实现复杂度控制的信源信道联合编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着无线移动通信技术的快速发展,应用在无线移动环境下的多媒体通信业务已经成为第三代以及第四代移动通信发展的核心。与此同时,目前无线多媒体终端处理器相对台式机或专业设备在处理能力上的不足,以及处理器功耗约束性问题已成为限制移动多媒体业务发展的主要障碍。本文在国家863 项目“数字音视频编码、传输、测试与应用示范”(No. 2002AA119010)和武汉市青年科技晨光计划项目“无线多媒体通信的联合功率率失真模型研究”(No.20045006071-18)的共同资助下,研究无线多媒体通信在处理器功耗约束条件下的信源信道联合编码技术和复杂度控制模型,目的是通过面向功率控制的信源信道联合编码系统的建立、相关技术及其复杂度模型的提出和联合功率控制策略的设计,达到在移动终端处理器功率约束或变化条件下,定量调节信源、信道编解码的复杂度,使视频数据在终端处理器功率约束下经无线信道传输后的质量尽可能达到最优。
    论文首先设计了功率可控的信源信道联合编码系统并建立了编解码系统的时间复杂度原型。与现有的仅考虑信源编码功耗开销的终端编码系统相比,本系统综合考虑了在终端算法复杂度和处理器功耗间存在抑制与平衡关系的信源编码、信道编码和差错控制三方面,由信源编解码子系统、联合信道保护子系统和复杂度控制子系统三部分组成,并论证了各编码子系统基本技术方案的先进性。随后,由功率和算法复杂度的对应关系,明确了实现功率控制的手段是控制算法的复杂度,定义算法的时间复杂度作为衡量各系统复杂度的物理参量以屏蔽实现方法的多样性。通过对各子系统相关技术算法时间复杂度相对系统时间复杂度的统计,初步建立了信源信道联合编码系统中信源编解码、信道编解码和差错控制的参数化复杂度控制原型,明确了影响算法复杂度的主要技术环节和控制参量,并简要分析了信源信道联合功率控制的实现策略和算法复杂度优化设计的方法。
    在信源编码子系统的研究中,提出了高性能、复杂度可控的空域伸缩性视频编码系统(Complexity and Spatiality Scalable Video Coding,CSSVC),与现有的空域伸缩性编码实现方式相比,本系统将低频域压缩性能优越的H.264 编码技术和高频域的带内预测技术相结合,具有优越的编码性能和与H.264 完全兼容的伸缩性码流。同时,针对高频子带系数的近随机分布特征,论证了原型系统主要编码技术的选择及有效性,设计的基于ODWT 的参考子带重建和运动补偿方法以及提出的高频子带残差系数的优化重排序方法、高频子带5 模式优化帧内预测和自适应的运动估计与补偿等技术改进,使本CSSVC 系统取得了超过H.264 Main Profile 全分辨率时0.04dB 的系统性能,
With the rapid development in wireless communication, multimedia applications in wireless environment draw great attention in the third and forth generation mobile communication. While, the processing capabilities insufficiency of mobile device compared to PC and the microprocessor’s power-constraint problem caused by battery become the major restrictions on the development of multimedia applications. Sponsored by “Joint Source and Channel Adaptive Coding Technology Based on Wireless Channel”, subproject of National 863 project “Digital Audio, Video Encoding, Transporting, Testing and Applying Model”(No. 2002AA119010), and “Research on Joint Power-Rate-Distortion Model for Wireless Multimedia Communication”( No.20045006071-18), Chenguang Project of Youth S&T, this dissertation is focusing on the establishment of complexity-controllable joint source channel coding (JSCC) system with related techniques optimization and complexity model definition under the constraint of the microprocessor’s power. Together with the power control policy, the work aims to adjust the source/channel encoding/decoding complexity adaptively to achieve the best-effort visual quality when the power level is fluctuant or limited.
    Firstly, a power controllable JSCC system is designed with the complexity prototype definition for each subsystem. Compared to the existing encoding system only considering the energy consumed by source coding, the proposed system takes the source coding, channel coding and error control into consideration to make a good balance between algorithm complexity and energy consumption of microprocessor. The JSCC system consists of three subsystems as: source encoding/decoding subsystem, joint channel protection subsystem and complexity control subsystem. The basic schemes of every subsystem are proved to be advanced. Based on the corresponding relationship between power and algorithm complexity, we clarified that the major way to control power consumption is controlling algorithm complexity. The time complexity of an algorithm is defined for complexity measurement to shield the model from realization variety. Through the statistical data retrieval for the ratio of technique time complexity to system time complexity, the complexity prototypes of source encoding/decoding, channel encoding/decoding and error control are established with major complexity-controlling parameter specifying. Furthermore, the strategy of JSCC power control and the method of
    complexity optimization are also discussed briefly. Secondly, a complexity and spatiality scalable video coding (CSSVC) system is proposed for the source encoding/decoding subsystem. Compared to the existing spatially scalable video coding system, the proposed system integrates the good compression performance of H.264 in low frequency domain with the attractive advantages of in-band prediction in wavelet domain to provide the good coding efficiency while maintaining the H.264 fully compatible scalable bitstream. Because of the obvious Gaussian distribution properties concluded by series of analysis for high frequency subband, the efficiency of the coding techniques selected for CSSVC prototype is discussed carefully. Several technical improvements in reference reconstruction and motion compensation, reordering scan, intra prediction, and motion estimation for high frequency decompositions endure our system with average 0.04dB gain in PSNR and better visual quality compared with the H.264 main profile in the full resolution. For each technical improvement, the complexity variation is analyzed and complexity scalable schemes are investigated for different processing capabilities. Through the theoretical analysis, statistical data retrieval and performance test, all of the technical improvements are proved to be efficient. Thirdly, a complexity-controllable hybrid error control system is constructed for joint channel protection subsystem. Compared to the existing approaches, the proposed system is designed for the unstable feedback channel. In order to integrate the advantages of hybrid ARQ (HARQ) I and HARQ II, a novel HARQ scheme called hybrid independent retransmission and self-decodable ARQ is proposed with parameters optimization in data retransmission time, data retransmission delay, response retransmission time, and response retransmission delay for ARQ protocols in transmitter and receiver. Using the more appropriate parameters for the wireless communication, the optimized HARQ system shows lower end-to-end delay and more stable performance by comparing to the general scheme. Moreover, the complexity control strategy is also specified for the joint channel protection subsystem. Finally, the time complexity models are investigated and established for the source encoding/decoding, channel encoding/decoding and joint channel protection system. Major technical components, such as motion estimation (ME), motion compensation (MC), intra prediction, transform and context-adaptive binary arithmetic coding (CABAC), are analyzed to figure out the proportion they occupied in the system complexity respectively.
    Based on the theoretical analysis and statistical data retrieval, the time complexity of proposed technique improvements, as reordering scan, intra prediction and motion estimation, is described measurably. The complexity control capabilities of INTRA mode, INTER mode, coding subbands, ratio of non-zero blocks and quantization parameter are further discussed and the relative encoding/decoding complexity variation is measured for different coding schemes. The experimental results have proved accuracy of the models. For the time complexity model of rate compatible punctured turbo code (RCPT), complexity influenced by interleave, recursive systematic code (RSC) encoding/decoding and de-interleave are analyzed detailedly. Model amendment is made for joint channel protection system and the JSCC power controlling strategy is designed taking complexity relationship among subsystems, microprocessor capability, fast complexity control and bitstream match into consideration. It provides a complete solution for the joint power control.
引文
[1] Pol Lin Tai, Chii Tung Liu, Shih Yu Huang, et al. Flexible fast block matching algorithm design based on complexity-distortion optimization. IEEE ICME, 2001: 689 -692
    [2] Pol Lin Tai, Chii Tung Liu, Jia Shung Wang. Complexity-adaptive search algorithm for block motion estimation. IEEE ICIP, 2001, 2: 969 -972
    [3] Won-Gi Hong, Tae-Myoung Oh. Enhanced partial distortion search algorithm for block motion estimation. Electronics Letters , 2003, 39(15): 1112 –1113
    [4] Zhe-Ming Lu, Hui Pei. Equal-average equal-variance nearest neighbor search algorithm based on Hadamard transform. International Conference on Machine Learning and Cybernetics, 2003, 5: 2976 –2978
    [5] Yui-Lam Chan, Wan-Chi Siu. An adaptive partial distortion search for block motion estimation. IEEE ICASSP, 2003, 3: 153-156
    [6] Smolic, J.R. Ohm. Robust global motion estimation using a simplified M-estimator approach. IEEE ICIP, 2000, 1: 868 –871
    [7] J. Cardinal. A Lagrangian optimization approach to complexity-constrained TSVQ. IEEE Signal Processing Letters, 2000, 7(11): 304 –306
    [8] K. Lengwehasatit, A. Ortega. Complexity-distortion tradeoffs in vector matching based on probabilistic partial distance techniques. IEEE DCC, 1999: 394 -403
    [9] K. Lengwehasatit, A. Ortega. Distortion/decoding time tradeoffs in software DCT-based image coding. IEEE ICASSP, 1997, 4: 2725 -2728
    [10] K. Lengwehasatit, A. Ortega. Rate-complexity-distortion optimization for quadtree-based DCT coding. IEEE ICIP, 2000, 3: 821 –824
    [11] Jungwoo Lee, B.W. Dickinson. Joint optimization of frame type selection and bit allocation for MPEG video encoders. IEEE ICIP, 1994, 2: 962 –966
    [12] T. Burd, R. Broderson. Processor design for portable systems. Journal of VLSI Signal Processing, August, 1996, 13(2): 203 –222
    [13] J. R. Lorch, A. J. Smith. Improving dynamic voltage scaling algorithms with PACE. Proceedings of the 2001 ACM SIGMETRICS Conference, June, 2001: 50 –61
    [14] P. Agrawal, Jyh-Cheng Chen, S. Kishore, P. Ramanathan, et al. Battery power sensitive video processing in wireless networks. The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998, 1: 116 –120
    [15] Q. Zhang, Z. Ji, W. Zhu, Y. Zhang. Power-minimized bit allocation for video communication over wireless channels. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(6): 398 –410
    [16] Z. He, Y. Liang, I. Ahmad. Power-rate-distortion analysis for wireless video encoding under energy constraint. Proc. SPIE VCIP, 2004, 5308: 57 –68
    [17] K. Stuhlmuller, N. Farber, M. Link, et al. Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications, 2000, 18(6): 1012-1032
    [18] A. Aaron, S. Rane, R. Zhang, et al. Wyner-Ziv coding for video -Applications to compression and error resilience. IEEE DCC, 2003: 93 –102
    [19] A. Aaron, R. Zhang, B. Girod. Wyner-Ziv coding of motion video. Proc. the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002, 1: 240 -244
    [20] A. Aaron, S. Rane, R. Zhang, et al. Wyner-Ziv coding for video -Applications to compression and error resilience. IEEE DCC, 2003: 93–102
    [21] S. Rane, A. Aaron, B. Girod. Systematic lossy forward error correction for error-resilient video broadcasting. Proc. SPIE VCIP, 2004, 5308: 588 –595
    [22] 陈丹, 罗忠, 何华灿. 精细粒度分层编码技术综述. 小型微型计算机系统, 2002, 23(8): 1018-1021
    [23] Weiping Li. Overview of fine granularity scalability in MPEG-4 video standard. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11: 301-317
    [24] L. Zhao, J. Shin, J. Kim, C. -C. Jay Kuo. MPEG-4 FGS video streaming with constant-quality rate adaptation, prioritized packetization and differentiated forwarding. Proc. of SPIE, 2001, 4520: 84-95
    [25] 陈志波, 何芸. 面向Internet的视频编码技术: 精细可分级性(FGS)的实现. 中国图象图形学报, 2001, 6(6): 608-612
    [26] Feng Wu, Shipeng Li, Ya-Qin Zhang. A framework for efficient progressive fine granularity scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11: 332-344
    [27] 吴枫, 李世鹏, 张亚勤. 渐进、精细的可伸缩性视频编码. 计算机学报, 2000, 23(12): 1276-1282
    [28] Feng Wu, Shipeng Li, Ya-Qin Zhang. DCT-Prediction based progressive fine granularity scalable coding. IEEE ICIP, 2000, 3:566-569
    [29] 王琪, 赵黎, 吴枫, 李世鹏, 钟玉琢.可伸缩性视频编码的码率分配算法.电子学报, 2002, 30: 205-209
    [30] Xiaoyan Sun, Feng Wu, Shipeng Li, et al. Macroblock-based progressive fine granularity scalable video coding. IEEE ICME, 2001: 461-464
    [31] A.Wyner, J. Ziv. The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 1976, 22: 1–10
    [32] A. Wyner. On source coding with side information at the decoder. IEEE Transactions on Information Theory, 1975, 21: 294–300
    [33] R. Zamir. The rate loss in the Wyner-Ziv problem. IEEE Transactions on Information Theory, 1996, 42(11): 2073–2084
    [34] 张忠培, 王艺, 周世东, 等. 截短Turbo混合ARQ及衰落信道下的性能. 清华大学学报(自然科学版), 2002, 42(7): 889-892
    [35] Tingfang Ji, Wayne E. Stark. Turbo-coded ARQ schemes for DS-CDMA data networks over fading and shadowing channels: throughput, delay, and energy efficiency. IEEE Jounal on Selected Areas in Communication, 2000, 18(8): 1355-1364
    [36] D.N. Rowitch, L.B. Milstein. Rate compatible punctured turbo (RCPT) codes in a hybrid FEC/ARQ system. IEEE Globecom, 1997: 55-59
    [37] D. Garg, R. Kimura, F. Adachi. RCPT Hybrid ARQ with limited number of retransmissions in DS-CDMA mobile radio. Electronics Letters, 2003, 39: 241-242
    [38] Joachim Hagenauer. Rate-compatible punctured convolutional codes (RCPC Codes) and their applications. IEEE Transactions on Communication, 1988, 36(4): 389-40
    [39] 贺玉成, 杨莉, 慕建君, 等. LDPC码的不可检测译码错误分析. 通信学报, 2002, 23(1): 1-7
    [40] Stephen B. Wicker. Type-II hybrid-ARQ protocols using punctured Reed-Solomon codes. IEEE Transcations on Communication, 1991, 3: 1229-1234
    [41] Christian Schuler, Mihai Mateescu. Performance evaluation of ARQ protocols for realtime services in IEEE 802.11 and wireless ATM. 4th ACTS Mobile Communications Summit, Sorrento, 1999: 8-11
    [42] S. Lin, D. J. Costello. Jr., M. J. Miller. Automatic-repeat-request error-control schemes. IEEE Communication Magazine, 1984, 22(12): 5 -17
    [43] Nokia. Hybrid ARQ methods for FDD in release 2000. TSG-R WG1 document, TSGR1#14(00) 0869, 4-7th, July, 2000, Oulu, Finland, 20
    [44] Motorola. Performance comparison of Hybrid-ARQ schemes. TSG-R WG1 document, TSGR1#17(00) 1396, 20th-24th, Oct. 2000, Stockholm, Sweden, 7
    [45] K. R. Narayanan, G. L. Stuber. A novel ARQ technique using the Turbo coding principle. Communation Letters, 1997, 1(3): 49-51
    [46] Chaehag Yi, Jae Hong Lee. Hybrid ARQ scheme using interleaved Reed-Solomon codes in a power controlled DS-CDMA cellular system. IEEE Transactions on Vehicular Technology, 1996, 45(4):683 -687
    [47] Stephen B. Wicker, Michael J. Bartz. Type-II Hybrid-ARQ protocols using punctured MDS codes. IEEE Transactions on Communications, 1994, 42: 1431-1440
    [48] Zhiping Shi, Liyong Ren, Fan Jin. Design and performance analysis of HARQ for RS-turbo concatenated codes. IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions , 2002, 1: 56 –59
    [49] Zhenqiang Sun, Kimura S., Ebihara Y. DLC strategies with flexible error control in wireless ATM. IEEE MILCOM, 2000, 1: 90 –94
    [50] Sophie Laplante. Kolmogorov techniques in computational complexity theory. Doctor dissertation, the University of Chicago, December 1997.
    [51] D. M. Sow, A. Eleftheriadis. Complexity distortion theory. IEEE International Symposium on Information Theory,1997: 188
    [52] D. M. Sow, A. Eleftheriadis. Complexity distortion theory. IEEE Transactions on Information Theory, 2003, 49(3): 604 -608
    [53] 朱雪龙. 应用信息论基础. 北京: 清华大学出版社, 2000
    [54] 傅祖芸. 信息论—基础理论与应用. 北京: 电子工业出版社, 2001.8
    [55] 张宏基. 信源编码. 北京: 人民邮电出版社, 1980
    [56] G. J. Sullivan, T. Wiegand. Rate-distortion optimization for video compression. IEEE Signal Processing Magazine, 1998, 15(6): 74-90
    [57] Antonio Ortega, Kannan Ramchandran. Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 1998, 15(6): 23-50
    [58] Leiming Qian. Joint Source-Channel Video Transmission: [Doctor Thesis]. 2001
    [59] P. A. Chou, Z. Miao. Rate-distortion optimized sender-driven streaming over best-effort networks. IEEE Workshop on Multimedia Signal Processing, 2001: 587-592
    [60] Igor Devetak, Toby Berger. Quantum rate-distortion theory for memoryless sources. IEEE Transactions on Information Theory, 2002, 48(6): 1580-1589
    [61] Zhihai He, Jianfei Cai, Changwen Chen. Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(6): 511-523
    [62] D. M. Sow, A. Eleftheriadis. Approximation of the resource bounded complexity distortion function. IEEE International Symposium on Information Theory, 2000: 206
    [63] T. Koga, K. Iinuma, A. Hirano, et al. Motion compensated interframe coding for video conferencing. Proceedings of national Telecommunications conference, 1981: G5.3.1–G5.3.5
    [64] Renxiang Li, Bing Zeng, Ming L. Liou. A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(4): 438-442
    [65] Xuan Jing, Lap-Pui Chau. An efficient three-step search algorithm for block motion estimation. IEEE Transactions on Multimedia, 2004, 6(3):435 -438
    [66] Lai-Man Po, Wing-Chung Ma. A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3):313 –317
    [67] Hyun-Wook Park, Hyung-Sum Kim. Motion estimation using low-band-shift method for wavelet-based moving-picture coding. IEEE Transactions on Image Processing, 2000, 9: 577-587
    [68] Ming Fai Fu, Au, O.C., Wing Cheong Chan. Low-band-shift (LBS) motion estimation with symmetric padding in wavelet domain. IEEE ISCAS, 2002, 3: 13 -16
    [69] Xin Li, L.Kerofsky, Shawmin Lei. All-phase motion compensated prediction in the wavelet domain for high performance video coding. IEEE ICIP, 2001, 3: 538 –541
    [70] AMD Inc. AMD PowerNow! TM technology platform design guide for embedded processors. http://www.amd.com/epd/processors
    [71] Intel Inc. Intel XScale technology overview. http://www.intel.com/design/intelxscale
    [72] A. Turing. On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society, 1937, 42: 230-265.Correction: 43: 544-546
    [73] Z. He, S. K. Mitra. A unified rate-distortion analysis framework for transform coding. IEEE Transactions on Circuits and System on Video Technology, 2001, 11: 1221 -1236
    [74] X. Lu, Y. Wang, E. Erkip. Power efficient H.263 video transmission over wireless channels. IEEE ICIP, 2002, 1: 533-536
    [75] Z.-L. He, C.-Y. Tsui, K.-K. Chan, et al. Low-power VLSI design for motion estimation using adaptive pixel truncation. IEEE Transactions on Circuits and System on Video Technology, 2000, 10: 669-678
    [76] S. M. Akramullah, I. Ahmad, M. L. Liou. Optimization of H.263 video encoding using a single processor computer: performance tradeoffs and benchmarking. IEEE Transactions on Circuits and System on Video Technology, 2001, 11: 901-915
    [77] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC), Mar. 2003
    [78] Stephane G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on patten analysis and machine intelligence, 1989, 11(7): 674-693
    [79] Marc Antonini, Michel Barlaud, Pierre Mathieu, et al. Image coding using wavelet transform. IEEE Transactions on Image Processing, 1992, 1(2): 205-220
    [80] Jens-Rainer Ohm. Three-dimensional subband coding with motion compensation, IEEE Transactions on Image Processing, 1994, 3:559-571
    [81] Seung-Jong Choi, John W. Woods. Motion-compensated 3-D subband coding of video. IEEE Transactions on Image Processing, 1999, 8:155-167
    [82] Marek Domanski, Adam Luczak, Slawomir Mackowiak. Spatio-temporal scalability for MPEG video coding. IEEE Transactions on Circuits and System on Video Technology, 2000,10: 1088-1093
    [83] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, et al. Scalable wavelet video-coding with in-band prediction-implementation and experimental results. IEEE ICIP, 2002, 3: 729-732
    [84] Y. Andreopoulos, M. van der Schaar, A. Munteanu, etal. Fully-scalable wavelet video coding using in-band motion compensated temporal filtering. IEEE ICASSP, 2003, 3: 417-420
    [85] Claudia Mayer, Motion compensation in-band prediction for wavelet-based spatially scalable video coding. IEEE ICASSP, 2003, 3: 73-76
    [86] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, et al. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and System on Video Technology, 2003, 13: 560-576
    [87] 杨福生. 小波变换的工程分析与应用. 北京: 科学出版社, 1999
    [88] Wim Sweldens. Wavelets and the lifting scheme: A 5 Minute Tour. Zeitschrift für Angewandte Mathematik und Mechanik, 1996, 76 (2): 41-44
    [89] Wim Sweldens. The lifting scheme: a custom-design construction of biorthogonal wavelets.Appl. Comput. Harmon. Anal, 1996, 3(2): 186-200
    [90] Heiko Schwarz, Detlev Marpe, Thomas Wiegand. Scalable Extension of H.264/AVC, ISO/IEC JTC1/SC29/WG11 MPEG2004/M10569/S03, Munich, March 2004
    [91] Iain E.G. Richardson. H.264 and MPEG-4 video compression. John Wiley & Sons press, 2003
    [92] 杨振明, 概率论, 科学出版社, 北京, 1999.1, 93-96
    [93] Gary J. Sullivan, Thomas Wiegand. Rate-distortion optimization for video compression. IEEE Signal Processing Magazine, 1998, 15(6): 74-90
    [94] A.Ortego, K.Ramchandran. Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 1998, 15(6): 23-50
    [95] J.R.Ohm. Chapter on motion-compensated wavelet video, http://www.ece.ucdavis.edu/~mihaela/ohm_chapter.pdf
    [96] Xin Li. New results of phase shifting in the wavelet space. IEEE Signal Processing Letters, 2003, 10: 193-195
    [97] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, et al.Complete-to-overcomplete discrete wavelet transforms: theory and applications. IEEE Transactions on Signal Processing, 2005, 53(4):1398-1412
    [98] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, et al. A new method for complete-to-overcomplete discrete wavelet transforms. IEEE DSP, 2002, 2:501 -504
    [99] Radu Zaciu, Claudiu Lamba, Constantin Burlacu, et al. Motion estimation and motion compensation using an overcomplete discrete wavelet transform. IEEE ICIP, 1996, 1:973 -976
    [100] Nicu Sebe, Claudiu Lamba, Michael S. Lew. An overcomplete discrete wavelet transform for video compression. IEEE ICME, 2002, 1: 641-644
    [101] 金欣, 朱光喜. 基于Lifting方式的复杂度、空域伸缩性视频编码, 第十二届全国图象图形学学术会议, 北京, 2005: 99-104
    [102] Clarke R. J. Transform coding of images. UK: Academic Press, 1985. 19-31, 87 -90
    [103] Cham WK. Development of integer cosine transform by the principle of dyadic symmetry. IEE Proceedings ,1989, 136 (4): 276 -288
    [104] Xin Jin, Xiaoyan Sun, Feng Wu, et al, Spatially scalable video coding with in-band prediction. SPIE VCIP, Proc. of SPIE, 2005, 5960: 221-229
    [105] Xin Jin, Xiaoyan Sun, Feng Wu, et al. H.264-Compatible Spatially Scalable Video Coding with Inband Prediction. IEEE ICIP, 2005, 1: 489-492
    [106] A. S. Barbulescu, S. S. Pietrobon, Rate compatible turbo codes. Electronic Letters, 1995, 31: 535 -536
    [107] Zhenqiang Sun, Kimura S., Ebihara Y. DLC strategies with flexible error control in wireless ATM. IEEE MILCOM, 2000, 1: 90-94
    [108] Zhiping Shi, Liyong Ren, Fan Jin. Design and performance analysis of HARQ for RS-turbo concatenated codes. IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, 1: 56-59
    [109] Thomas Stockhammer, Miska M. Hannuksela, Thomas Wiegand, H.264/AVC in Wireless Environments. IEEE Transactions on Circuits and Systems for Video Technology Special Issue on the H.264/AVC Video Coding Standard, 2003, 13: 657 -673
    [110] G. Roth, R. Sj?berg, G. Liebl, et al. Common test conditions for RTP/IP over 3GPP/3GPP2. ITU-T SG16 Doc. VCEG-M77, Austin, TX, USA, Apr. 2001
    [111] Stefano Gnavi, Marco Grangetto, Enrico Magli, et al. Comparison of rate allocation strategies for H.264 video transmission over wireless lossy correlated networks. IEEE ICME, 2003, 2: 517-520
    [112] Xin Jin, Guangxi Zhu. A novel Hybrid ARQ scheme for reliable wireless communication based on rate compatible punctured turbo (RCPT) codes. SPIE APOC, Proc. of SPIE, 2003, 5284: 179-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700