旋毛虫mif基因与mcd-1基因的DNA免疫保护作用以及泛素共表达对DNA免疫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋毛虫病(Trichinellosis)是由旋毛虫(Trichinella spiralis)引起的一种危害严重的食源性人兽共患寄生虫病,是肉类食品安全性的一个重要指标。在旋毛虫的长期寄生生活中,分泌了大量具有免疫调节功能的蛋白,对宿主免疫系统进行调节,以逃避宿主免疫应答。这些分子除了其免疫调节功能外,还是潜在的疫苗候选分子,将它们应用于疫苗研究中将具有重要意义。泛素(Ubiquitin, Ub)是一个由76个氨基酸残基组成的小蛋白,普遍存在于真核细胞中且序列高度保守。泛素依赖性的蛋白质降解途径是目前已知的重要的、有高度选择性的蛋白降解途径之一。泛素化可对DNA疫苗的免疫应答产生影响。本研究克隆了2个具有免疫调节功能的旋毛虫分泌蛋白基因——旋毛虫巨噬细胞移动抑制因子(Tsmif)和旋毛虫半胱氨酸蛋白酶抑制因子(Tsmcd-1),构建了pVAX1真核表达载体的DNA疫苗,在BALB/c小鼠体内对DNA免疫保护作用进行了研究。结果显示,Tsmif和Tsmcd-1的共表达能够诱导特异性体液免疫应答和细胞免疫应答,并对旋毛虫感染产生部分的免疫保护。此外,与小鼠泛素的共表达增强了细胞免疫应答,并促进了pVAX1-Tsmif-Tsmcd-1免疫产生的抗感染保护能力。
     根据GenBank中发表的旋毛虫mif基因(Tsmif)序列(AY050661)和旋毛虫mcd-1基因(Tsmcd-1)序列(DQ777102),设计引物。以旋毛虫成虫总RNA为模板,RT-PCR扩增出大小2个TsMIF基因片段Tsmif和Tsmif",1个TsMCD-1基因片段Tsmcd-1.构建了3个重组质粒pVAX1-Tsmif、pVAX1-Tsmcd-1和pVAX1-Tsmif-Tsmcd-1;双酶切鉴定结果显示,阳性质粒分别切出3000bp的pVAX1.0质粒片段和大小相符的靶基因片段,即:345bp(Tsmif)、1221bp (Tsmcd-1)和1602bp (Tsmif-Tsmcd-1)。序列分析结果显示,扩增的Tsmif和Tsmif"基因片段与GenBank中已公布序列(AY050661)的核苷酸同源性和氨基酸同源性均为99.7%;扩增的Tsmcd-1基因片段与GenBank中已公布序列(DQ777102)的核苷酸同源性为99%,氨基酸同源性为100%。
     以pET28(b)为载体,构建原核表达重组质粒pET28(b)-Tsmif、pET28(b)-Tsmcd-1和pET28(b)-Tsmif-Tsmcd-1,分别在BL21大肠杆菌中表达。SDS-PAGE表明,重组蛋白rTsMIF表达于上清中,而重组蛋白rTsMCD-1与rTsMIF-TsMCD-1则主要以包涵体的形式存在。Western blot分析结果显示3种重组蛋白均能与感染旋毛虫的小鼠血清反应出现特异性条带(16.5kDa、50kDa和63kDa)。重组蛋白经纯化后,分别与弗氏佐剂乳化皮下注射免疫BALB/c小鼠,制备了以上3种重组蛋白的小鼠抗血清。为了检测TsMIF与TsMCD-1的特异性抗体,以重组蛋白rTsMIF-TsMCD-1作为抗原建立了间接ELISA(rTsMIF-TsMCD-1-E LISA);经方阵试验确定抗原包被浓度为2.3μml,血清检测稀释度为1:128,抗原与抗体的最佳反应时间为90min。
     为了研究Tsmif和Tssmcd-1的DNA疫苗免疫效果,将三种重组质粒pVAX1-Tsmif, pVAX1-Tsmcd-1和pVAX1-Tsmif-Tsmcd-1分别用肌肉注射的方式免疫BALB/c小鼠,以PBS和pVAX1分别为空白对照和空载体质粒对照;每组20只BALB/c小鼠,共免疫2次,间隔2周。二免后14d,进行攻虫保护试验。经口感染旋毛虫感染性幼虫(L1)35d后,剖杀所有小鼠分别计算肌肉荷虫量(LPG)。目的基因在小鼠体内的表达分别用RT-PCR和Western blot进行鉴定。结果显示,目的基因均在肌肉注射部位获得了表达,pVAX1-Tsmif-Tsmcd-1免疫产生了TsMIF和TsMCD-1的共表达蛋白。在首免后0、10、20、28d采集免疫小鼠血清,用重组蛋白rTsMIF-TsMCD-1包被的间接ELISA对免疫小鼠的特异性抗体水平的动态变化进行了分析,结果显示,pVAX1-Tsmif免疫没有产生特异性抗体应答;而pVAX1-Tsmcd-1和pVAX1-Tsmif-Tsmcd-1免疫分别诱导了特异性IgG.IgM和IgA的产生,但没有检测到特异性IgE抗体。与pVAX1-Tsmcd-1相比,pVAX1-Tsmif-Tsmcd-1免疫引起了较低的抗体应答(P<0.05)。IgG亚型分析显示,IgG2a和IgG2b的抗体滴度显著高于IgG1,表现为Thl型抗体占优势的体液免疫应答。此外,对血清细胞因子含量的动态变化的分析结果显示,三种重组质粒的DNA免疫均产生了一定水平的Thl型细胞因子(IFN-γ),但未检测到Th2型细胞因子(IL-4、IL-5);低水平的TGF-β1可能与抑制优势细胞因子(IFN-γ)有关;各组均未能检测到IL-17,暗示没有炎症反应的发生。二免后14d,用流式细胞分析仪分析了免疫小鼠外周血淋巴细胞中CD4+T细胞和CD8+T细胞的数量,结果显示,3个重组质粒免疫组的CD4+T细胞数量显著高于对照组(P<0.05),特别是pVAX1-Tsmif-Tsmcd-1免疫组(P<0.01);而pVAX1-Tsmif和pVAX1-Tsmif-Tsmcd-1免疫组的CD8+T细胞的数量也显著高于对照组(P<0.05),pVAX1-Tsmcd-1免疫组则与对照无差异(P>0.05);3个重组质粒免疫的CD4+/CD8+值均高于对照组,说明重组质粒免疫均促进了小鼠T淋巴细胞的增殖。攻虫保护试验结果显示,单独的pVAX1-Tsmif和pVAX1-Tsmcd-1免疫均未能获得LPG的减少,而pVAX1-Tsmif-Tsmcd-1免疫组的LPG则显著低于对照组(P<0.05),获得了23.17%的肌幼虫减虫率,表现出部分的免疫保护性。
     为了研究靶抗原泛素化对DNA免疫的影响,我们用RT-PCR克隆了小鼠泛素基因(Ub),并构建了与Ub共表达的重组质粒pVAX1-Ub-Tsmif、pVAX1-Ub-Tsmcd-1和pVAX1-Ub-Tsmif-Tsmcd-1。将以上重组质粒分别转染BHK细胞,Western blot没有检测到与重组蛋白TsMIF-TsMCD-1抗血清反应的目的条带,但加入蛋白酶体抑制因子MG-132后,分别检测到了大约22kDa、57kDa和68kDa的条带,其大小与预测的泛素化蛋白Ub-TsMIF、Ub-TsMCD-1和Ub-TsMIF-TsMCD-1的大小相符。体外转染试验结果显示,Ub共表达重组质粒转染BHK细胞后,表达了靶蛋白(TsMIF、TsMCD-1或TsMIF-TsMCD-1)的泛素化蛋白;泛素化促进了靶蛋白在BHK细胞内的降解,而MG-132可以抑制这种降解作用。随后,将Ub共表达重组质粒分别用肌肉注射的方式免疫BALB/c小鼠,以PBS和pVAX1、pVAX1-Ub分别为空白对照和空载体质粒对照、泛素免疫对照。通过检测特异性抗体应答、血清细胞因子水平和外周血CD4+T细胞和CD8+T细胞的数量,以及攻虫保护作用,对Ub共表达重组质粒的DNA免疫效果进行了分析。结果显示,靶抗原的泛素化下调了体液免疫应答,却促进了Thl型细胞因子的分泌,以及CD8+T细胞的增殖和免疫小鼠脾细胞的特异性CTL活性;重要的是,pVAX1-Ub-Tsmif-Tsmcd-1免疫组获得了更强的免疫保护性,表现为38%的肌幼虫减虫率。同时,这些结果也反映了Thl型细胞因子和CD8+T细胞免疫应答对旋毛虫抗感染的积极促进作用。
Trichinella spiralis, the etiologic agent of trichinosis, infects a wide range of mammalian hosts and is one of the most widespread parasitic diseases worldwide. DNA vaccination has become an increasingly attractive approach for vaccination against T. spiralis infection. The parasite can persist in muscle tissues for many years through its ability to produce a variety of production of biologically active proteins to suppress the host immune response. The immunomodulatory functions of excretory-secretory (ES) products during T. spiralis infection and their roles in establishing parasitism in the host have led researchers to explore their potential as a vaccine target. Ubiquitin is a highly conserved76-amino-acid polypeptide in the cytoplasm of eukaryotic cells. Ubiquitin/proteasome-dependent pathway is a highly selective proteolysis pathway. Ubiquitination has been used in DNA vaccination. In this study, plasmids expressing/co-expressing macrophage migration inhibitory factor (MIF), multi cystatin-like domain protein (MCD-1) of T. spiralis (TsMIF and TsMCD-1) were constructed. Their ability to generate a protective immune response against T. spiralis infection was evaluated in BALB/c mice. Results of DNA vaccination showed Thl immune response, and the pVAXl-Tsmif-Tsmcd-1vaccine induce a partial protection against infection. In addition, coexpression with Ub enhanced the Thl cytokines production and CD8+T cells immune response, as well as the protection against T. spiralis infection induced by pVAXl-Tsmif-Tsmcd-1vaccine.
     According to GenBank sequences of Tsmif(AY050661) and Tsmcd-1(DQ777102), five primers were designed and used to clone two gene segments of MIF(Tsmif and Tsmif") and one gene segment of MCD-1(Tsmcd-1) with RT-PCR from adult worm of Trichinella spiralis. Three recombinant plasmids of pVAX1-Tsmif, pVAXl-Tsmcd-1and pVAX1-Tsmif-Tsmcd-1were constructed respectively. Digestion identification showed two segments of3000bp and345bp,3000bp and1221bp,3000bp and1602bp, respectively. Comparisons of sequences of Tsmif and Tsmif " with the GenBank sequence of Tsmif (AY050661) indicated nucleotide and amino acid sequence homologies of99.7%respectively. Comparisons of the sequence of Tsmcd-1with the GenBank sequence of Tsmcd-I (DQ777102) indicated nucleotide and amino acid sequence homologies of99%and100%.
     Three recombinant plasmids of pET28(b)-Tsmif, pET28(b)-Tsmcd-1and pET28(b)-Tsmif-Tsmcd-1were constructed and expressed in Escherichia. coli BL21. SDS-PAGE showed that the recombinant protein of rTsMIF existed in supernant as a soluble protein; recombinant proteins of rTsMCD-1and rTsMIF-TsMCD-1mainly existed in inclusion bodies. Western blot showed bands of16.5kDa,50kDa and63kDa respectively, suggesting that these three recombinant proteins could react with serum of mice infected with Trichinella spiralis. To produce anti-serum, purified recombinant proteins were mixed with FCA (freund's complete adjuvant) and subcutaneously injected BALB/c mice respectively. A rTsMIF-TsMCD-1-based indirect enzyme-linked immunosorbent assay (rTsMIF-TsMCD-1-ELISA) was developed for detecting specific antibodies against TsMIF and TsMCD-1. The conditions of rTsMIF-TsMCD-1-ELISA were determined as follows:2.3μg/ml of rTsMIF-TsMCD-1used to coat ELISA plate,1:128of sera as detecting samples and serum sample being incubated at37℃for90minutes.
     DNA vaccination of three recombinant plasmids expressing/co-expressing TsMIF and TsMCD-1were performed by intramscular injection in BALB/c mice respectively, including pVAX1-Tsmif, pVAX1-Tsmcd-1, or pVAX1-Tsmif-Tsmcd-1, with controls of PBS and pVAXl. Groups of20mice were immunized twice at two-week intervals. Fourteen days past the second vaccination, challenge was carried out by oral infection with200L1infectious T. sipralis larvae per animal. Thirty-five days later,10mice in every group were killed to detect LPG (larvae per gram) and reduction ratio of muscle larvae. Detection of in vivo target gene expression was performed by RT-PCR and Western blot, indicating that target genes were expressed in injected muscle but not in contralateral noninjected muscle, and coexpression protein of TsMIF and TsMCD-1was found in mice vaccinated with pVAX1-Tsmif-Tsmcd-1. Sera collected0,10,20and28days after the first vaccination were assayed for the presence of specific antibodies against recombinant TsMIF-TsMCD-1protein. Results showed that vaccination with pVAXl-Tsmif failed to induce specific antibodies and pVAX1-Tsmcd-1or pVAXl-Tsmif-Tsmcd-1vaccine induced specific antibodies of IgG, IgM and IgA, but no IgE. Levels of specific antibodies in mice vaccinated with pVAX1-Tsmif-Tsmcd-1were less than pVAX1-Tsmcd-1(P<0.05). Both IgG2a and IgG2b showed higher proportion than IgG1(P<0.05) in these two groups, showing a Thl humoral immune response. Concentrations of five serum cytokines were detected and showed higher levels of Thl cytokines (IFN-y), no Th2cytokines (IL-4, IL-5). The lower levels of TGF-β1might be related to suppressing predominant cytokines (IFN-y). The failure to detection of IL-17displayed the absence of inflammation. Fourteen days past the second vaccination, the percentages of CD4+T cells (CD4+%) and CD8+T cells (CD8+%) in peripheral blood lymphocytes were determined, showing more CD4+%in all of the three recombinant plasmids groups than PBS control (P<0.05), especially pVAX1-Tsmif-Tsmcd-1vaccine (P<0.01). The percentage of CD8+T cells in mice vaccinated with pVAX1-Tsmif and pVAX1-Tsmif-Tsmcd-1respectively was more than PBS control (P<0.05), but no significant difference was observed in pVAXl-Tsmif vaccination. Ratio of CD4+%to CD8+%in either of the three recombinant plasmids groups was higher than PBS control (P<0.05), indicating the enhancement of proliferation of mouse T cells. Challenge infection demonstrated that no reduction of LPG was observed in mice vaccinated with pVAX1-Tsmif or pVAX1-Tsmcd-1, but immunization with pVAX1-Tsmif-Tsmcd-1reduced worm burdens by23.17%versus controls (P<0.05) suggesting a partial immune protection against T. spiralis.
     To confirm the influence of ubiquitination on DNA vaccination, the Ub gene of mouse was cloned with RT-PCR and three recombinant plasmids of pVAX1-Ub-Tsmif, pVAX1-Ub-Tsmcd-1and pVAX1-Ub-Tsmif-Tsmcd-1were constructed respectively. These recombinant Ub-coexpression plasmids were transformed in BHK cells, and Western blot analysis failed to detect target bands respond to anti-serum of recombinant protein TsMIF-TsMCD-1. However, after adding the proteasome inhibitor MG-132into transformed cells, bands of22kDa,57kDa and68kDa were observed respecitvly, which were consistent with the sizes of coexpression proteins of Ub-TsMIF, Ub-TsMCD-1and Ub-TsMIF-TsMCD-1, respecitvly. These results showed that proteins coexpressing mouse ubiquitin (8.57kDa) and target protein (TsMIF, TsMCD-1, and TsMIF-TsMCD-1) were expressed in BHK cells transformed with the Ub-coexpression plasmids; ubiquitination promoted the degradation of target proteins in BHK cells and MG-132could inhibit the degradation. Later, DNA vaccination with these recombinant Ub-coexpression plasmids was performed in BALB/c mice, with the controls of PBS, pVAXl and pVAX1-Ub. After detection of specific antibodies response, serum cytokines and CD4+or CD8+T cells, as well as the protection against T. spiralis challenge infection, the immunity efficacies of these Ub-coexpression plasmids were evaluated. The results displayed that Ubiquitination reduced humarol immune responses, but promoted Thl cytokines production, CD8+T cells prolifecation and the specific CTL response in vaccinated mice. Importantly, a stronger reduction of LPG was induced in mice vaccinated with pVAXl-Ub-Tsmif-Tsmcd-1. These results also suggested that the stronger Thl cytokines and CD8+T cells immune response induced by ubiquination might play an active role in immune protection against T. spiralis.
引文
[1]Else KJ. Have gastrointestinal nematodes outwitted the immune system [J] Parasite Immunol,2005, 27(10-11):407-415.
    [2]van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: consequences and mechanisms [J]. Immunobiology,2007,212(6):475-490.
    [3]Bungiro R, Cappello M. Hookworm infection:new developments and prospects for control [J]. Curr Opin Infect Dis,2004,17(5):421-426.
    [4]Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity [J]. Science,1966,153(731):80-82.
    [5]David JR. Delayed hypersensitivity in vitro:its mediation by cell-free substances formed by lymphoid cell-antigen interaction [J]. Proc Natl Acad Sci USA,1966,56(1):72-77.
    [6]Bernhagen J, Calandra T, Bucala R. Regulation of the immune response by macrophage migration inhibitory factor:biological and structural features [J]. J Mol Med,1998,76(3-4):151-161.
    [7]Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann, D., Mannel, D., Bucala, R., Glauser, M.P. Protection from septic shock by neutralization of macrophage migration inhibitory factor [J]. Nat Med,2000,6(2):164-170.
    [8]Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman, H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction [J]. Mol Med,1996,2(1):143-149.
    [9]Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Juttner, S., Brunner, H., Bernhagen, J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase [J]. J Mol Biol,1998,280(1):85-102.
    [10]Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue, K.R., Cerami, A., Bucala, R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia [J]. Nature, 1993,365(6448):756-759.
    [11]Nishino T, Bernhagen J, Shiiki H, Calandra T, Dohi K, Bucala R. Localization of macrophage migration inhibitory factor (MIF) to secretory granules within the corticotrophic and thyrotrophic cells of the pituitary gland [J]. Mol Med,1995,1(7):781-788.
    [12]Calandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor [J]. J Exp Med,1994, 179(6):1895-1902.
    [13]Paralkar V, Wistow G. Cloning the human gene for macrophage migration inhibitory factor (MIF) [J]. Genomics,1994,19(1):48-51.
    [14]Swope M, Sun HW, Blake PR, Lolis E. Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor [J]. EMBO J,1998,17(13):3534-3541.
    [15]Sun HW, Bernhagen J, Bucala R, Lolis E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor [J]. Proc Natl Acad Sci U S A 1996,93(11):5191-5196.
    [16]Lue H, Kapurniotu A, Fingerle-Rowson G, Roger T, Leng L, Thiele M, Calandra, T., Bucala, R., Bernhagen, J. Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity [J]. Cell Signal,2006,18(5):688-703.
    [17]Calandra T, Roger T. Macrophage migration inhibitory factor:a regulator of innate immunity [J]. Nat Rev Immunol,2003,3(10):791-800.
    [18]Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa, D., Donnelly, T., Bucala, R. Gemsa, D., Donnelly, T., Bucala, R. Gemsa, D., Donnelly, T., Bucala, R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation [J]. Proc Natl Acad Sci U S A, 1996,93(15):7849-7854.
    [19]Rossi AG, Haslett C, Hirani N, Greening AP, Rahman I, Metz CN, Bucala, R., Donnelly, S.C. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF) [J]. Potential role in asthma. J Clin Invest,1998,101(12):2869-2874.
    [20]Matsuda A, Tagawa Y, Matsuda H, Nishihira J. Identification and immunohistochemical localization of macrophage migration inhibitory factor in human cornea [J]. FEBS Lett,1996, 385(3):225-228.
    [21]Suzuki H, Kanagawa H, Nishihira J. Evidence for the presence of macrophage migration inhibitory factor in murine reproductive organs and early embryos [J]. Immunol Lett,1996,51(3):141-147.
    [22]Imamura K, Nishihira J, Suzuki M, Yasuda K, Sasaki S, Kusunoki Y, Tochimaru, H., Takekoshi, Y. Identification and immunohistochemical localization of macrophage migration inhibitory factor in human kidney [J]. Biochem Mol Biol Int,1996,40(6):1233-1242.
    [23]Yoshimoto T, Nishihira J, Tada M, Houkin K, Abe H. Induction of macrophage migration inhibitory factor messenger ribonucleic acid in rat forebrain by reperfusion [J]. Neurosurgery,1997, 41(3):648-653.
    [24]Calandra T, Bucala R. Macrophage migration inhibitory factor:a counter-regulator of glucocorticoid action and critical mediator of septic shock [J]. J Inflamm,1995,47(1-2):39-51.
    [25]Calandra T, Spiegel LA, Metz CN, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria [J]. Proc Natl Acad Sci USA 1998,95(19):11383-11388.
    [26]Martiney JA, Sherry B, Metz CN, Espinoza M, Ferrer AS, Calandra T, Broxmeyer, H.E., Bucala, R. Macrophage migration inhibitory factor release by macrophages after ingestion of Plasmodium chabaudi-infected erythrocytes:possible role in the pathogenesis of malarial anemia [J]. Infect Immun 2000,68(4):2259-2267.
    [27]Flieger O, Engling A, Bucala R, Lue H, Nickel W, Bernhagen J. Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter [J]. FEBS Lett 2003,551(1-3):78-86.
    [28]Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry 1994,33(47):14144-14155.
    [29]Nathan CF, Karnovsky ML, David JR. Alterations of macrophage functions by mediators from lymphocytes. J Exp Med 1971,133(6):1356-1376.
    [30]Flaster H, Bernhagen J, Calandra T, Bucala R. The macrophage migration inhibitory factor-glucocorticoid dyad:regulation of inflammation and immunity [J]. Mol Endocrinol 2007, 21(6):1267-1280.
    [31]Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, Johannes, F.J., Roger, T., Calandra, T., Kapurniotu, A., Grell, M., Finkelmeier, D., Brunner, H., Bernhagen, J. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jabl [J]. Nature 2000,408(6809):211-216.
    [32]Claret FX, Hibi M, Dhut S, Toda T, Karin M. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors [J]. Nature 1996,383(6599):453-457.
    [33]Cloutier A, Ear T, Borissevitch O, Larivee P, McDonald PP. Inflammatory cytokine expression is independent of the c-Jun N-terminal kinase/AP-1 signaling cascade in human neutrophils [J]. J Immunol 2003,171(7):3751-3761.
    [34]Bucala R. Signal transduction. A most interesting factor [J]. Nature 2000,408(6809):146-147.
    [35]Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor, M., Georgiev, I., Schober, A., Leng, L., Kooistra, T., Fingerle-Rowson, G., Ghezzi, P., Kleemann, R., McColl, S.R., Bucala, R., Hickey, M.J., Weber, C. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment [J]. Nat Med 2007,13(5):587-596.
    [36]Pennock JL, Behnke JM, Bickle QD, Devaney E, Grencis RK, Isaac RE, Joshua, GW., Selkirk, M.E., Zhang, Y., Meyer, D.J. Rapid purification and characterization of L-dopachrome-methyl ester tautomerase (macrophage-migration-inhibitory factor) from Trichinella spiralis, Trichuris muris and Brugia pahangi [J]. Biochem J 1998,335 (Pt 3):495-498.
    [37]Nishihira J. Macrophage migration inhibitory factor (MIF):its essential role in the immune system and cell growth [J]. J Interferon Cytokine Res 2000,20(9):751-762.
    [38]Falcone FH, Loke P, Zang X, MacDonald AS, Maizels RM, Allen JE. A Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection [J]. J Immunol 2001,167(9):5348-5354.
    [39]Tan TH, Edgerton SA, Kumari R, McAlister MS, Roe SM, Nagl S, Pearl, L.H., Selkirk, M.E., Bianco, A.E., Totty, N.F., Engwerda, C., Gray, C.A., Meyer, D.J. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis [J]. Biochem J 2001,357(Pt 2):373-383.
    [40]Pastrana DV, Raghavan N, FitzGerald P, Eisinger SW, Metz C, Bucala R, Schleimer, R.P., Bickel, C, Scott, A.L. Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor [J]. Infect Immun 1998,66(12):5955-5963.
    [41]Miska KB, Fetterer RH, Lillehoj HS, Jenkins MC, Allen PC, Harper SB. Characterisation of macrophage migration inhibitory factor from Eimeria species infectious to chickens [J]. Mol Biochem Parasitol 2007,151(2):173-183.
    [42]Marson AL, Tarr DE, Scott AL. Macrophage migration inhibitory factor (mif) transcription is significantly elevated in Caenorhabditis elegans dauer larvae [J]. Gene 2001,278(1-2):53-62.
    [43]Wu Z, Boonmars T, Nagano I, Nakada T, Takahashi Y. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp [J]. J Parasitol 2003,89(3):507-515.
    [44]Augustijn KD, Kleemann R, Thompson J, Kooistra T, Crawford CE, Reece SE, Pain, A., Siebum, A.H., Janse, C.J., Waters, A.P. Functional characterization of the Plasmodium falciparum and P. berghei homologues of macrophage migration inhibitory factor [J]. Infect Immun 2007, 75(3):1116-1128.
    [45]Umemiya R, Hatta T, Liao M, Tanaka M, Zhou J, Inoue N, Fujisaki, K. Haemaphysalis longicornis: molecular characterization of a homologue of the macrophage migration inhibitory factor from the partially fed ticks [J]. Exp Parasitol 2007,115(2):135-142.
    [46]Zang X, Taylor P, Wang JM, Meyer DJ, Scott AL, Walkinshaw MD, Maizels, R.M. Homologues of human macrophage migration inhibitory factor from a parasitic nematode. Gene cloning, protein activity, and crystal structure [J]. J Biol Chem 2002,277(46):44261-44267.
    [47]Mitreva M, Blaxter ML, Bird DM, McCarter JP. Comparative genomics of nematodes [J]. Trends Genet 2005,21(10):573-581.
    [48]Cho Y, Jones BF, Vermeire JJ, Leng L, DiFedele L, Harrison LM, Xiong, H., Kwong, Y.K., Chen, Y., Bucala, R., Lolis, E., Cappello, M. Structural and functional characterization of a secreted hookworm Macrophage Migration Inhibitory Factor (MIF) that interacts with the human MIF receptor CD74 [J]. J Biol Chem 2007,282(32):23447-23456.
    [49]Mischke R, Gessner A, Kapurniotu A, Juttner S, Kleemann R, Brunner H, Bernhagen, J. Structure activity studies of the cytokine macrophage migration inhibitory factor (MIF) reveal a critical role for its carboxy terminus [J]. FEBS Lett 1997,414(2):226-232.
    [50]Philo JS, Yang TH, LaBarre M. Re-examining the oligomerization state of macrophage migration inhibitory factor (MIF) in solution [J]. Biophys Chem 2004,108(1-3):77-87.
    [51]Vermeire JJ, Cho Y, Lolis E, Bucala R, Cappello M. Orthologs of macrophage migration inhibitory factor from parasitic nematodes [J]. Trends Parasitol 2008,24(8):355-363.
    [52]Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation [J]. Antioxid Redox Signal 2005,7(9-10):1234-1248.
    [53]Prieto-Lafuente L, Gregory WF, Allen JE, Maizels RM. MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages [J]. J Leukoc Biol 2009,85(5):844-854.
    [54]Larson DF, Horak K. Macrophage migration inhibitory factor:controller of systemic inflammation [J]. Crit Care 2006; 10(2):138.
    [55]Patterson GI, Padgett RW. TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 2000,16(1):27-33.
    [56]Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity [J]. J Exp Med 1999,190(10):1375-1382.
    [57]Weiser WY, Pozzi LM, David JR. Human recombinant migration inhibitory factor activates human macrophages to kill Leishmania donovani [J]. J Immunol 1991,147(6):2006-2011.
    [58]Juttner S, Bernhagen J, Metz CN, Rollinghoff M, Bucala R, Gessner A. Migration inhibitory factor induces killing of Leishmania major by macrophages:dependence on reactive nitrogen intermediates and endogenous TNF-alpha [J]. J Immunol 1998,161(5):2383-2390.
    [59]Xu Q, Song X, Xu L, Yan R, Shah MA, Li X. Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis [J]. Vet Parasitol 2008,156(3-4):319-323.
    [60]Satoskar AR, Bozza M, Rodriguez Sosa M, Lin G, David JR. Migration-inhibitory factor gene-deficient mice are susceptible to cutaneous Leishmania major infection [J]. Infect Immun 2001,69(2):906-911.
    [61]Kamir D, Zierow S, Leng L, Cho Y, Diaz Y, Griffith J, McDonald, C., Merk, M., Mitchell, R.A., Trent, J., Chen, Y., Kwong, Y.K., Xiong, H., Vermeire, J., Cappello, M., McMahon-Pratt, D., Walker, J., Bernhagen, J., Lolis, E., Bucala, R. A Leishmania ortholog of macrophage migration inhibitory factor modulates host macrophage responses [J]. J Immunol 2008,180(12):8250-8261.
    [62]Rodriguez-Sosa M, Rosas LE, David JR, Bojalil R, Satoskar AR, Terrazas LI. Macrophage migration inhibitory factor plays a critical role in mediating protection against the helminth parasite Taenia crassiceps [J]. Infect Immun 2003,71(3):1247-1254.
    [63]Rodriguez-Sosa M, Rivera-Montoya I, Espinoza A, Romero-Grijalva M, Lopez-Flores R, Gonzalez J, Terrazas, L.I. Acute cysticercosis favours rapid and more severe lesions caused by Leishmania major and Leishmania mexicana infection, a role for alternatively activated macrophages [J]. Cell Immunol 2006,242(2):61-71.
    [64]Miska KB, Fetterer RH, Lillehoj HS, Jenkins MC, Allen PC, Harper SB. Characterisation of macrophage migration inhibitory factor from Eimeria species infectious to chickens [J]. Mol Biochem Parasitol 2007,151(2):173-183.
    [65]McDevitt MA, Xie J, Shanmugasundaram G, Griffith J, Liu A, McDonald C, Thuma, P., Gordeuk, V.R., Metz, C.N., Mitchell, R., Keefer, J., David, J., Leng, L., Bucala, R. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia [J]. J Exp Med 2006,203(5):1185-1196.
    [66]Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity [J]. Biochemistry 1999,38(22):7346-7354.
    [67]Crichlow GV, Cheng KF, Dabideen D, Ochani M, Aljabari B, Pavlov VA, Miller, E.J., Lolis, E., Al-Abed, Y. Alternative chemical modifications reverse the binding orientation of a pharmacophore scaffold in the active site of macrophage migration inhibitory factor [J]. J Biol Chem 2007, 282(32):23089-23095.
    [68]Dabideen DR, Cheng KF, Aljabari B, Miller EJ, Pavlov VA, Al-Abed Y. Phenolic hydrazones are potent inhibitors of macrophage migration inhibitory factor proinflammatory activity and survival improving agents in sepsis [J]. J Med Chem 2007,50(8):1993-1997.
    [69]Dios A, Mitchell RA, Aljabari B, Lubetsky J, O'Connor K, Liao H, Senter, P.D., Manogue, K.R., Lolis, E., Metz, C., Bucala, R., Callaway, D.J., Al-Abed, Y. Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of MIF tautomerase activity [J]. J Med Chem 2002, 45(12):2410-2416.
    [70]Orita M, Yamamoto S, Katayama N, Fujita S. Macrophage migration inhibitory factor and the discovery of tautomerase inhibitors [J]. Curr Pharm Des 2002,8(14):1297-1317.
    [1]Robinson MW, Massie DH, Connolly B. Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis [J]. Mol Biochem Parasitol 2007, 151(1):9-17.
    [2]Nicklin MJ, Barrett AJ. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin [J]. Biochem J 1984,223(1):245-253.
    [3]Abrahamson M. Cystatins [J]. Methods Enzymol 1994,244:685-700.
    [4]Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo [J]. Mol Biochem Parasitol 2004,134(1):65-73.
    [5]Vray B, Hartmann S, Hoebeke J. Immunomodulatory properties of cystatins [J]. Cell Mol Life Sci 2002,59(9):1503-1512.
    [6]Cao M, Chao H, Doughty BL. A cDNA from Schistosoma mansoni eggs sharing sequence features of mammalian cystatin [J]. Mol Biochem Parasitol 199,57(1):175-176.
    [7]Ni J, Fernandez MA, Danielsson L, Chillakuru RA, Zhang J, Grubb A, Su, J., Gentz, R., Abrahamson, M. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor [J]. J Biol Chem 1998,273(38):24797-24804.
    [8]Lustigman S, Brotman B, Huima T, Prince AM, McKerrow JH. Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus [J]. J Biol Chem 1992,267(24):17339-17346.
    [9]Hartmann S, Kyewski B, Sonnenburg B, Lucius R. A filarial cysteine protease inhibitor down-regulates T cell proliferation and enhances interleukin-10 production [J]. Eur J Immunol 1997, 27(9):2253-2260.
    [10]Manoury B, Gregory WF, Maizels RM, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing [J]. Curr Biol 2001,11(6):447-451.
    [11]Dainichi T, Maekawa Y, Ishii K, Zhang T, Nashed BF, Sakai T, Takashima, M., Himeno, K. Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis, inhibits antigen processing and modulates antigen-specific immune response [J]. Infect Immun 2001, 69(12):7380-7376.
    [12]Pfaff AW, Schulz-Key H, Soboslay PT, Taylor DW, MacLennan K, Hoffmann WH. Litomosoides sigmodontis cystatin acts as an immunomodulator during experimental filariasis [J]. Int J Parasitol 2002,32(2):171-178.
    [13]Khaznadji E, Collins P, Dalton JP, Bigot Y, Moire N. A new multi-domain member of the cystatin superfamily expressed by Fasciola hepatica [J]. Int J Parasitol 2005,35(10):1115-1125.
    [14]Brown WM, Dziegielewska KM. Friends and relations of the cystatin superfamily-new members and their evolution [J]. Protein Sci 1997,6(1):5-12.
    [15]Turk V, Bode W. The cystatins:protein inhibitors of cysteine proteinases [J]. FEBS Lett 1991, 285(2):213-219.
    [16]Dieckmann T, Mitschang L, Hofmann M, Kos J, Turk V, Auerswald EA, Jaenicke, R., Oschkinat, H. The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution [J]. J Mol Biol 1993,234(4):1048-1059.
    [17]Cornwall GA, Hsia N. A new subgroup of the family 2 cystatins [J]. Mol Cell Endocrinol 2003, 200(1-2):1-8.
    [18]Nagano I, Wu Z, Takahashi Y. Functional genes and proteins of Trichinella spp [J]. Parasitol Res 2009,104(2):197-207.
    [19]Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins [J]. Int J Parasitol 2003,33(11):1291-1302.
    [20]Gregory WF, Maizels RM. Cystatins from filarial parasites:evolution, adaptation and function in the host-parasite relationship [J]. Int J Biochem Cell Biol 2008,40(6-7):1389-1398.
    [21]Schonemeyer A, Lucius R, Sonnenburg B, Brattig N, Sabat R, Schilling K, Bradley, J., Hartmann, S. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus [J]. J Immunol 2001,167(6):3207-3215.
    [22]Schnoeller C, Rausch S, Pillai S, Avagyan A, Wittig BM, Loddenkemper C, Hamann, A., Hamelmann, E., Lucius, R., Hartmann, S. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages [J]. J Immunol 2008, 180(6):4265-4272.
    [23]Newlands GF, Skuce PJ, Knox DP, Smith WD. Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus [J]. Parasitology 2001,122(Pt 3):371-378.
    [24]Nakagawa TY, Rudensky AY. The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation [J]. Immunol Rev 1999,172:121-129.
    [25]Shi GP, Bryant RA, Riese R, Verhelst S, Driessen C, Li Z, Bromme, D., Ploegh, H.L., Chapman, H.A. Role for cathepsin F in invariant chain processing and major histocompatibility complex class Ⅱ peptide loading by macrophages [J]. J Exp Med 2000,191 (7):1177-1186.
    [26]Schierack P, Lucius R, Sonnenburg B, Schilling K, Hartmann S. Parasite-specific immunomodulatory functions of filarial cystatin [J]. Infect Immun 2003,71(5):2422-2429.
    [27]Verdot L, Lalmanach G, Vercruysse V, Hartmann S, Lucius R, Hoebeke J, Gauthier, R, Vray, B. Cystatins up-regulate nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages [J]. J Biol Chem 1996,271(45):28077-28081.
    [28]Das L, Datta N, Bandyopadhyay S, Das PK. Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response [J]. J Immunol 2001,166(6):4020-4028.
    [29]O'Connor RA, Jenson JS, Devaney E. NO contributes to proliferative suppression in a murine model of filariasis [J]. Infect Immun 2000,68(11):6101-6107.
    [1]Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner, P.L. Direct gene transfer into mouse muscle in vivo [J]. Science 1990,247(4949 Pt 1):1465-1468.
    [2]Kutzler MA, Weiner DB. DNA vaccines:ready for prime time [J]? Nat Rev Genet 2008,9:776-788.
    [3]Sykes K. Progress in the development of genetic immunization [J]. Expert Rev Vaccines 2008, 7:1395-1404.
    [4]Redding L, Weiner DB. DNA vaccines in veterinary use [J]. Expert Rev Vaccines 2009, 8:1251-1276.
    [5]Rogers WO, Gowda K, Hoffman SL. Construction and immunogenicity of DNA vaccine plasmids encoding four Plasmodium vivax candidate vaccine antigens [J]. Vaccine,1999, 17(23-24):3136-3144.
    [6]Jones TR, Gramzinski RA, Aguiar JC, Sim BK, Narum DL, Fuhrmann SR, Kumar, S., Obaldia, N., Hoffman, S.L, Absence of antigenic competition in Aotus monkeys immunized with Plasmodium falciparum DNA vaccines delivered as a mixture [J]. Vaccine,2002,20(11-12):1675-1680.
    [7]Sukumaran B, Tewary P, Saxena S, Madhubala R. Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani [J]. Vaccine,2003, 21(11-12):1292-1299.
    [8]Dumonteil E, Maria Jesus RS, Javier EO, Maria del Rosario GM. DNA vaccines induce partial protection against Leishmania mexicana [J]. Vaccine,2003,21(17-18):2161-2168.
    [9]Shi F, Zhang Y, Lin J, Zuo X, Shen W, Cai Y, Ye, P., Bickle, Q.D., Taylor, M.G Field testing of Schistosoma japonicum DNA vaccines in cattle in China [J]. Vaccine,2002,20(31-32):3629-3231.
    [10]Drew DR, Lightowlers M, Strugnell RA. Humoral immune responses to DNA vaccines expressing secreted, membrane bound and non-secreted forms of the Tania ovis 45 W antigen [J]. Vaccine,2000, 18(23):2522-2532.
    [11]Harrison RA, Bianco AE. DNA immunization with Onchocerca volvulus genes, Ov-tmy-1 and OvB20:serological and parasitological outcomes following intramuscular or GeneGun delivery in a mouse model of onchocerciasis [J]. Parasite Immunol,2000,22(5):249-257.
    [12]Wang ZQ, Cui J, Wei HY, Han HM, Zhang HW, Li YL. Vaccination of mice with DNA vaccine induces the immune response and partial protection against T. spiralis infection [J]. Vaccine,2006, 24(8):1205-1212.
    [13]Xu Q, Song X, Xu L, Yan R, Shah MA, Li X. Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis [J]. Vet Parasitol,2008,156(3-4):319-323.
    [14]Song X, Xu L, Yan R, Huang X, Shah MA, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina [J]. Vet Parasitol,2009,159(1):30-36.
    [15]Shah MA, Yan R, Xu L, Song X, Li X. A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection [J]. Vet Parasitol,2010, 169(1-2):185-189.
    [16]Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X. Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge [J]. Vaccine 2010,28(15):2735-2742.
    [17]Voges D, Zwickl P, Baumeister W. The 26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999,68:1015-1068.
    [18]Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells [J]. Proc Natl Acad Sci USA 1975,72:11-15.
    [19]Hochstrasser M. Ubiquitin-dependent protein degradation [J]. Annu Rev Genet 1996,30:405-439.
    [20]Ciechanover A, Orian A, Schwartz AL. Ubiquitin-dependent protein degradation [J]. Bioessays 2000,22:442-451.
    [21]Lee DH, Goldberg AL. Proteasome inhibitors:valuable new tools for cell biologists [J]. Trends Cell Biol 1998,8:397-403.
    [22]Hershko A, Ciechanover A. The ubiquitin system [J]. Annu Rev Biochem 1998,67:425-479.
    [23]Haglund K, Dikic I. Ubiquitylation and cell signaling [J]. EMBO J 2005,24:3353-3359.
    [24]Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK [J]. Oncogene 2007, 26:3214-3226.
    [25]Sigismund S, Polo S, Di Fiore PP. Signaling through monoubiquitination [J]. Curr Top Microbiol Immunol 2004,286:149-185.
    [26]Sun SC. Deubiquitylation and regulation of the immune response [J]. Nat Rev Immunol 2008, 8:501-511.
    [27]Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules [J]. Cell 1994,78:761-771.
    [28]Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, Rock KL. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation [J]. J Biol Chem 1997,272:13437-13445.
    [29]沈子珒,许啸声,李稻.泛素-蛋白酶体及其抑制剂[J].现代肿瘤医学2006,14:1454-1457.
    [30]Ortmann B, Androlewicz MJ, Cresswell P. MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding [J]. Nature 1994,368:864-867.
    [31]Delogu G, Howard A, Collins FM, Morris SL. DNA vaccination against tuberculosis:expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity [J]. Infect Immun 2000,68(6):3097-3102.
    [32]Rodriguez F, Zhang J, Whitton JL. DNA immunization:ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction [J]. J Virol 1997,71(11):8497-8503.
    [33]Gravier R, Dory D, Rodriguez F, Bougeard S, Beven V, Cariolet R, Jestin, A. Immune and protective abilities of ubiquitinated and non-ubiquitinated pseudorabies virus glycoproteins [J]. Acta Virol 2007,51(1):35-45.
    [34]Hou YH, Chen J, Tong GZ, Tian ZJ, Zhou YJ, Li GX, Peng, J.M., An, T.Q., Yang, H.C. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets [J]. Vaccine 2008,26(11):1438-1449.
    [35]Wang QM, Kang L, Wang XH. Improved cellular immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis [J]. Microbiol Immunol 2009, 53(7):384-390.
    [36]Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang, D., Goldberg, A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules [J]. Cell 1994,78(5):761-771.
    [37]Chou B, Hiromatsu K, Hisaeda H, Duan X, Imai T, Murata S, Tanaka, K., Himeno, K. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi [J]. Biochem Biophys Res Commun 2010,392(3):277-282.
    [1]刘明远,我国的旋毛虫病及最新研究概况[J].食品与药品2005,7(1A):11-14.
    [2]Bungiro R, Cappello M. Hookworm infection:new developments and prospects for control [J]. Curr Opin Infect Dis,2004,17(5):421-426.
    [3]Dzik JM. Molecules released by helminth parasites involved in host colonization [J]. Acta Biochim Pol,2006,53(1):33-64.
    [4]Tan TH, Edgerton SA, Kumari R, McAlister MS, Roe SM, Nagl S, et al. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis [J]. Biochem J 2001,357(Pt 2):373-383.
    [5]Wu Z, Boonmars T, Nagano I, Nakada T, Takahashi Y. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp [J]. J Parasitol 2003,89(3):507-515.
    [6]Robinson MW, Massie DH, Connolly B. Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis [J]. Mol Biochem Parasitol 2007, 151(1):9-17.
    [7]Nagano I, Wu Z, Takahashi Y. Functional genes and proteins of Trichinella spp [J]. Parasitol Res 2009,104(2):197-207.
    [8]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].3版.黄培堂等,译.北京:科学出版社,2002:1256-1260.
    [1]Tan TH, Edgerton SA, Kumari R, McAlister MS, Roe SM, Nagl S, Pearl, L.H., Selkirk, M.E., Bianco, A.E., Totty, N.F., Engwerda, C., Gray, C.A., Meyer, D.J. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis [J]. Biochem J,2001,357(Pt 2):373-383.
    [2]Wu Z, Boonmars T, Nagano I, Nakada T, Takahashi Y. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp [J]. J Parasitol,2003,89(3):507-515.
    [3]Robinson MW, Massie DH, Connolly B. Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis [J]. Mol Biochem Parasitol,2007, 151(1):9-17
    [4]Novagen. pET system manual [EB].11th Edition. http://www.merck-chemicals.com
    [5]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].3版.黄培堂等,译.北京:科学出版社,2002:1256-1260.
    [1]Else KJ. Have gastrointestinal nematodes outwitted the immune system [J]? Parasite Immunol, 2005,27(10-11):407-415.
    [2]van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: consequences and mechanisms [J]. Immunobiology,2007,212(6):475-490.
    [3]Nagano I, Wu Z, Takahashi Y. Functional genes and proteins of Trichinella spp [J]. Parasitol Res, 2009,104(2):197-207.
    [4]Bungiro R, Cappello M. Hookworm infection:new developments and prospects for control [J]. Curr Opin Infect Dis,2004,17(5):421-426.
    [5]Dzik JM. Molecules released by helminth parasites involved in host colonization [J]. Acta Biochim Pol,2006,53(1):33-64.
    [6]Yang J, Yang Y, Gu Y, Li Q, Wei J, Wang S, Boireau, P., Zhu, X. Identification and characterization of a full-length cDNA encoding paramyosin of Trichinella spiralis [J]. Biochem Biophys Res Commun,2008,365(3):528-533.
    [7]Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X. Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge [J]. Vaccine,2010,28(15):2735-2742.
    [8]Wei J, Gu Y, Yang J, Yang Y, Wang S, Cui S, Zhu, X. Identification and characterization of protective epitope of Trichinella spiralis paramyosin [J]. Vaccine,2011.
    [9]Wang QM, Kang L, Wang XH. Improved cellular immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis [J]. Microbiol Immunol,2009, 53(7):384-390.
    [10]Rogers WO, Gowda K, Hoffman SL. Construction and immunogenicity of DNA vaccine plasmids encoding four Plasmodium vivax candidate vaccine antigens [J]. Vaccine,1999, 17(23-24):3136-3144.
    [11]Jones TR, Gramzinski RA, Aguiar JC, Sim BK, Narum DL, Fuhrmann SR, Kumar, S., Obaldia, N., Hoffman, S.L. Absence of antigenic competition in Aotus monkeys immunized with Plasmodium falciparum DNA vaccines delivered as a mixture [J]. Vaccine,2002,20(11-12):1675-1680.
    [12]Sukumaran B, Tewary P, Saxena S, Madhubala R. Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani [J]. Vaccine,2003, 21(11-12):1292-1299.
    [13]Dumonteil E, Maria Jesus RS, Javier EO, Maria del Rosario GM. DNA vaccines induce partial protection against Leishmania mexicana [J]. Vaccine,2003,21(17-18):2161-2168.
    [14]Shi F, Zhang Y, Lin J, Zuo X, Shen W, Cai Y, Ye, P., Bickle, Q.D., Taylor, M.G. Field testing of Schistosoma japonicum DNA vaccines in cattle in China [J]. Vaccine,2002,20(31-32):3629-3231.
    [15]Drew DR, Lightowlers M, Strugnell RA. Humoral immune responses to DNA vaccines expressing secreted, membrane bound and non-secreted forms of the Tania ovis 45W antigen [J]. Vaccine,2000, 18(23):2522-2532.
    [16]Harrison RA, Bianco AE. DNA immunization with Onchocerca volvulus genes, Ov-tmy-1 and OvB20:serological and parasitological outcomes following intramuscular or GeneGun delivery in a mouse model of onchocerciasis [J]. Parasite Immunol,2000,22(5):249-257.
    [17]Wang ZQ, Cui J, Wei HY, Han HM, Zhang HW, Li YL. Vaccination of mice with DNA vaccine induces the immune response and partial protection against T. spiralis infection [J]. Vaccine,2006, 24(8):1205-1212.
    [18]Xu Q, Song X, Xu L, Yan R, Shah MA, Li X. Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis [J]. Vet Parasitol,2008,156(3-4):319-323.
    [19]Song X, Xu L, Yan R, Huang X, Shah MA, Li X. The optimal immunization procedure of DNA vaccine pcDNA-TA4-IL-2 of Eimeria tenella and its cross-immunity to Eimeria necatrix and Eimeria acervulina [J]. Vet Parasitol,2009,159(l):30-36.
    [20]Shah MA, Yan R, Xu L, Song X, Li X. A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection [J]. Vet Parasitol,2010, 169(1-2):185-189.
    [21]Kutzler MA, Weiner DB. DNA vaccines:ready for prime time [J]? Nat Rev Genet,2008, 9(10):776-788.
    [22]John R. Crowther. The ELISA Guidebook [M]. Second Edition. New York:Humana Press,2009: 170-172.
    [23]朱兴全,龚广学,薛富汉,归有泽.旋毛虫病[M].郑州:河南科学技术出版社,1993.
    [24]杨雅平,诸欣平,杨静,张路平,徐旭娜,黄松,Pascal Boireau.旋毛虫pcDNA3.1/Ts87重组质粒的构建和表达[J].中国寄生虫学与寄生虫病杂志,2003,21(2):93-95.
    [25]崔晶,张红卫,王中全,李雍龙.旋毛虫肌幼虫核酸疫苗的构建及其在小鼠体内的表达[J].中国寄生虫学与寄生虫病杂志,2004,22(1):5-8.
    [26]Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X. Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge [J]. Vaccine 2010,28(15):2735-2742.
    [27]Sykes K. Progress in the development of genetic immunization [J]. Expert Rev Vaccines 2008, 7(9):1395-1404.
    [28]Yang J, Yang Y, Gu Y, Li Q, Wei J, Wang S, Boireau, P., Zhu, X. Identification and characterization of a full-length cDNA encoding paramyosin of Trichinella spiralis [J]. Biochem Biophys Res Commun 2008,365(3):528-533.
    [29]Yang J, Gu Y, Yang Y, Wei J, Wang S, Cui S, Pan, J., Li, Q., Zhu, X. Trichinella spiralis:immune response and protective immunity elicited by recombinant paramyosin formulated with different adjuvants [J]. Exp Parasitol 2010b,124(4):403-408.
    [30]Wang QM, Kang L, Wang XH. Improved cellular immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis [J]. Microbiol Immunol 2009, 53(7):384-390.
    [31]Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function [J]. Mucosal Immunol 2008,1(1):11-22.
    [32]Robinson K, Bellaby T, Wakelin D. Oral and parenteral vaccination against Trichinella spiralis infections in high-and low-responder mice [J]. Int J Parasitol 1995,25(8):989-892.
    [33]Inaba T, Sato H, Kamiya H. Impeded establishment of the infective stage of Trichinella in the intestinal mucosa of mice by passive transfer of an IgA monoclonal antibody [J]. J Vet Med Sci 2003a,65(11):1227-1231.
    [34]Inaba T, Sato H, Kamiya H. Monoclonal IgA antibody-mediated expulsion of Trichinella from the intestine of mice [J]. Parasitology 2003b,126(Pt 6):591-598.
    [35]Martinez-Gomez F, Santiago-Rosales R, Ramon Bautista-Garfias C. Effect of Lactobacillus casei Shirota strain intraperitoneal administration in CD1 mice on the establishment of Trichinella spiralis adult worms and on IgA anti-T. spiralis production [J]. Vet Parasitol 2009, 162(1-2):171-175.
    [36]Reiterova K, Antolova D, Hurnikova Z. Humoral immune response of mice infected with low doses of Trichinella spiralis muscle larvae [J]. Vet Parasitol 2009,159(3-4):232-235.
    [37]Kolodziej-Sobocinska M, Dvoroznakova E, Dziemian E. Trichinella spiralis:macrophage activity and antibody response in chronic murine infection [J]. Exp Parasitol 2006,112(1):52-62.
    [38]Salinas-Carmona MC, Perez-Rivera I. Humoral immunity through immunoglobulin M protects mice from an experimental actinomycetoma infection by Nocardia brasiliensis [J]. Infect Immun 2004,72(10):5597-5604.
    [39]Fulop M, Mastroeni P, Green M, Titball RW. Role of antibody to lipopolysaccharide in protection against low-and high-virulence strains of Francisella tularensis. Vaccine 2001,19(31):4465-4472.
    [40]Savitt AG, Mena-Taboada P, Monsalve G, Benach JL. Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy [J]. Clin Vaccine Immunol 2009, 16(3):414-422.
    [41]Racine R, Winslow GM. IgM in microbial infections:taken for granted [J]? Immunol Lett 2009, 125(2):79-85.
    [42]Deville S, Pooter A, Aucouturier J, Laine-Prade V, Cote M, Boireau P, Vallee, I. Influence of adjuvant formulation on the induced protection of mice immunized with total soluble antigen of Trichinella spiralis [J]. Vet Parasitol 2005,132(1-2):75-80.
    [43]Ramaswamy K, Hakimi J, Bell RG Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine [J]. J Exp Med 1994,180(5):1793-1803.
    [44]Moon HB, Severinson E, Heusser C, Johansson SG, Moller G, Persson U. Regulation of IgG1 and IgE synthesis by interleukin 4 in mouse B cells [J]. Scand J Immunol 1989,30(3):355-361.
    [45]Bacharier LB, Geha RS. Molecular mechanisms of IgE regulation [J]. J Allergy Clin Immunol 2000, 105(2 Pt 2):S547-558.
    [46]Watanabe N, Bruschi F, Korenaga M. IgE:a question of protective immunity in Trichinella spiralis infection [J]. Trends Parasitol 2005,21(4):175-178.
    [47]Tan TH, Edgerton SA, Kumari R, McAlister MS, Roe SM, Nagl S, Pearl, L.H., Selkirk, M.E., Bianco, A.E., Totty, N.F., Engwerda, C., Gray, C.A., Meyer, D.J. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis [J]. Biochem J 2001,357(Pt 2):373-383.
    [48]Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins [J]. Int J Parasitol 2003,33(11):1291-1302.
    [49]Schierack P, Lucius R, Sonnenburg B, Schilling K, Hartmann S. Parasite-specific immunomodulatory functions of filarial cystatin [J]. Infect Immun 2003,71(5):2422-2429.
    [50]Gregory WF, Maizels RM. Cystatins from filarial parasites:evolution, adaptation and function in the host-parasite relationship [J]. Int J Biochem Cell Biol 2008,40(6-7):1389-1398.
    [51]Kopitar-Jerala N. The role of cystatins in cells of the immune system [J]. FEBS Lett 2006, 580(27):6295-6301.
    [52]Klotz C, Ziegler T, Figueiredo AS, Rausch S, Hepworth MR, Obsivac N, Sers, C., Lang, R., Hammerstein, P., Lucius, R., Hartmann, S. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages [J]. PLoS Pathog 2011,7(1):e1001248.
    [53]Gorelik L, Fields PE, Flavell RA. Cutting edge:TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression [J]. J Immunol 2000,165(9):4773-4777.
    [54]Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation [J]. J Exp Med 2002,195(11):1499-1505.
    [55]Chen Z, O'Shea JJ. Th17 cells:a new fate for differentiating helper T cells [J]. Immunol Res 2008, 41(2):87-102.
    [56]Fabre MV, Beiting DP, Bliss SK, Appleton JA. Immunity to Trichinella spiralis muscle infection [J]. Vet Parasitol 2009,159(3-4):245-248.
    [57]Wakelin D, Goyal PK, Dehlawi MS, Hermanek J. Immune responses to Trichinella spiralis and T. pseudospiralis in mice [J]. Immunology 1994,81(3):475-479.
    [58]Ishikawa N, Goyal PK, Mahida YR, Li KF, Wakelin D. Early cytokine responses during intestinal parasitic infections [J]. Immunology 1998,93(2):257-263.
    [59]Hogaboam CM, Collins SM, Blennerhassett MG. Effects of oral L-NAME during Trichinella spiralis infection in rats [J]. Am J Physiol 1996,271(2 Pt 1):G338-346.
    [60]Wan QH, Wang, J.L., He, L.F., Liu, H., Zhang, X. Serum IL-12 level in mice infected with Trichinella spiralis [J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng chong Bing Za Zhi 2006, 24(6):475-476.
    [1]Voges D, Zwickl P, Baumeister W. The 26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999,68:1015-1068.
    [2]Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells [J]. Proc Natl Acad Sci USA 1975,72:11-15.
    [3]Hochstrasser M. Ubiquitin-dependent protein degradation [J]. Annu Rev Genet 1996,30:405-439.
    [4]Ciechanover A, Orian A, Schwartz AL. Ubiquitin-dependent protein degradation [J]. Bioessays 2000,22:442-451.
    [5]Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules [J]. Cell 1994,78:761-771.
    [6]Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, Rock KL. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation [J]. J Biol Chem 1997,272:13437-13445.
    [7]沈子珒,许啸声,李稻.泛素-蛋白酶体及其抑制剂[J].现代肿瘤医学2006,14:1454-1457.
    [8]Ortmann B, Androlewicz MJ, Cresswell P. MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding [J]. Nature 1994,368:864-867.
    [9]John R. Crowther. The ELISA Guidebook [M]. Second Edition. New York:Humana Press,2009: 170-172.
    [10]Delogu G, Howard A, Collins FM, Morris SL. DNA vaccination against tuberculosis:expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity [J]. Infect Immun 2000,68(6):3097-3102.
    [11]Rodriguez F, Zhang J, Whitton JL. DNA immunization:ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction [J]. J Virol,1997,71(11):8497-8503.
    [12]Gravier R, Dory D, Rodriguez F, Bougeard S, Beven V, Cariolet R, Jestin, A. Immune and protective abilities of ubiquitinated and non-ubiquitinated pseudorabies virus glycoproteins [J]. Acta Virol,2007,51(1):35-45.
    [13]Hou YH, Chen J, Tong GZ, Tian ZJ, Zhou YJ, Li GX, Li, X., Peng, J.M., An, T.Q., Yang, H.C. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets [J]. Vaccine, 2008,26(11):1438-1449.
    [14]Tellam J, Connolly G, Webb N, Duraiswamy J, Khanna R. Proteasomal targeting of a viral oncogene abrogates oncogenic phenotype and enhances immunogenicity [J]. Blood,2003, 102(13):4535-4540.
    [15]Wang QM, Kang L, Wang XH. Improved cellular immune response elicited by a ubiquitin-fused ESAT-6 DNA vaccine against Mycobacterium tuberculosis [J]. Microbiol Immunol,2009, 53(7):384-390.
    [16]Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang, D., Goldberg, A.L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules [J]. Cell,1994,78(5):761-771.
    [17]Chou B, Hiromatsu K, Hisaeda H, Duan X, Imai T, Murata S, Tanaka, K., Himeno, K. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi [J]. Biochem Biophys Res Commun,2010,392(3):277-282.
    [18]Kolodziej-Sobocinska M, Dvoroznakova E, Dziemian E. Trichinella spiralis:macrophage activity and antibody response in chronic murine infection [J]. Exp Parasitol,2006,112(1):52-62.
    [19]Fabre MV, Beiting DP, Bliss SK, Appleton JA. Immunity to Trichinella spiralis muscle infection [J]. Vet Parasitol,2009,159(3-4):245-248.
    [20]Wakelin D, Goyal PK, Dehlawi MS, Hermanek J. Immune responses to Trichinella spiralis and T. pseudospiralis in mice [J]. Immunology,1994,81(3):475-479.
    [21]Ishikawa N, Goyal PK, Mahida YR, Li KF, Wakelin D. Early cytokine responses during intestinal parasitic infections [J]. Immunology,1998,93(2):257-263.
    [22]Hogaboam CM, Collins SM, Blennerhassett MG Effects of oral L-NAME during Trichinella spiralis infection in rats [J]. Am J Physiol,1996,271(2 Pt 1):G338-346.
    [23]Wan QH, Wang, J.L., He, L.F., Liu, H., Zhang, X. Serum IL-12 level in mice infected with Trichinella spiralis [J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng chong Bing Za Zhi,2006, 24(6):475-476.
    [24]Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf, L., Urban, J.F., Jr. Interleukin-4-and interleukin-13-mediated host protection against intestinal nematode parasites [J]. Immunol Rev,2004,201:139-155.
    [25]Michels CE, Scales HE, Saunders KA, McGowan S, Brombracher F, Alexander J, Lawrence, C.E. Neither interleukin-4 receptor alpha expression on CD4+ T cells, or macrophages and neutrophils is required for protective immunity to Trichinella spiralis [J]. Immunology,2009,128(1 Suppl):e385-394.
    [26]Martinez-Gomez F, Santiago-Rosales R, Ramon Bautista-Garfias C. Effect of Lactobacillus casei Shirota strain intraperitoneal administration in CD1 mice on the establishment of Trichinella spiralis adult worms and on IgA anti-T. spiralis production [J]. Vet Parasitol 2009, 162(1-2):171-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700