超拒水、防紫外功能型织物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是超拒水、防紫外功能型织物的研究,其中包括两大部分的内容:一部分是织物防紫外性能的研究;另一部分是织物超拒水性能的研究。
     首先用正交实验法系统、定性地研究织物防紫外的影响因素。在综合考虑紫外线透过率、透湿量、透气量3个指标的基础上,通过对影响织物防紫外性能的因素分析,得到一种通过改变织物的结构参数使纺织品的防紫外性能得以改善,同时织物的透湿性、透气性也较好的方法。将织物防紫外性能的影响因素分为直接影响因素(纤维种类、纱线线密度、织物组织、织物密度)和间接影响因素(紧度、厚度、重量)。结果表明:紧度是最主要的间接影响因素,当织物紧度增加时,紫外线透过率、透湿量、透气量均减小。
     其次,为了获得超拒水表面的织物,采用仿荷叶表面结构的方法,一是仿荷叶微米结构的乳突,二是仿荷叶的纳米结构。荷叶微米结构的仿制包括纤维细度的选择和织物组织的选择。选用线密度为160dtex/48f的涤纶超细海岛型纤维仿乳突直径,纤维直径为2.87μm,比荷叶表面乳突平均直径5~9μm小,所形成的织物单位面积粗糙程度更大,拒水性能更好,符合仿乳突直径要求。以采用绉组织和织物中加入高收缩涤纶丝的方法仿乳突的高度,开纤处理后,屈曲波高增大,增强了凹凸效应,织物的粗糙度增大,拒水性增强。
     织物成品紧度选择为66%和53%。其防紫外性能属于极好,透气、透湿性能符合要求,而且具有基本的拒水性能。纤维细度、织物组织及紧度确定了,织物结构参数就确定了,依据这些参数就可织造出相应的织物,这些织物将作为负载纳米粒子的基布。
     在仿荷叶的纳米结构时,用纳米二氧化钛(TiO_2)和纳米氧化镍(NiO)仿纳米结构,这里主要是纳米粒子的分散性研究。单一型分散剂分散的纳米粒子,粒径分布不够理想,用复合分散剂可以提高其分散效果.在纳米TiO_2的分散实验中,确定复合分散剂为月桂酸钠+聚丙烯酸铵,当月桂酸钠与聚丙烯酸铵的配比为1:1,超声时间为10min时,分散效果比较理想。在纳米NiO的分散实验中,确定复合分散剂为木质素磺酸钠+聚丙烯酸铵,当木质素磺酸钠与聚丙烯酸铵的配比为1:1时,分散效果比较理想。
     根据以上研究结果,将分散好的纳米粒子负载于设计好的基布上,研制成集超拒水功能和防紫外功能于一身的超拒水、防紫外功能型织物。其拒水性能大幅度提高,防紫外能力属于非常优异的防护,透湿、透气性可以满足基本服用要求,悬垂性和耐皱性都较好,但光泽性不是很好。
This thesis is that the fabrics are researched of having super hydrophobic function and ultraviolet resistant function, including two major parts: a part is the research of ultraviolet resistant performance of fabrics; another part is the research of super hydrophobic performance of fabrics.
    First, the orthogonal experiment is used to study the influencing factors of fabric to resist to ultraviolet systematically and qualitatively. On the basis of comprehensive considering 3 targets of ultraviolet transmissibility, moisture permeability content, air permeability content, through analyzing the influencing factors of fabric to resist to ultraviolet, one kind of method can be obtained to cause the ultraviolet resistant performance of fabric through the change of structural parameters of fabric to be able to be improved, simultaneously moisture permeability and air permeability of fabrics also better. The influencing factors of fabric to resist to ultraviolet are divided into the direct influencing factors (fiber type, yarn linear density, textile weave, fabric density) and the indirect influencing factors (cover factor, thickness, weight) .The results indicated that, cover factor is the most main indirect influencing factor, when cover factor increases, ultraviolet transmissibility, moisture permeability content and air permeability content all reduce.
    Next, in order to obtain the fabric of having super hydrophobic surface, the method is used that the superficial structure of lotus leaf is imitated, one is to imitate the tower of micron structure of lotus leaf, and two is to imitate the nanometer structure of lotus leaf. The imitation of micron structure of lotus leaf includes choices of fiber fineness and textile weave. The polyester superfine sea-island fiber is selected to imitate tower diameter that the linear density is 160dtex/48f, and the fiber diameter is 2.87μm which is smaller than the average diameter 5 ~ 9 μm of tower of lotus leaf, thus roughness of per unit area of fabric woven from it to be bigger, and the super hydrophobicity to be better, meeting the needs of the imitating diameter of tower of lotus leaf. Another method is applied to imitate tower altitude that crepe weave and the high-shrinkage polyester filament are used in the fabric. After opening filament process, the waviness height of yarn and roughness of fabric are all increased, strengthened the dimple effect, so the super hydrophobicity is enhanced.
    The finished cover factors of fabrics are chosen to 66% and 53%, of which ultraviolet resistant performances are extremely good, and the moisture permeability
    or air permeability accords with the requirement, moreover have basically hydrophobicity. After the fiber fineness, textile weave and cover factor have been determined, the structural parameters of fabrics are determined. The corresponding fabrics are possible to be woven according to these parameters that will become the base cloths to load nanometer particles.
    When the nanometer structure of lotus leaf is imitated with nanometer titanium dioxide (TiO_2) and nanometer nickel oxide (NiO), it is the main problem to be solved that the better dispersibility of nanometer particle will be got. In this paper, the compound dispersing agent is selected to enhance its dispersible effect, because the distribution of particle diameter is ideal insufficiently with the sole dispersing agent. In the experiment of dispersing nanometer titanium dioxide, the compound dispersing agent is determined for the lauryl sodium + polyacrylic ammonium, when the proportion of lauryl sodium and polyacrylic ammonium is 1:1 and the supersonic time is 10min, the dispersible effect is quite ideal. In the experiment of dispersing nanometer nickel oxide, the compound dispersing agent is determined for the lignosulphonate sodium + polyacrylic ammonium, when the proportion of lignosulphonate sodium and polyacrylic ammonium is 1:1, the dispersible effect is quite ideal.
    According to the above findings, the dispersed nanometer particles are loaded on the designed base cloths, thus the fabrics will be made up which have super hydrophobic function and ultraviolet resistant function. The developed fabrics have satisfying super hydrophobicity, the extremely outstanding ultraviolet resistant performance, basic moisture permeability and air permeability, better drape and wrinkle resistance, but luster are not very good.
引文
[1] 刘吉平,田军.纺织科学中的纳米技术[M].北京:中国纺织出版社,2003,5:183-219。
    [2] 徐路,郑宇英.纺织品防紫外线评定标准[J].中国标准化,2003,(2):15-16.
    [3] 徐朴,叶奕梁.防紫外辐射机理及产品研究[J].棉纺织技术,1999,7:389-394.
    [4] 施楣梧.纺织品的紫外线透通性能研究[J].纺织学报,1996,17(2):75-77.
    [5] 徐路,郑宇英.纺织品防紫外线性能评定标准的研究[J].纺织标准与质量,2002,(4):9-12.
    [6] 来侃,孙润军.防紫外线服装防护性能指标及测试方法的比较研究[J].西安工程科技学院学报,2004,18(1):1-7.
    [7] 吴雄英.纺织品抗紫外线辐射性能的测试方法比较[J].印染,2001,(2):38-41
    [8] AS/NZS 4399. Sun Protective Clothing-Evaluation and Classification[S]. Publishes Jointly by Standards Australian and Standards New Zealand, 1996.
    [9] GB/T 18830-2002.纺织品防紫外线性能的评定[S].北京:中国标准出版社,2002.
    [10] M. Hoest, Urs Nef. Fabrics that Protect the Wearer against Solar Radiation[J].Technical Textile Industrial, 2000,10.
    [11] I.E.S. Clark, K.J.L. Grainger, J.L. Agnew. Clothing Protection Measurements[J].Radiation Protection Dosimetry, 2000, 91(1):279-281.
    [12] P.C. Crews, S. Kachman, A.G. Beyer. Influence on UVR Transmission of Undyed Woven Fabrics[J]. Textile Chemist and Colorist, 1999,31(6):17-26.
    [13] P.H. Gies, C.R.Roy, A. Mclennan, et al. UV Protection by Clothing:an Intercomparison of Measurements and Methods[J]. Health Physics Society, 1997,73(3):456-464.
    [14] K. Hoffman, K. Kaspar, T. Gambichler, et al. In Vitro and In Vivo Determination of the UV Protection Factor for Lightweight Cotton and Viscose Summer Fabrics: A preliminary study[J]. Journal of the American Academy of Dermatology, 2000,43(6):1009-1016.
    [15] P. Bajaj, V.K. Kothari, S.B. Ghosh. Some Innovations in UV Protective Clothing[J].Indian Journal of Fibre & Textile Research, 2000,25(12): 315-329.
    [16] M. Srinvasan, M. Barbara. Relationship of Dye Characteristics to UV Protection Provided by Cotton Fabric[J]. Textile Chemist and Colorist & American Dyestuff Reporter, 2000,32(4).
    [17] R.L. Moon, M.T. Pailthorpe. Effect of Stretch and Wetting on the UPF of Elastane Fabrics[J].Australasian Textiles, 1995,15(5):39-42.
    [18] 宋心远,沈煜如.新型染整技术[M].北京:中国纺织出版社,1999,(11):269-273.
    [19] 陈英.影响织物防紫外性能的因素[J].北京服装学院学报(自然科学版), 2001,21(2):30-33.
    [20] 姚穆,周锦芳,黄淑珍,等.纺织材料学 [M].北京:纺织工业出版社,1990,6:492-494(第二版).
    [21] 杨栋梁.纺织品的紫外线屏蔽整理(一二)[J],印染,1995,21(5):35-38,21(6):35-39.
    [22] 薛迪庚.织物的功能整理[M].北京:中国纺织出版社,2000,(1):56-66.
    [23] 马振华,许海育.纳米材料防紫外线整理的应用研究[J].印染助剂,2005,22-(4):11-14.
    [24] 王雪华.纺织品的紫外线防护[J].江苏丝绸,2003(3):3-4.
    [25] 蔡陛霞.织物结构与设计[M].北京:中国纺织出版社,1996,3:4-9(第二版).
    [26] 刘昌龄译.服装纺织品和日光防护[J].印染译丛,1999,(1):75-80.
    [27] 杨栋梁.紫外线屏蔽整理的近况[J].印染,2002,3:38-43.
    [28] P.C.Crew.未染织物对紫外辐射透过的影响因素[J].国外纺织技术,2000,(1):26-28.
    [29] 中国科学院数学研究所统计组编.常用数理统计方法[M].北京:科学出版社,1974.
    [30] 杨栋梁.拒水拒油整理(一)[J].印染,1987,13(2):113-119.
    [31] 杨栋梁.拒水拒油整理(二)[J].印染,1987,13(3):180-185.
    [32] 罗巨涛,姜维利.纺织品有机硅及有机氟整理[M].北京:中国纺织出版社,1999,1:21.
    [33] T. Young. Miscellaneous Works[M].Vol. l, by G. Peacock and J. Murray, London, 1805:418.
    [34] J.C. Melrose. Advances in Chemistry Series[J].American Chemical Society. Washington D.C.,1964, No. 43.158.
    [35] W.D. Harkins. The Physical Chemistry of Surface Films[M].Reinhold Publishing Corporation, New York, 1957.
    [36] R.N. Wenzel. Resistance of Solid Surfaces to Wetting by Water[J]. Ind. Eng. Chem.,1936,28:988-994.
    [37] 杜文琴.荷叶效应在拒水自洁织物上的应用[J].印染,2001,(9):36-37.
    [38] W. Barthlott, C. Neinhuis. Lotus Effect:Nature's Model for Selfcleaning Surface. International Textile Bull,2001,9-12.
    [39] 江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,(22)12:1258-1264.
    [40] A. Nakajima, K. Hashimoto, T. Watanabe. Recent Studies on Super-hydro phobic Films[J]. Monatshefte Fur Chemie, 2001,132:31-41.
    [41] A. Nakajima, A. Fujishima, K. Hashimoto. Preparation of Transparent Super-hydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate [J]. Advanced Materials, 1999, 11:1365-1368.
    [42] M. Miwa, A. Nakajima, A. Fujishima, et al. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Super-hydrophobic surface [J].Langmuir, 2000,16:5754-5760.
    [43] W. Barthlott, C. Neinhuis. Purity of the Sacred Lotus or Escape from Contamination in Biological Surface[J].Planta, 1997,202:1-8.
    [44] C. Neinhuis, W. Barthlott. Characterization and Distribution of Waterrepellent, Self-cleaning Plant Surface[J].Annals of Botany, 1997,79:667.
    [45] Feng L, Li S, Li Y, et al. Super-hydrophobic Surfaces: From Natural to Artificial[J].Advanced Materials, 2002,14:1857-1860.
    [46] P.J. Holloway. Plant Cuticles:Physicochemical Characteristics and Biosynthesis[J].Air Pollutants and the Leaf Cuticle, NATO ASI Series, Springer-Verlag, Vol. 36, Berlin, 1994,1-13.
    [47] 顾振亚.新型仿真纤维及其纺织品开发[J].技术创新,2004,(1):17-19.
    [48] A. W. Adamson, A.P. Gast. Physical Chemistry of Surfaces[M]. John Wiley & Sons, Inc.,New York, 1997.
    [49] B.B. Mandelbrot. The Fractal Geometry of Nature [M].W.H. Freeman and Company, New York, 1983.
    [50] W. Barthlott, C. Neinhuis, D. Cutler, et al. Classification and Terminology of Plant Epicuticular Waxes [J].Botanical Journal of the Linnean Society, 1998,126:237-260.
    [51] A.B.D. Cassie. Contact Angles[J].Discussions Faraday Society, 1948, (3) :11-16.
    [52] 徐坚.自清洁功能的高分子仿生表面研究取得新进展[J].中国科学院院刊,2005,20(1):45-48.
    [53] 顾振亚,周庆,韦朝晖,等.拒液纺织品开发的新途经[J].棉纺织技术,2002,30(1):13-16.
    [54] 马立.仿荷叶效应的防水透湿织物的研究[J].上海纺织科技,1996,24(1):50-52.
    [55] 狄剑锋.织物拒水拒油整理及其性能检测[J].上海纺织科技,2003,31(4):52-54.
    [56] 徐燕莉.表面活性剂的功能[M].化学工业出版社,2000:193-234.
    [57] 饶坚.纳米m-ZrO_2+Al_2O_3复相系统的分散、烧结和力学性能研究[D].硕士学位论文,青岛大学,2003,5.
    [58] 董震.纳米TiO_2的分散及活性炭纤维复合光催化降解甲醛的研究[D].硕士学位论文,西安工程科技学院,2006,4.
    [59] 崔陇兰.反相微乳液法分散金属纳米粒子和原位聚合制备金属粒子/聚苯胺复合材料[D].硕士学位论文,青岛科技大学,2003,6.
    [60] 毋伟,邵磊,卢寿慈.机械力化学在高分子合成中的应用[J].化工新型材料,2000,(2):10-13.
    [61] 任俊,卢寿慈,沈健.超微颗粒的静电抗团聚分散[J].科学通报,2000,(11):2289-2292.
    [62] 管映亭,金志浩,董政娥.纳米材料及其在纺织等领域中的应用[J].纺织学报,2004,25(3):116-118.
    [63] 罗民良,蒲春生.纳米技术及材料在环保中的应用与展望[J].化工新型材 料,2001,(7):27-28.
    [64] 酒金婷,王锐,李立平等.纳米材料在织物中的应用[J].新纺织,2001,(5):18-19.
    [65] 田军,刘吉平,郝向阳.纳米材料的制备技术与在纺织上的应用[J].纺织学报,2001,(5):332-334.
    [66] 俞行,刘艾平.纺织专用功能纳米材料及其应用[J].纺织科学研究,2001,(3):1-9.
    [67] 罗敏.纳米技术在纺织中的应用[J].化工新型材料,2001,(7):29-30.
    [68] 吴希俊.纳米材料的研究进展和应用[J].新纺织,2001,(5):7-9.
    [69] 钱军民,李旭祥.非金属纳米材料及其应用[J].化工新型材料,2002,(1):1-5,37.
    [70] 金大康.纳米科学——新工业革命的前奏[J].新纺织,2001,(5):4-7.
    [71] 纺织工业标准化研究所编.中国纺织标准汇编—基础标准与方法标准卷(二)[M].北京:中国标准出版社,2000.
    [72] 何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002.
    [73] 卢纹岱.spss for windows 统计分析[M].北京:电子工业出版社,2002:230-291.
    [74] 吴汉金,郑佩芳.机织物结构设计原理[M].上海:同济大学出版社,1990,41-42.
    [75] 王符梅.服装面料的性能设计[M].上海:中国纺织大学出版社,2000,12:85.
    [76] 曾玉燕,沈培康,童叶翔.纳米二氧化钛粉体的分散研究[J].中山大学学报(自然科学版),2004,43(3):18-20.
    [77] 程冰,王绣锋,伍媛婷.金红石型纳米TiO_2粉体的制备及其分散[J].电子元件与材料,2005,24(5):1-4.
    [78] 许淳淳,于凯,何宗虎.纳米TiO_2在水中分散性能的研究[J].化工进展,2003,22(10):1095-1097.
    [79] 张智宏,沈钟,邵长生.钛白粉的吸附和有机化改性[J].日用化学工业,1997(5):13-15.
    [80] 杨静漪,李理,蔺玉胜等.纳米ZrO_2水悬浮液稳定性的研究[J].无机材料学报,1997,12(5):665-670.
    [81] 陶玉钢,毛培坤,崔正刚.阳离子表面活性剂在高技术领域中的应用[J].日用化学工业,2001(12):23-25.
    [82] 方云,夏咏梅.两性表面活性剂(四)两性表面活性剂的一般性质[J].日用化学工业,2000(12):47-50.
    [83] 唐芳琼,侯莉萍,郭广生.单分散纳米二氧化钛的研制[J].无机材料学报,2001,16(4):615-619.
    [84] Weng C C, Wei K H. Selective distribution of surface-modified TiO_2 nanoparticles in polystyrene-polydiblock copolymer[J]. Chem Mater, 2003,15(15):2936-2941.
    [85] Li X w, Chen w ,Bian C O, et al. Surface modification of TiO_2 nanoparticles by polyaniline[J]. Appl Surf Sci, 2003, 217: 16-22.
    [86] Wang L w, Sigmund Wolfgang, Aldinger Fritz. Systematic approach for dispersion of silicon nitride powder in organic media[J]. J Am Ceram Soc, 2000, 83 (4): 691-696.
    [87] 范立红,沈兰萍.纺织品检测实验教程[M].西安工程科技学院,2002,8.
    [88] 杨毅,刘永峙,李凤生等.纳米氧化亚镍包覆铝复合粒子的制备[J].化工学报,2005,56(11):2228-2232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700