21]何彩清.自动引导车道路识别与跟踪控制研究[D].安徽农业大学硕士学位论文,2006
    [22]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000,11(1):58-60
    [23]郑向阳,熊蓉,顾大强.移动机器人导航和定位技术[J].机电工程,2003,20(5):35-37
    [24]朱森良,杨建刚,吴春明.自主式智能系统[M].杭州:浙江大学出版社,2000
    [25]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用,2001,3:7-13
    [26]Durrant W H. Where am I? A Tutorial on Mobile Vehicle Localization[J]. Industrial Robot: An International Journal,1994,21 (2):11-16
    [27]Luca A D, Oriolo G, Vendittelli M. Control of wheeled mobile robots:An experimental overview[J]. In Ramsete-Articulated and Mobile Robotics for Services and Technologies, Nicosia S, Siciliano B and Bicehi A, et al.,(Eds.), Springer.2001,270:181-216
    [28]Coelho P, Nunes U. Path-Following Control of Mobile Robots in Presence of Uncertainties [C]. IEEE Transactions on Robotics,2005,21(2):252-261
    [29]Faulwasser T, Findeisen R. Nonlinear Model Predictive Path-Following Control[J]. Nonlinear Model Predictive Control, Springer-Verlag Berlin Heidelberg,2009:335-343
    [30]Lapierre L, Zapata R, Lepinay P. Combined path-following and obstacle avoidance control of a wheeled robot[J]. The International Journal of Robotics Research,2007,26(4):361-375
    [31]Samson C. Conrtol of chained systems:application to path following and time-varying point stabilization of mobile robots[J]. IEEE Transactions Automatic Conrtol,1995,40 (1),64-77
    [32]Tan J D, Xi N, Kang W. Non-time based tracking controller for mobile robots[C].1999 IEEE Canadian Conference Electrical and Computer Engineeing,1999,2:919-924
    [33]Tang S, Yan Z, Liu L, Wang W. Discrete Trajectory Tracking Control of Wheeled Mobile Robots[C]. International Conference on Robotics and Biomimetics, Shenyang, China,2004: 344-349
    [34]Hwang C, Chang L. Trajectory Tracking and Obstacle Avoidance of Car-Like Mobile Robots in an Intelligent Space Using Mixed H2/Hoo Decentralized Control[J]. IEEE/ASME Transactions on Mechatronics,2007,12(3):345-352
    [35]Martins F N, Celeste W C, Carelli R, Mario S F, Teodiano F B F. An adaptive dynamic controller for autonomous mobile robot trajectory tracking[J]. Control Engineering Practice, 2008,16:1354-1363
    [36]Hedjar R, Toumi R, Boucher P, Dumur D. Finite horizon nonlinear predictive control by the taylor approximation:application to robot tracking trajectory[J]. Int. J. Appl. Math. Comput. Sci.,2005,15(4):527-540
    [37]Kanayama Y, Kimura Y, Miyazaki F. A stable tracking control method for an autonomous mobile robot [C]. Proceedings of the 1990 IEEE International Conference on Robotics and Automation,Cincinnati,USA,1990:384-389
    [38]董文杰,霍伟.式系统的轨迹跟踪控制[J].自动化学报,2000,26(3):310-316
    [39]Yang J, Kim H. Sliding Mode Control for Trayectory Tracking of Nonholonomic Wheeled Mobile Robots[J]. IEEE Transactions on Robotics and Automation,1999:578-58
    [40]Shim H S, Kim J H, Koh K. Variable structure control of nonholonomic wheeled mobile robot[A]. Porceedings of the IEEE International Conference on Robotics and Automation, 1995,2:1694-1699
    [41]Essen H V, Nijmeijer H. Non-linear model predictive control of constrained mobile robots[R]. In European Control Conference,Porto,Portugal,2001:1157-1162
    [42]Brockett R W. Asymptotic stability and feedback stabilization,In:Differential Geometric Control Theory[M]. Bosten, USA:Birkhauser,1983,181-191
    [43]Pourboghrat F. Exponential stabilization of nonholonomic mobile robots[J]. Computers and Electrical Engineering,2002,28(5):349-359
    [44]Mukherjee R, Chen D, Song G. Asymptotic Feedback Stabilization of a Nonholonomic Mobile Robot using a Nonlinear Oscillator[C]. Proceedings of the 35th Conference on Decision and Control Kobe, Japan,1996:1422-1427
    [45]Emad A R, Kolmanovsky I, McClamroch N H. Stabilization of wheeled vehicles by hybrid nonlinear time-varying feedback laws[C]. Proceedings of the 1996 IEEE International Conference on Control Applications, Dearborn, MI,1996:67-72
    [46]Oelen W, Berghuis H, Nijmeijer H, Canudas W C. Hybrid stabilizing control on a real mobile robot[J]. IEEE Robocits & Atuomation Magazine,1995,2(2):16-23
    [47]Do K D, Pan J. Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts[J]. Systems & Control Letters,2002,46:195-205
    [48]Sun S, Cui P. Path tracking and a practical point stabilization of mobile robot[J]. Robotics and Computer-Integrated Manufacturing,2004,20:29-34
    [49]Tanner H G, Loizou S, Kostas J, Kyriakopoulos. Nonholonomic Stabilization with Collision Avoidance for Mobile Robots [C]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, Hawaii, USA,2001:1220-1225
    [50]Nam K, Lee S. Stabilization of feedback linearizable systems using an approximate linearisation [C]. Proceedings of the 32nd Confennce on Decision and Control, San Antonlo, Texas,USA,1993,3:2783-2784
    [51]尹晓红,赵韩,吴焱明,熊丹.基于卡尔曼滤波的自动引导车串级轨迹跟踪控制[J],农业机械学报,2010,41(2):180-184
    [52]Merabet A, Gu J, Arioui H. Robust cascaded feedback linearizing control of nonholonomic mobile robot [C]. Electrical and Computer Engineering (CCECE),23rd Canadian Conference, 2010:1-5
    [53]Luca A D, Oriolo G. Motion Planning and Trajectory Control of an Underactuated Three-Link Robot via Dynamic Feedback Linearization[C]. Proceedings of the 2000 IEEE Internattonal Conference on Robotics & Automation San Francisco, CA,2000,3:2789-2795
    [54]马保离,宗光华,霍伟.非完整链式系统的输出跟踪控制--动态扩展线性化方法[J].自动化学报,1999,25(3):316-322
    [55]Agrawal S K, Sangwan V. Differentially Flat Designs of Underactuated Open-Chain Planar Robots [J]. IEEE Transactions on Robotics,2008,24(6):1445-1451
    [56]Franch J, Agrawal S K, Sangwan V. Differential Flatness of a Class of n-DOF Planar Manipulators Driven by 1 or 2 Actuators[J]. IEEE Transactions on Automatic Control,2010, 55(2):548-554
    [57]Sun Z, Ge S S. Nonregular Feedback Linearization:A Nonsmooth Approach[J]. IEEE Transactions on Automatic Control,2003,48(10):1772-1776
    [58]Sun Z, Ge S S, Huo T W, Lee T H. Stabilization of nonholonomic chained systems via nonregular feedback linearization[C]. Proceedings of the 39th IEEE Conference on Decision and Control System, Australia.2000,2:1906-1911
    [59]M'Closkey R T, Murray R M. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback[J]. IEEE Transactions on Automatic Control,1997,42(5):614-628
    [60]Takesue N, Zhang G, Furusho J, Sakaguchi R. Precise position control of robot arms using a homogeneous ER fluid[C]. Proceedings of the 1998 IEEE International Conference on Robotics & Automatlon Leuven, Belgium,1998 (3):2470-2475
    [61]Martins N A, Bertol D W, Lombardi W C, Pieri E R. Trajectory tracking of a nonholonomic mobile robot:A suggested neural torque controller based on the sliding mode theory [J]. Variable Structure Systems,2008:384-389
    [62]尹晓红,赵韩,吴焱明,熊丹.基于生物激励神经动力学的AGV轨迹跟踪控制[J].中国机械工程,2010,21(18):2148-2152
    [63]叶涛,侯增广,谭民,李磊,陈细军.移动机器人的滑模轨迹跟踪控制[J].高科技通讯,2004,1:71-74
    [64]Utkin V I. Sliding Modes in Control Optimizatmn[M]. Berlin:Springer,1992
    [65]Akhavan S, Jamshidi M. ANN-based sliding mode control for non-holonomic mobile robots[C]. Proceedings of the 2000 IEEE International Conference on Control Applications Anchorage, Alaska, USA,2000:664-667
    [66]Young, Kar K D. Controller Design for a Manipulator Using Theory of Variable Structure Systems[J]. IEEE Transactions on system, Man and Cybernetics,1978,8(2):101-109
    [67]Yuan J, Huang Y, Sun F, Kang Y. Optimization Design for Connection Relation of Tractor-Trailer Mobile Robot with Variable Structure[C]. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006:4971-4976
    [68]Wu Y, Hu Y. Output tracking control of mobile manipulators via dynamical sliding mode control[C]. Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada,2005:2160-2164
    [69]Yang S X, Tu J, Meng M Q H. Hybrid GA and Backstepping based Tracking Control of a Mobile Robot[C]. Proceedings of the 6th World Congress on Intelligent Controland Automation, Dalian,China,2006:428-431
    [70]Jiang Z P, Nijmeijer H. Tracking Control of Mobile Robots:A Case Study in Backstepping[J]. Automatica,1997,33(7):1393-1399
    [71]Kozlowski K, Majchrzak J. A backstepping approach to control a nonholonomic mobile robot[C]. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington DC,2002:3972-3977
    [72]Dierks T, Jagannathan S. Control of Nonholonomic Mobile Robot Formations:Backstepping Kinematics into Dynamics [C].16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control, Singapore,2007:94-99
    [73]Tanaka K. Advanced fuzzy control of a trailer type mobile robot-stability analysis and model-based fuzzy control[J]. Tools with Artificial Intelligence,1994:205-211
    [74]Mucientes M, Moreno D L, Bugarin A, Barro S. Design of a fuzzy controller in mobile robotics using genetic algorithms[J]. Applied Soft Computing,2007,7:540-546
    [75]孙炜.智能神经网络的机器人控制理论方法研究[D].湖南大学博士论文,2002
    [76]Hunt K J, Sbarbaro D, Zbikowski R, Gawthrop P J. Neural Networks for Control Systems:A Survey[J]. Automation,1992,28(6):1083-1112
    [77]Go S J, Lee M C. Fuzzy-sliding mode control with the self tuning fuzzy inference based on genetic algorithm[C]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation San Francisco, CA,2000:2124-2129
    [78]Barrido S C, Dadio E P. Online robot tracking using genetic algorithms[C]. Proceedings of the 2002 IEEE International Symposium on Intelligent Control Vancouver, Canada, 2002:479-484
    [79]Fukao T, Nakagawa H, Adachi N. Adaptive tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics and Automation,2000,16(5):609-615
    [80]Pourboghrat F, Karlsson M P. Adaptive control of dynamic mobile robots with nonholonomic constraints[J]. Computers and Electrical Engineering,2002,28:241-253
    [81]Dong W, Kuhnert K D. Robust Adaptive Control of Nonholonomic Mobile Robot With Parameter and Nonparameter Uncertainties[J], IEEE Transactions on Robotics,2005,21(2): 261-266
    [82]Majd A A;Yazdanpananah M J, Khosrowshahi G K. Tracking Control of A Mobile Robot Using A Genetically Tuned Mixed H2/Hoo Adaptive Technique[C]. Proceeding of the 2004 IEEE Conference on Robotics,Automation and Mechatronics,Singapore,2004:175-180
    [83]Kim M S, Shin J H, Hong S G, Lee J J. Designing robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances[J]. Mechatronics, 2003,13:507-519
    [84]Mayne D Q, Rawlings C V, Rao C V, Scokaert P O M. Constained model predictive control: stability and optimality[J]. Automatica,2000,36(4):789-814
    [85]Michael A. Henson. Nonlinear model predictive control current status and future directions [J]. Computers&Chemical Engineering,1998,23:187-202
    [86]Chen C C, Shaw L. On receding horizon feedback control[J]. Automatica,1982,18:349-352
    [87]Parisini T, Zoppoli R. A receding horizon regulator for nonlinear systems and a neural approximation[J]. Automatica,1995,31(10):1443-1451
    [88]Jadbabaie A, Yu J, Hauser J. Stabilizing receding horizon control of nonlinear systems[C]. Proceedings of American Control Conference,San Diego,Canada,1999:1535-1539
    [89]Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: Stability and optimality[J].Automatica,2000,36:789-814
    [90]Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems[J]. IEEE Transactions on Automatic Control,1993,38(11):1623-1633
    [91]Gauthier J P, Bornard G. Commande multivariable en presence de constraints de type inegalite[J]. Revue d'Automatique d'Informatique et de Recherche Operationnelle,1983,17(3): 205-222
    [92]Kanayama Y J, Fahroo F. A new line tracking method for nonholonomic vehicles [C].Proceedings of the IEEE International Conference on Robotics and Automation, New Mexico 1997,4:2908-2913
    [93]Lyshevski S E. Optimization of a Class of Nonholonomic Dynamic systems[A]. Proceedings of the American Control Conference[C], San Diego,California,1999,6:3930-3934
    [94]Duleba I, Sasiadek J Z. Nonholonomic motion planning based on Newton algorithm with energy optimization[J]. IEEE Transactions on Control Systems Technology,2003,11(3): 355-363
    [95]Gawlowicz P. Time optimal control of robots based on heuristic metbod[C]. Proceedings of the First Workshop on Robot Motion and Control,1999,1:183-186
    [96]Aylett R. Robots:Bringing Intelligent Machines to Life[M]. New York:Barron's Educational Series,2002.
    [97]Vecna:http://www.vecna.com/robotics/bear_project. Cited 15 March 2006.
    [98]Makimoto T and Sakai Y. Evolution of Low Power Electronics and Its Future Applications[C]. Proceedings of the 2003 international symposium on Low power electronics and design, Seoul, Korea, ISLPED'03,2003:2-5
    [99]梅凤翔.非完整系统的动力学基础[M].北京:北京工业出版社,1985
    [100]Luo J H. Noulinear Control Design for nonholonomic and underactoated systems[D]. Univeristy of Virginia Ph.D Thesis,2000
    [101]Marino R, Tomei P.非线性系统设计-微分几何,自适应及鲁棒控制[M].电子工业出版社,2006
    [102]Richard M M, Li Z, Sastry S S. A mathematical Introduction to Robotic Manipulation[M]. USA, Florida:CRC Press,1994
    [103]Isidori A. Nonlinear Control Systems[M].3rd edition,Berlin:Springer-Verlag,1995
    [104]Luca A D, Oriolo G. Modelling and Control of Nonholonomic Mechanical Systems[M].In Kinematics and Dynamics of Multi-Body Systems, Angeles J and Kecskemethy A, (Eds), Springer-Verlag:Wien,1995,360:277-342
    [105]Oriolo G. Control of nonholonomic systems[J]. Dottorato di Ricerca in Ingegneria dei Sistemi Anno Acco Accademico,2002/2003:35-60
    [106]Samson C.Velocity and torque feedback conrtol of a nonholonomic cart[J]. In Int. Workshop on adaptive and nonlinear conrtol, Grenoble,1990:125-151
    [107]Samson C. Time-varying feedback stabilization of nonholonomic car-like mobile robots[R]. INRIA-Sophia Antipolis, Tech. Rep.1515,1991
    [108]宋长会.移动机器入控制系统设计与研究[D].哈尔滨工程大学硕士学位论文,2006
    [109]Goel P, Roumeliotis S I, Sukhatme G S. Robust Localization Using Relative and Absolute Position Estimates[C]. Proceeding of the IEEE/RSJ.International Conference on Intelligent Robots and Systems,1999:1134-1140
    [110]Pegard C, Mouaddib E M. A Mobile Robot Using a Panoramic View[C]. Proceeding of the IEEE. International Conference on Robotics and Automation,1996:89-94
    [111]Nishide K. Automatic Position Findings of Vehicle by Means of Laser[C]. Proceeding of IEEE International Conference on Robotics and Automation,1986,3:1343-1348
    [112]NAV200激光扫描仪.SICK公司产品说明书,2006
    [113]童爱红.Visual C#.NET应用教程[M].北京:清华大学出版社,2004
    [114]Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology,1952,117(4):500-544
    [115]Grossberg S. Nonlinear neural network:Principles, mechanism, and architectures[J]. Neural Networks,1988,1(1):17-61.
    [116]Yang S X, Meng M. An efficient neural network approach to dynamic robot motion planning[J]. Neural Networks,2000,13(2):143-148
    [117]Kusko A, Galler D. Control means for minimization of losses in AC and DC motor drives[J]. IEEE Trans. Ind. Appl,1983,19(4):561-570
    [118]El-satter A A, Washsh S, Zaki A M, Amer S I. Efficiency-optimized speed control system for a separately-excited DC motor[C]. Proceedings of the IEEE International Conference on Industrial Electronics, Control, and Instrumentation, Orlando,1995,1:417-422
    [119]Mei Y, Lu Y H, Hu Y C, Lee C S G. Energy-efficient motion planning for mobile robots[C]. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans,2004,5:4344-4349
    [120]Gajendran F, George S. A simple linear adaptive speed control of energy efficient dc motor[C]. Int. Conf. Electric Machines and Drives, IEMD'99,1999:664-666
    [121]Ho P M, Ki S S. Microprocessor-based optimal efficiency drive of an induction motor[J]. IEEE transaction on industrial electronics,1984,31(1):69-73
    [122]Wu Z, Li G, Zhu Y, Tian G, Lu K. Efficiency-optimized vector control of IPM drive for electric vehicle, International Conference on Computer Application and System Modeling (ICCASM),2010,3:424-427
    [123]Stefanski T, Karys S. Loss minimisation control of induction motor drive for electrical vehicle[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE '96,1996,2:952-957
    [124]Kim J, Yeom H, Park F C, Park Y I, Kim M. On the energy efficiency of CVT-based mobile robots[C]. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco,2000,2:1539-1544
    [125]Sergaki E S, Stavrakakis G S, Pouliezos A D. Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses[J]. Intell.Robot.Syst.,2002, 33:187-207
    [126]西南交通大学电机系.牵引电机[M].北京:中国铁道出版社,1981
    [127]牵引电机的效率优化控制研究[D].北京交通大学硕士学位论文,2009
    [128]Morimoto S, Tong Y, Takeda Y, Hirasa T. Loss minimization control of permanent magnet synchronous motor drives, IEEE Transactions on Industrial Electronics,1994,41(5):511-517
    [129]Nergaard T A, Kouns H E. Optimal system efficiency operation of an induction motor drive[C]. Conference Record of the Industry Applications Conference,2002.37th IAS Annual Meeting,2002,2:826-831
    [130]Fernandez B F, Garcia C A, Faure R. Model-based loss minimization for DC and AC vector-controlled motors including core saturation[J]. IEEE Trans Ind. Appl.,2000,36(3): 755-763
    [131]Ta C M, Hori Y. Convergence improvement of efficiency-optimized control of induction motor drives[C]. IEEE IAS Conf. Rec., Rome,2000
    [132]Vaez S, John V I, Rahman M A. An on-line loss minimization Controller for interior permanent magnet motor drive[J]. IEEE Trans. on energy conversion,1999:1435-1440.
    [133]刘小虎,谢顺依,郑力捷.一种改进的感应电机最大效率控制技术研究[J],中国电机工程学报,2005,25(6):95-98
    [134]ARM IQ. The Smart Approach to Designing with the ARM Architecture,2009
    [135]Cullar D, Estrin D, Strvastava M. Overview of sensor networks[J]. IEEE Computer Society, 2004,37(8):41-49
    [136]Chen B J, Jamieson K, Balakrishnan H, et al. Span:an energy-efficient coordination algorithm for topology maintenance in Ad Hoc wireless networks[C]. Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking.2001
    [137]Madden S, Franklin M J, Hellerstein J M, et al. TAG:a tiny aggregation service for Ad-Hoc sensor networks[C]. Proceedings of the 5th Annual Symposium on Operating Systems Design and Implementation(OSDI),2002
    [138]Przydatek B, Song D, Perring A. SIA:secure information aggregation in sensor networks[C]. Proceedings of the 1st International Conference on Embedded Networked Sensor System. 2003,11:255-265
    [139]Chiang C C, Wu H K, Liu W, et al. Routing in clustered multihop mobile wireless networks with fading channel[C]. Proceedings of IEEE Singapore International Conference on Networks,1997:197-211
    [140]Perkins C E, Royer EM. Ad-Hoc on-dem and distance vector routing[C]. Proceedings of 2nd IEEE Workshop on Mobile Computing System and Applications 1999:90-100
    [141]Holland J H. Adaptation in Nature and Artificial Systems:An Introduetory Analysis with Applieation to Biology,Control, and Artifieial Intelligene [M].1st edition, Ann Arbor, MI: The University of Michigan Press,1975; 2nd edition Cambridge, MA:MIT Press,1992: 721-725
    [142]Goldberg D E. Genetie Algorithms In Search, Optimization and Machine Learning[M]. MA:Addison-Wesley Publish Company,1989:127-134
    [143]牛宝柱,蒋勇.遗传算法在反应动力学机理简化中的应用研究[D].中国科技大学硕士学位论文,2009
    [144]Rudolph G. Covergence analysis of canonical genetic algorithms [J]. IEEE Trans on Neural Network,1994,5(1):96-101
    [145]Fogel D B. Asymptotic convergence properties of genetic algorithms and evolutionary programming:analysis and Experiments[J]. Cybernetics and Systems,1994,25(1):389-407
    [146]Paredis J. Coevolutionary computing, artificial life 2[M]. MIT Press,1995
    [147]Alba E, Tomaasini M. Parallelism and evolutionary algorithms [J]. IEEE Trans on Evolutionary Computation,2002,6(5):443-462
    [148]李平.预测控制和极点配置内模控制的研究及工程应用[D].浙江大学博士学位论文,1994
    [149]Mayne D Q. Optimization in model predictive control[C]. Proc IFAC DYCORD, Helsingor,1995:229-2242
    [150]Bitmead R R, Gevers M, Wertz V. Adaptive optimal control—The thinking man's GPC[M]. New York:Prentice Hall,1990
    [151]Chen H, Allgower F. A Quasi-infinite horizon nonlinear modelpredictive control scheme with guaranteed stability[J]. Automatica,1998,34(10):1205-1217
    [152]Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control:stability and optimality[J]. Automatica,2000,36(6):789-814
    [153]Faulwasser T, Findeisen R. Nonlinear Model Predictive Path-Following Control[J]. Lecture Notes in Control and Information Sciences,2009,384:335-343
    [154]Larsen T D, Hansen K L, Andersen N A, et al. Design of Kalman filters for mobilerobots; evaluation of the kinematic and odometric approach[R]. in:Proceedings of the 1999 IEEE International Conference on Control Applications,USA,1999:1021-1026
    [155]Kim K H, Jee G I, Song J H. The Stability of the Adaptive Two-stage Extended Kalman Filter[C]. International Conference on Control Automation and Systems, Seoul, Korea,2008: 1378-1383
    [156]Hyland J C. An Iterated-Extended Kalman Filter[R]. OCEANS'02 MTS/IEEE,2002,3: 1283-1290
    [157]Jia S, Yasuda A, Chugo D, Takase K. LRF-based self-localization of mobile robot using Extended Kalman Filter[R]. SICE Annual Conference. The University Electro-Communications, Japan,2008:2295-2298
    [158]Choi W S, Kang J G, Oh S Y. Measurement Noise Estimator Assisted Extended Kalman Filter for SLAM Problem[R]. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA,2009:2077-2082

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700