回滞非线性系统的鲁棒控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早在上个世纪六十年代就有人提出回滞非线性系统控制问题,但因当时人们对控制的要求比较低,对回滞非线性系统的控制可通过选择适当的器件和用线性化系统近似代替回滞非线性来进行。对于精度要求不高的场合,可采用电阻和电容桥路或者电荷控制等方法来削弱回滞。近年来,由于精密加工和各种国防系统对控制精度要求的不断提高,从材料本身已很难克服回滞特性对控制系统性能的影响,因此从控制角度研究回滞非线性系统的控制以克服回滞对系统性能的影响,以适应目前各种精密控制对象对系统性能的高要求,是一具有重要理论意义和应用价值的课题,目前已引起国内外控制和机械工程界的高度重视。此外,回滞也存在于其他许多领域,比如在经济领域和生理学方面。
     具有回滞特性的系统是不可微分的非线性系统,所以不能采用可微分的非线性和线性系统的控制理论和方法来进行研究。本文通过对回滞特性的研究,从控制角度提出了回滞的通用模型,它由两部分组成:线性部分和已知上界的不确定非线性部分。此时回滞系统可以看作是输入不确定非线性系统,从而可以采用一般非线性系统的鲁棒控制方法来研究。
     滑模控制由于算法简单、响应快速和抗干扰性能好,特别适用于解决非线性不确定系统的鲁棒控制问题。但其抖动问题却可能造成系统硬件的损坏,甚至导致系统的不稳定,因而大大限制了它在实际控制问题中的应用。同时由于滑模控制的算法中,求控制律和滑动流形存在交叉问题,所以对于高阶的系统,其设计过程也变得较为复杂。本文利用Ackermann's Formula首先对滑模控制的算法进行改进,使得算法中不存在交叉问题,然后提出的模型参考滑模控制可以很好地削弱回滞特性,回滞系统的鲁棒控制研究要解决的核心问题最终还是归为解决滑模控制中抖振和收敛问题,为此,本文最后研究了有限时间收敛机理和具有较强鲁棒性的低抖振非奇异终端滑模控制
     本文作为国家自然科学基金(60374016)资助项目“具动态回滞非线性系统的建模与控制问题研究”和广东省自然科学基金(020848)资助项目“高阶滑模控制策略及在不确定控制系统中的应用研究”的研究内容之一,从控制角度给出回滞的一般模型,对回滞非线性系统鲁棒控制进行了研究和探索,包括对回滞逆模型前馈补偿控制的PID控制的改进和基于滑模控制的模型参考控制和终端滑模控制等。所提出的控制思路和对应方法可以有效的削弱回滞,达到控制的目的。
The problem of control on nonlinear systems with hysteresis has been put forward since 1960's. Nonlinear systems with hysteresis could been controlled by choosing appropriate apparatuses and approximately replacing systems with hysteresis by linearization systems in lower demand on control. In the situation of demand on low precision, using resistance and capacitance bridge circuit or charge control could mitigate hysteresis. It is difficult from material to come over the effect caused by hysteresis on performance of controlled systems, with higher and higher demand on control precision in high precision process and all kinds of national defense systems recently. So it is task with important theory significance and application value, to study form control consideration the control of nonlinear systems with hysteresis to come over the effect by hysteresis on systematic performance, and gets highly attention in control and mechanic engineering field home and abroad. It can adapt to high demand on systematic performance in all kinds of precision control. However, hysteresis also exits in other field, for instance, economy and physiology.
    Systems with hysteresis are nondifferentiable nonlinear systems. So they cannot be studied through control theories and methods used in differentiable nonlinear and linear systems. A general model for hysteresis form control consideration is put forward in this dissertation after studying characteristic of hysteresis, which consists of two parts: linear part and uncertain nonlinear part with known limit. Systems with hysteresis can be looked as nonlinear systems with uncertain input, and studied through robust control theory used in nonlinear systems.
    Sliding mode control (SMC) is especially suitable to apply in the robust control on nonlinear systems with uncertainty due to simpleness of algorithm, quickness of response and good performance of anti-disturbance. However, chattering which can result in breakage of hardware and even instability in systems greatly limits the application of SMC. At the same time, there exits crossover in getting control law and manifold in algorithm of SMC, and the control design becomes complex, especially in high order systems. Ackermann's Formula is employed to improve algorithm of SMC in this dissertation, and the crossover disappears. Mode-reference SMC is employed then to
引文
[1] 张粒子,武晋辉,余保东,杨以涵.电力电流互感器铁心磁滞回坏的拟合.电力系统自动化.1998,22(3):6—8
    [2] 胡立发,周廉,张平祥,王金星.高温超导体的磁化与磁滞损耗.物理学报2001,50(7):1359-1365
    [3] 龚宪生,唐一科.一类迟滞非线性振动系统建模新方法.机械工程学报.1999,35(4):11-14
    [4] 崔纳新,张庆范,王军.采用双直流电流滞环调节器的矢量控制PWM变频调速系统.电机与控制学报.1998,2(4):213-216
    [5] A. Visintin, Differential models of hysteresis. New York: Springer-Verlag, 1991.
    [6] Cruz-Hernández J. M. and Hayward V. Phase control approach to hysteresis reduction. IEEE Tran. on Contr. Sys. Tech. 2001, 9(1): 17-26
    [7] I.D. Mayergoyz. Mathematical Models of Hysteresis. New York: Springer-Verlag, 1991.
    [8] M. Sjostrom, Hysteresis modeling of hightemperature superconductors. Swiss federal Institute of Technology Lausanne, PhD Thesis, 2001
    [9] Symens W., Al-Bender F., Swevers J., Van Brussel H. Dynamic characterization of hysteresis elements in mechanical systems. Proc. of the 2002 American Control Conference, 2002, 5: 4129-4134
    [10] Gilbert J.R., Ananthasuresh G.K., Senturia S.D. 3D modeling of contact problems and hysteresis in coupled electro-mechanics. MEMS '96, San Diego, CA USA. 1996:127-132
    [11] G. Friedman, L. Liu and J.S. Kouvel. Experimental testing of applicability of the Preisach hysteresis model to superconductors. Journal of Applied Physics. 1994, 75(10): 5683-5687
    [12] Sjostrom M., Djukic D., Dutoit B. Parameterized hysteresis model for high-temperature superconductors. IEEE Trans. on Applied Superconductivity. 2000, 10(2): 1585-1592
    [13] Ge P, Jouaneh M. Modeling hysteresis in piezoceramic actuators. Precision Eng. 1995:17:211-21
    [14] H. Hu, R. Ben Mrad. On the classical Preisach model for hysteresis in??piezoceramic actuators. Mechatronics. 2003, 13: 85-94
    [15] Jouaneh M, Tian H. Accuracy enhancement of a piezoelectric actuator with hysteresis. JAPAN/USA ASME Symp Flexible Automat. 1992, 1: 631-7
    [16] Hughes D., Wen J.T. Preisach modeling of piezoceramic and shape memory alloy hysteresis. Proc. of the 4th IEEE Conference on Control Applications. Albany, NY USA.1995: 1086-1091
    [17] Nascimento, M.M.S.F., de Almeida L.A.L. etc. Description of hysteresis in shape memory alloy actuators using the L/sup 2/P model. IMTC '03. Proc. of the 20th IEEE. 2003: 860-864
    [18] W. Franz, Ed. Hysteresis effects in economic models. Heidelberg, Germany: Physica-Verlag, 1990
    [19] T.C. Ruch and H.D. Patton. Physiology and biophysics. Philadelphia, PA: Saunders, 1965, 39: 733-759
    [20] E. Delia Torre. Magnetic hysteresis. Piscataway. IEEE Press, New Jersey, USA, 1999
    [21] G.. Bertotti. Hysteresis in magnetism-for physicists. Material Scientists and Engineers. Academic Press, New York, USA, 1998
    [22] M. Brokate and J. Sperkels. Hysteresis and phase transitions. Springer-Verlag, New York, USA, 1996
    [23] M.A. Krasnoselskii and A.V. Pokrovskii. Systems with hysteresis. Springer- Verlag, Berlin, Germany, 1989
    [24] Ge P and Jouaneh M. Tracking control of a piezoceramic actuator. IEEE Trans. on Control Systems Technology. 1996, 4(3): 209-216.
    [25] Yu Y.H., Xiao Z.C., Lin E.B., and Naganathan N. Analytic and experimental studies of a wavelet identification of Preisach model of hysteresis. IEEE Trans. Journal of Magnetism and Magnetic Materials. 2000, 20(8): 255-263
    [26] F. Liorzou, B. Phelps and D. L. Atherton. Macroscopic models of magnetization. IEEE Trans, on Magnetics. 2000, 36(2): 418-428
    [27] J.W. Macki, P. Nistri, and P. Zecca. Mathematical models for hysteresis. Society of Industrial and Applied Mathematics Review. 1993, 35(1): 94-123
    [28] Brockeett R.W. Nonlinear systems and differential geometry. Proc. of IEEE, 1976, 64(1): 61-72
    [29] Jakubczyk B., Respondek W. On linearization of control systems. Bull Acad Polon Sci. Math. 1980, 28: 517-522
    [30] Chen D., Tarn T.J., Isidori A. Global linearzation of control systems via feedback.??IEEE trans. Aut. Control. 1983, AC-30 (8): 808- 811
    [31] C.I. Byrnes and A. Isidori. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. on Automatic Control. 1991, 36:1122-1137
    [32] R.W.Brockett. Lie algebras and Lie groups in control theory. In D.Q. Mayne and R.W. Brockett, editors, Geometric Methods in System Theory. Dordrecht, 1973: 43-82
    [33] A. Isidori, Nonlinear control systems: an introduction, Berlin, New York: Springer-Verlag, 1989
    [34] 高为炳,非线性控制系统导论,北京:科学出版社,1989
    [35] 夏小华,高为炳,非线性系统控制及解耦,北京:科学出版社,1993
    [36] 胡跃明,非线性控制系统理论与应用,国防工业出版社,2002
    [37] J.J.E. Slotine, W.P. Li. Applied nonlinear control. Englewood Cliffs, New Jersey: Prentice Hall, 1991
    [38] A. Isidori, Nonlinear control systems. Berlin, New York: Springer-Verlag, 1995
    [39] S. Sastry. Nonlinear systems: analysis, stability, and control. New York: Springer, 1999
    [40] Reinder B., Willem L. ect. State-space analysis and identification for a class of heusteretic systems. IEEE Trans. on Automatica. 2001, 37(12): 1883-1892
    [41] L.O. Chua and S.C. Bass. A generalized hysteresis model. IEEE Trans. Circuit Theory. 1972, 19(1): 36-48
    [42] JinHyoung Oh and Bernstein D.S. Analysis of the semilinear Duhem model for rate-independent hysteresis. Proc. of 42nd IEEE Conference on Decision and Control, Maul, Hawaii USA, 2003:6236-6241
    [43] 孙立宁,张涛,蔡鹤皋,王焕.压电/电致伸缩陶瓷控制模型归一化的研究.哈尔滨工业大学学报.1998,30(5):4-7
    [44] Y.K. Wen. Method for random vibration of hysteretic systems. J. Egnr. Mech. 1976, 102:249-263
    [45] B.F. Spencr. Reliability of randomly excited hysteretic structures. New York: Springer-Verlag, 1986
    [46] Sain P.M., Sain M.K., Spencer B.F. Models for hysteresis and application to structural control. Proc. of the 1997 American Control Conference, Albuquerque, New Mexico USA, 1997, 1:16-20
    [47] Ralph C. Smith and Chad Bouton. Partial and Full Inverse Compensation for Hysteresis in Smart Material Systems. Proc. of the American Control Conference Chicago, Illinois, 2000[48] S. Mittal and C.H. Menq. Hysteresis compensation in electromagnetic actuators through Preisach model inversion. IEEE/ASME trans, on Mechatronics. 2000, 5(4): 394-409
    [49] P. Krejci and K. Kuhnen. Inverse control of systems with hysteresis and creep. IEE Proc. -Control Theory Appl., 2001:148(3): 185-192
    [50] A.G. Jenner, R.D. Greenough, D. Allwood, and A.J. Wilkinson. Control of Terfenol-D under load. J. Appl. Phys. 1994, 76(10): 7160-7162
    [51] J. Schaefer and H. Janocha. Compensation of hysteresis in solid-state actuators. Sens. Actuators, A: Physical. 1995, 49(2): 97-102
    [52] P. Ge and M. Jouaneh. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng. 1997, 20: 99-111
    [53] A. Reimers and E.D. Torre. Fast Preisach-based magnetization model and fast inverse hysteresis model. IEEE trans, on Magnetics. 1998, 34(6): 3857-3866
    [54] R.C. Smith and R. Zrostlik. Inverse compensation for ferromagnetic hysteresis. Proc. of the 38th Conference on Decision and Control, Phoenix, Arizona USA, 1999: 2875-2880
    [55] Leang, K.K. and Devasia, S. Iterative feedforward compensation of hysteresis in piezositioners. 42nd IEEE Conference on Decision and Control Proc. 2003, 3: 2626-2631
    [56] R.C. Smith. Inverse compensation for hysteresis in magnetostrictive transducers. Mathematical and Computer Modelling. 2001, 33: 285-298
    [57] M. Hamdan and Z.Q. Gao. A novel PID controller for pneumatic proportional valves with hysteresis. Conference Record of the 2000 IEEE Industry Applications Conference, 2000, 2: 1198 - 1201
    
    [58] 赵宏伟,孙立宁,张涛,蔡鹤皋.压电陶瓷驱动器在机器人柔性臂应用中的研究. 压电与声学. 2000, 22(3): 173-176
    [59] G.S. Choi, H.S. Kim and G.H. Choi. A study on position control of piezoelectric acruators. ISIE'97, Portugal, 1997, 3: 851 - 855
    [60] J.M. Cruz-Hernandez and V. Hayward. An approach to reduction of hysteresis in smart materials. Proc. of the 1998 IEEE International Conference on Robotics &Automation. 1998: 1510-1515
    [61] Hwang C.L., Jan C and Chen Y.H. Piezomechanics using intelligent variable structure control. IEEE Trans.On Industrial Electronics. 2001, 48(1): 47-59
    [62] Su C.Y., Stepanenko Y and Leung T.P. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans, on??Automatic Control. 2000, 45(12): 2427-2432
    [63] X. Sun, W. Zhang and Y. Jin. Stable adaptive control of backlash nonlinear systems with bounded disturbance. Proc. 31st Conf. Decision Control, 1992: 274-275
    [64] Y. Stepanenko and C.Y. Su. Intelligent control of pizoelectric actuators. Proc. 37th IEEE Conf. Decision Control, 1998: 4234-4239
    [65] G. Tao and P.V. Kokotovic. Adaptive control of plants with unknown hysteresis. IEEE Trans. Automat. Contr. 1995, 40: 200-212
    [66] Su C.Y, Stepanenko Y and Leung T.P. Continuous-time adaptive control of systems with unknown backlash. IEEE Trans. Automat. Contr. 1995, 40: 1083-1087
    [67] N.J. Ahmad and F. Khorrami. Adaptive control of systems with backlash hysteresis at the input. Proc. Amer. Control Conf. 1999: 3018-3022
    [68] Corradini M.L., Orlando G. Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator. IEEE Trans, on Control Systems Technology. 2002, 10: 158-166
    [69] N. Sadowski, N.J. Batistela, and etc. An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations. IEEE trans. on Magnetics. 2002, 38(2): 797-800
    [70] P. Nakmahachalasint, Khai D.T. Ngo and Loc Vu-Quoc. A static hysteresis model for power ferrites. IEEE trans, on Power Electronics. 2002, 17(4): 453-460
    [71] Zhou X. Modeling of piezoceramics and piezoelectric laminates addressing complete coupling and hysteresis behavior. Arizona State University, PHD. 2002: 188-188
    [72] R. Dhaouadi, F.H. Ghorbel and P.S. Gandhi. A new dynamic model of hysteresis in harmonic drives. IEEE trans, on Industrial Electronics. 2003, 50(6): 1165-1171
    [73] Y. Bi and Jiles D.C. Measurements and modeling of hysteresis in magnetic materials under the action of an orthogonal bias field. IEEE Trans. Magn. 1999, 35(5): 3787-3789
    [74] Hu Y.M., Zhang D.K, and Su C.Y. Model-reference sliding mode control for systems with hysteresis. Proc. of the 2003 IEEE Inter. Sympo. on Intel. Contr. 2003:777-781
    [75] Valasek, M., Olgac, N. Efficient pole placement technique for linear time-variant SISO systems. IEE Proc. of Control Theory and Applications, 1995, 142(5): 451-458
    [76] Kunt K.J. et al. Neural networks for control systems-a survey. Automatica. 1992, 28(6): 1083-1112
    [77] Girosi F. and Poggio T. Networks and the best approximation property. Biological Cybernetics. 1990, 6:169-176
    [78] Poggio T. and Girosi F. Networks for approximation and learning. Proc. of the IEEE. 1990, 4(9): 1481-1497
    [79] Bianchini M. Frasconi P. and Cori M. Learning without minima in radial basis function network. IEEE Trans. on Neural Network. 1995, 6(3): 749-756
    [80] 赵国生,李朗如.磁滞多值性的神经网络模拟.水电能源科学.1997,15(3):47-50
    [81] 王永骥,涂健.神经元网络控制.机械工业出版社.1998
    [82] Simon Haykin. Neural networks. Prentice-Hall Inc. 1999
    [83] Powell M.J.D. Radial basis functions for multivariable interpolation. IMG Conference on Algrorithms for the Approximation of Function and Data. UK: Shrivenham, 1985:143-167
    [84] Ackermann J, Sampled-data control systems. Berlin, Germany: Springer-Verlag, 1985
    [85] Ackermann J and Utkin V, Sliding mode control design based on Ackermann's Formula. IEEE Trans. on Auto. Contr. 1998,43(2): 234-237
    [86] 肖扬,刘刚.一类变结构系统控制的设计.北方交通大学学报.2002,26(3):1-5
    [87] 李玉东,孔德星,匡森,彭红星.一种极点配置算法在SISO系统中的应用.焦作工学院学报(自然科学版).2002,21(3):201-204
    [88] Young K.D. Design of variable structure model-following control systems. IEEE Trans.on Auto. Contr. 1978, 23(6): 1079-1085
    [89] C.M. Liaw, Y.M. Lin, K.H. Chao. A VSS speed controller with model reference response for induction motor drive. IEEE Transactions on Industrial Electronics. 2001, 48(6): 1136 - 1147
    [90] Bartolini G.and Zolezzi T. The VSS approach to the model reference control of nonminimum phase linear plants. IEEE Trans. on Automatic Control. 1988, 33(9): 859 - 863
    [91] Cunha J.P.V.S., Liu Hsu Costa, R.R. Lizarralde F. Output-feedback model-reference sliding mode control of uricertain multivariable systems. IEEE Trans. on Automatic Control. 2003, 48(12): 2245-2250
    [92] Liu Hsu, Soares da, Chunha JPV and Costa, R.R. Model-reference sliding mode??control of uncertain multivariable systems. Proc. of the 40th IEEE Conference on Decision and Control, 2001, 1: 756 - 761
    [93] B. Zhang, Y.h. Li. A PMSM sliding mode control system based on model reference adaptive control. PIEMC 2000, 2000: 336 - 341
    [94] W.J. Chang, K.Y. Chang, H_∞ norm and variance constrained controller design for stochastic model reference systems via sliding mode control concept. Proc. of the 1999 American Control Conference, 1999, 4: 2803 - 2807
    [95] K.Y. Chang, W.J. Wang. Covariance assignment for stochastic model reference systems via sliding mode control concept. Proc. of the 1998 American Control Conference, 1998, 1: 289 - 290
    [96] Orlov Yu. Bentsman J. Sliding mode model reference adaptive control of heat processes. 1996 IEEE International Workshop on Variable Structure Systems, 1996: 238 - 242
    [97] Spurgeon S.K. Edwards C. Foster N.P. Robust model reference control using a sliding mode controller/observer scheme with application to a helicopter problem.1996 IEEE International Workshop on Variable Structure Systems, 1996: 36 - 41
    [98] Bekiroglu N. Isil Bozma H. Istefanopulos Y. Model reference adaptive approach to sliding mode control. Proc. of the American Control Conference, 1995, 1: 1028 - 1032
    [99] Orlov, Yu.V. Sliding mode-model reference adaptive control of distributed parameter systems. Proc. of the 32nd IEEE Conference on Decision and Control, 1993, 3: 2438 - 2445
    [100] M. Zak. Terminal attractors in neural networks. Neural Networks. 1989, 2: 259-274
    [101] Wang S. and Hsu C.H. Terminal attractor learning algorithms for backpropation neurl networks. International Joint Conference on Neural Networks, Singapore, 1991: IEEE Press, 183-189
    [102] Bianchini M., Fanelli S., Gori M. and Maggini M. Terminal attractor algorithms: a critical analysis. Neutocomputing. 1997, 15:3-13
    [103] Zak M. Terminal attractors for addressable memory in neural networks. Physics Lett A, 1998, 133(1/2): 18-22
    [104] Man Z.H, Palinski A.P, Wu H.R. et al. A robust MIMO terminal siding mode control for rigid robotic manipulators. IEEE trans. On Automatic Control, 1994, 39(12): 2464-2468
    [105] Man Z.H, Yu X.H, Terminal sliding mode control of MIMO linear systems,IEEE Trans. Circuits Syst.-I. 1997,44(11): 1065-1070
    [106] Yu X.H. Man Z.H. and Wu Y.Q. Terminal sliding modes with fast transient performance, Proc. of the 36th Confer. on Dec. & Contr. San Diego, California USA, Dec. 1997, 962-963
    [107] 李世华,田玉平.运动小车的轨迹跟踪控制.控制与决策.2000,15(5):626-628
    [108] 冯勇,鲍晟,余星火.非奇异终端滑模控制的设计方法.控制与决策.2002,17(2):194-198
    [109] Yu S.H, Yu X.H, Man Z.H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems. Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000:2198-2203
    [110] Feng Y, Yu X.H, Man Z.H. Adaptive fast terminal sliding mode tracking control of robotic manipulator. Proc. of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001:4021-4026
    [111] Y. Shtessel and J. Buffington. Continuous sliding mode control. Proc. Of the American Contr. Conf., Philadelphia, Pennsylvania, 1998:562-563
    [112] Man Z., Yu X.H. Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics. JSME international Journal.1997, 40:493-502
    [113] Wu Y., Yu X. and Man X. Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letter. 1998, 34:281-288
    [114] Yu T. Terminal sliding mode control for rigid robots. Automatica. 1998, 34: 51-56
    [115] Yu X.H. and Man Z.H. Model reference adaptive control systems with terminal sliding modes. International Journal of Control. 1996, 64:1165-1176
    [116] Yu X.H., Wu Y. and Man M. On global stabilization of nonlinear dynamical systems. In Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes in Control and Information Science, D Young and U. Ozguner(Eds). Springer-Verlag. 1999, 247:109-122
    [117] Yu X.H., Man Z.H. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and systems-Ⅰ: Fundamental Theory and Applications. 2002,49(2): 261-264
    [118] Yu S.H., Yu X.H. Robust global fast terminal sliding mode controller for rigid robotic manipulators. Proceeding of IEEE TENCON'02. 2002:1335-1338
    [119] Yu X.H., Man Z.H. On finite time mechanism: Terminal sliding modes. 1996??IEEE Workshop on Variable Structure Systems. 1996:164-167
    [120] Yue D., Xu S.F. and Liu Y.Q. Terminal sliding mode control of high-order systems. Proc. of The IEEE International Conference on Industrial Technology. 1996:811-814
    [121] 高为炳.变结构控制的理论及设计方法.科学出版社,北京,1998
    [122] 胡跃明,刘永清.非匹配条件下滑动模的鲁棒性.华南理工大学学报,1995,23(6):35-41
    [123] 胡跃明,变结构控制理论与应用.科学出版社.2003
    [124] Yu X.H. and Man Z. Fast terminal sliding mode control for single input systems. Proceeding of 2000 Asian Control Conference, Shanghai, China, 2002
    [125] Esfandiari F. Stability analysis of a continuous of variable structure. IEEE Tran. on Auto. Contr. 1991, 36(5): 616-619
    [126] Krener A.J. On the equivalence of conerol systems and the linearization of nonlinear systems. SIAM J. Control. 1973, 11(4): 670-676
    [127] Brockett R.W. Nonlinear systems and differential geometry. Proc. of IEEE, 1976, 64(1): 61-71
    [128] Sussmann H.J. A sufficient condition for local controllability. SIAM.J.Control and Optim. 1978, 116(5):790-802
    [129] Sussmann H.J. Single-input observability of continuous-time systems. Math. Syst. Theory. 1979, 12:391-393
    [130] Fliess M., Lamnabhi M. and Lagarrigue F.L. An algebraic approach to nonlinear functional expansions. IEEE Trans. Circ. Sys. 1983, CAS-30(8): 554-570
    [131] Byrms C.I. and Isidori A. Local stabilization of minimum-phase nonlinear systems. Systems & Control Letters. 1988, 11:9-17
    [132] Branicky M.S. Multiple Lyapunov function and other analysis tools for switched and hybrid systems. IEEE Tran. on Auto. Contr., 1998, 43(4): 475-482
    [133] S Prajna, A. Papachristodoulou. Analysis of switched and hybrid systems-beyond piecewise quadratic methods. Proc. of the American Contr. Confer., Denver, 2003:2779-2784
    [134] 高建平,陈宗基.基于LMI的混合系统的稳定性和鲁棒镇定研究.北京航空航天大学学报.1999,25(3):259-262
    [135] Hedlund S, Rantzer A, Optimal control of hybrid systems. Proc. of the 38th IEEE Confer. on Dec. and Contr., Phoenix, USA, 1999:3972-3977
    [136] Shaikh MS, Caines PE, On the optimal control of hybrid systems: optimization of switching times and combinatoric location schedules. Proc. of the American Contr.??Confer., Denver, USA, 2003 : 2773 -2778
    
    [137] Akar M, Ozguner U, Sliding mode control using state/output feedback in hybrid systems. Proc. of the 37th IEEE Confer, on Decision and Control, Tampa, Florida USA, 1998: 2421 -2422
    
    [138] Akar M, Ozguner U, Decentralized sliding mode control design for hybrid systems. Proceedings of the American Control Conference, San Diego, USA, 1999: 525 -529
    
    [139] Sedghi B, Srinivasan B, Longchamp R, Control of hybrid systems via dehybridization. Proc. of the American Contr. Confer. Anchorage, USA, 2002: 692 -697
    
    [140] Riedinger P., Iung C. Optimal control for hybrid systems: an hysteresis example. IEEE International Conference on Systems, Man, and Cybernetics. 1999, 1(1): 188 -193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700