斑蝥素对棉铃虫毒杀作用分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫(Helicoverpa armigera Hubner)是一种可对多种经济作物造成严重危害的世界性分布害虫。棉铃虫对多种类型的杀虫剂已产生抗性造成不能对其进行有效防治。已有研究表明,斑蝥素可毒杀小菜蛾和粘虫。但是斑蝥素对棉铃虫的毒杀作用尚未被报道。在本研究中,我们研究了实验室条件下斑蝥素对棉铃虫的致死和亚致死效应。结果表明,斑蝥素对棉铃虫具有很强的胃毒作用。与对照组棉铃虫相比,斑蝥素处理组的幼虫体重减小,成虫翅畸形;幼虫期、蛹期和成虫期死亡率升高;繁殖力明显下降,为对照组的1/5。表明斑蝥素可毒杀棉铃虫幼虫并造成种群指数的严重异常,斑蝥素在害虫治理方面有应用前景。我们还发现,亚致死剂量斑蝥素对棉铃虫的毒害症状与昆虫生长调节剂类杀虫剂造成的毒害症状相似。
     关于谷胱甘肽硫转移酶(GSTs)是造成昆虫抗药性的一个主要因素已被广泛报导。一种新的化合物能否有效的抑制GSTs的活性,减少昆虫对其的解毒代谢往往决定了其杀虫效果。本论文研究了斑蝥素对棉铃虫的毒杀作用,以及斑蝥素对GSTs基因转录水平的影响,并测定了斑蝥素对棉铃虫GSTs体内及体外抑制活性。生测结果表明:斑蝥素对棉铃虫幼虫毒杀作用显著。实时定量PCR显示斑蝥素处理后不同时期棉铃虫GSTs的转录水平下降2.5倍到12.5倍。斑蝥素可抑制棉铃虫中肠GSTs活性,对原核表达的重组棉铃虫GSTs蛋白亦表现出抑制作用。利用同源模建和分子对接技术,以GST(1PN9)晶体结构为模板我们构建了斑蝥素与棉铃虫GSTs的结合模式模型,模型显示斑蝥素分子可进入棉铃虫GSTs的活性位点造成其酶活性降低。
     斑蝥素可有效的毒杀多种昆虫尤其的鳞翅目昆虫,但在实际害虫防治时使用较高剂量斑蝥素能造成一定的环境问题。因此考虑将亚致死剂量的斑蝥素作为杀虫剂增效剂使用。事实上增效剂应当是解毒酶系尤其是与生物和非生物胁迫效应相关的解毒酶系的有效抑制剂。碱性磷酸酶广泛参与昆虫的多种生理过程并与杀虫剂抗性相关,其功能的变化能导致严重的生理干扰。我们的研究发现饲喂亚致死剂量25μg g-1的斑蝥素后,棉铃虫中肠碱性磷酸酶活性显著下降。以pNPP作为底物的酶动力学结果标明,斑蝥素竞争性抑制棉铃虫碱性磷酸酶活性。另外斑蝥素处理后,棉铃虫中肠碱性磷酸酶的转录水平也同步下调。通过同源模建技术和分子对接技术得到的斑蝥素与棉铃虫碱性磷酸酶结合模型也证明了斑蝥素结合与棉铃虫碱性磷酸酶的催化中心区域。
Cotton bollworm, Helicoverpa armigera Hubner is a serious pest of many economiccrops. Its control has not been adequate due to its resistance to many groups of insecticides.Toxicity of cantharidin on armyworm and diamondback moth has already been reported.However, its toxicity on H. armigera has not been investigated previously. In this study, wereport lethal and sub-lethal effects of cantharidin on H. armigera under laboratory conditions.Our results showed gross abnormalities in population parameters of H. armigera, rangingfrom larvae to adults. Reduction in larval weight and wings malformation was observed incantharidin-treated population cohort. Comparatively, higher mortality at larval, pupal andadult stages was observed in cantharidin-treated, compared to control. Almost five times lessfecundity was recorded in treated population cohort. Fertility was also severely affected andreduction in all population parameters was observed. Cantharidin in our study caused larvalmortality and other serious abnormalities in H. armigera population parameters and therefore,may have positive implications for pest management decision making process. Moreinterestingly, our experiment revealed that cantharidin in sub-lethal dose mimicked IGR(Insect Growth Regulator) insecticides. Furthermore, cantharidin could be used as a precursorcompound for the synthesis of new analogues and compounds to replace ineffective oldercompounds.
     Previous investigations have implicated glutathione S-transferases (GSTs) as one ofthe major reasons for insecticide resistance. Therefore, effectiveness of the new candidatecompounds depends on their ability to inhibit GSTs to prevent metabolic detoxification byinsects. Cantharidin has been developed as a bio-pesticide in China that proves highly toxic toa wide range of insects, especially lepidopteran. In present studies we test cantharidin as amodel compound for its toxicity, effects on the mRNA transcription of a model H. armigeraglutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on thecatalytic activity of GSTs, both in vivo and in vitro in H. armigera employing molecular andbiochemical methods. Bioassay results showed that cantharidin was highly toxic to H.armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcriptranging from2.5to12.5folds while biochemical assays showed in vivo inhibition of GSTs inmidgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalizedby homology and molecular docking simulations using a model GST (1PN9) as a templatestructure. Molecular docking simulations also confirmed accurate docking of the cantharidinmolecule to the active site of HaGST impeding its catalytic activity.
     Earlier investigations have shown high toxicity of cantharidin to many insectsespecially lepidopteran. However, its use in a higher dose for pest management has raisedserious environmental concerns. Therefore, its biological potential in sub-lethal dose as asynergist was considered. In fact, it is essential for a synergist to be an effective inhibitor ofmetabolic enzymes especially those responsible for biotic and abiotic stress. As alkalinephosphatase is an important enzyme involved in numerous physiological processes and also ininsecticide resistance, so any impairment in its function may lead to serious physiologicaldisturbances and could compromise their catalytic activity. Results of the presentinvestigation showed that a sub-lethal dose of25μg g-1treated artificial diet fed to H.armigera showed inhibitory effects on catalytic activity of alkaline phosphatase in the insectmidgut. Furthermore, Kinetic data showed that cantharidin inhibited HaALPs competitivelywith respect to p-NPP. In addition, cantharidin did not induce Helicoverpa armigera alkalinephosphatase gene (HaALP) rather caused slight down regulation. The inhibitory effect ofcantharidin on catalytic activity of ALPs as a result of its binding to the putative catalytic sitewas also confirmed by using homology modeling, molecular dynamics and dockingsimulations.
引文
Abalis IM, Eldefrawi ME, Eldefrawi AT (1985). High-affinity stereospecific binding of cyclodieneinsecticides and γ-hexachlorocyclohexane to γ-aminobutyric acid receptors of rat brain. Pestic.Biochem. Physiol.,24:95-102.
    Ahmed M and McCaffery AR (1991). Elucidation of detoxification mechanisms involved in resistance toinsecticides against third instar larvae of a field selected strain of Helicoverpa armigera with the useof synergists. Pest biochem. physiol.,41:41–52.
    Ahmed M, Arif MI and Ahmed Z (1995). Monitoring insecticide resistance of Helicoverpa armigera(Lepidoptra: Noctuidae) in Pakistan. J Econ Entomol.,88:771–776.
    Anonymous (2009). AgroAtlas. Interactive Agricultural Ecological Atlas of Russia and NeighboringCountries. Economic Plants and their Diseases, Pests and Weeds.http://www.agroatlas.ru/en/content/pests/Helicoverpa_armigera/(2April2013).
    Anonymous (2012). Bayer CropScience. http://www.cropscience.bayer.com/en/Crop-Compendium/Pests-Diseases-Weeds/Pests/Helicoverpa-armigera.aspx (2April2013).
    Anonymous (2013). Blister Beetles in Alfalfa. http://www.ca.uky.edu/entomology/entfacts/Ef
    102.asp (1512013).
    Argentine JA, Jansson RK, Starner VR, Halliday WR (2002). Toxicities of emamectin benzoatehomologues and photodegradates to Lepidoptera. J. Econ. Entomol.,95:1185-1189.
    Armes NJ, Jadhav DR, Bond GS, King ABS (1992). Insecticide resistance in Helicoverpa armigera inSouth India. Pestic. Sci.,34:355–364.
    Armstrong RN (1991). Glutathione S-transferases: reaction mechanism, structure and function. Chem. Res.Toxicol.4:131-140.
    Arnett RH, Thomas MC, Skelley PE, Frank JH (2002). American Beetles. CRC Press: Florida, BocaRaton, USA, p.861.
    Bagatell FK, Dugan K, Wilgram GF (1969). Structural and biochemical changes in tissues isolated fromthe cantharidin-poisoned rat with special emphasis upon hepatic sub-cellular particles. Toxicol. Appl.Pharmacol.,15:249–261.
    Balabaskaran S, Chuen SS, Muniandy S (1989). Glutathione S-transferase from the diamondback moth.Insect Biochem.,19:435–443.
    Bergé JB, Feyereisen R, Amichot M (1999). Cytochrome P450monooxygenases and insecticideresistance in insects. In: Insecticide Resistance: From Mechanisms to Management.(Eds. I. Denholm,J.A. Pickett and A.L. Devonshire), CABI Publishing London, pp.25-29.
    Bertaux B, Prost C, Heslan M, Dubertret L (1988)."Cantharide acantholysis: endogenous proteaseactivation leading to desmosomal plaque dissolution". British Journal of Dermatology118:157–165.doi:10.1111/j.1365-2133.1988.tb01769.x. ISSN1365-2133. Retrieved2013-03-19.
    Bessey OA (1964). A method for the rapid determination of phosphatase with five cubic millimeter ofserum. J. Biol. Chem.,164:321–329.
    Bialojan C and Takai A (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on proteinphosphatases. Specificity and kinetics, Biochem. J.,256:283–290.
    Bikadi Z, Demko L, Hazai E (2007). Functional and structural characterization of a protein based onanalysis of its hydrogen bonding network by hydrogen bonding plot. Arch. Biochem. Biophys.,461:225–234.
    Bikadi Z and Hazai E (2009). Application of the PM6semi-empirical method to modeling proteinsenhances docking accuracy of AutoDock. J. Cheminform.,11:15.
    Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S (1994). Insecticidal actionand mitochondrial uncoupling activity of AC-303,630and related halogenated pyrroles. Pestic.Biochem. Physiol.,50:115-128.
    Bloomquist JR (1993). Neuroreceptor mechanisms in pyrethroid mode of action and resistance. Rev.Pestic. Toxicol.,2:185-230.
    Bloomquist JR (2001). GABA and glutamate receptors as biochemical sites for insecticideaction. In:Biochemical Sites of Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin,Heidelberg, pp.17-41.
    Booth GM, Connor J, Metcalf RA, Larsen JR (1973). A comparative study of the effects of selectiveinhibitors on esterase isozymes from the mosquito Anopheles punctipennis. Comp. Biochem. Physiol.B.,44:1185–1195.
    Capinera JL, Gardner DR, Stermitz FR (1985)."Cantharidin Levels in Blister Beetles (Coleoptera:Meloidae) Associated with Alfalfa in Colorado". J. Econ. Entomol.,78:1052–1055.
    Carlson GR, Dhadialla TS, Hunter R, Jansson RK, Jany CS, Lidert Z, Slawecki RA (2001). Thechemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. PestManag. Sci.,57:115-119.
    Carrel JE, Doom JP, McCormick JP (1985). Quantitative determination of cantharidin in biologicalmaterial using capillary gas chromatography with flame ionization detection. J. Chromatogr.,342:411–415.
    Carvalho CF, Souza B, Santos TM (1998). Predation capacity and reproduction potential of Chrysoperlaexterna (Hagen)(Neuroptera, Chrysopidae) fed on Alabama argillacea (Hübner) eggs. Acta Zoo Fenn.,209:83–86
    Chang W, Zachow K, Bentley D (1993). Expression of epithelial alkaline phosphatase in segmentallyiterated bands during grasshopper limb morphogenesis. Development,118:651–663
    Chaudhari UP, Trivedi ND, Patil SRR, Banerjee S (2010). Molecular docking studies of L-name withthe neuronal nitric oxide synthase. Int. J. Chem. Tech. Res.,2:122–128.
    Chen L, Hall PR, Zhou XE, Ranson H, Hemingway J, Meehan EJ (2003). Structure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae.Acta Crystallogr. D Biol. Crystallogr., D59:2211–2217.
    Chen VB, Arendall WB3rd,Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW,Richardson JS, Richardson DC (2010). MolProbity: all-atom structure validation formacromolecular crystallography. Acta Crystallographica D,66:12–21.
    Chi H and Su HY (2006). Age-stage, two sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera:Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof ofthe relationship between female fecundity and the net reproductive rate. Environ Entomol.,35:10–21.
    Chi H (1988). Life-table analysis incorporating both sexes and variable development rates amongindividuals. Environ Entomol.,17:26–31.
    Chi H (2008). TWOSEX-MSChart: computer program for age-stage, two-sex life table analysis.http://140.120.197.183/Ecology.
    Chomczynski P (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteinsfrom cell and tissue samples. Biotechniques,15:532–537.
    Clark AG, Shamaan NA, Dauterman WC, Hayaoka T (1984). Characterization of multiple glutathionetransferases from the housefly, Musca domestica. Pest. Biochem. Physiol.,22:51–59.
    Cohen P, Holmes CF, Tsukitani Y (1990). Okadaic acid: a new probe for the study of cellular regulation,Trends Biochem. Sci.,15:98–102.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T,Caldwell JW, Kollman PA (1995). A Second Generation Force Field for the Simulation of Proteins,Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc.,117:5179–5197.
    Cui FL, Li X, Ma ZQ, Zhang YL (2009). Safety evaluation of animal-origin pesticide cantharidin againstsome non-target organisms. J. Environ. Entomol.,31:143–149.
    Dauterman WC (1985). Insect metabolism: extramicrosomal. In: Comprehensive Insect Physiology,Biochemistry and Pharmacology.(Eds. G.A. Kerkut and L.I. Gilbert). Pergamon, Oxford, U.K. Vol.12, pp.713-730.
    Dawson JF and Holmes CF (1999). Molecular mechanisms underlying inhibition of protein phosphatasesby marine toxins, Front. Biosci.,4: D646–D658.
    De Backer ME, McSweeney S, Rasmussen HB, Riise BW, Lindley P, Hough E (2002). The1.9crystal structure of heat-labile shrimp alkaline phosphatase. J. Mol. Biol.,318:1265–1274.
    Decker RH (1968). The identification of a phosphoprotein in acantholytic epidermis. J Invest Dermatol.,51:141–146.
    Decker RH (1968). The identification of a phosphoprotein in acantholytic epidermis. J. Invest. Dermatol.,51:141–146.
    DeLano WL (2010). The PyMol Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA.
    Dettner K, Bauer G, V lkl W (1997). Vertical Food Web Interactions. Springer Verlag.: Berlin, Germany,p.390.
    Dong K (2007). Insect sodium channels and insecticide resistance. Invert. Neurosci.,7:17-30.
    Dorn DC, Kou CA, Png KJ, Moore MAS (2009)."The effect of cantharidins on leukemic stem cells".International Journal of Cancer124:2186–2199. doi:10.1002/ijc.24157
    Ebbinghaus-Kintscher U, Lümmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, YasokawaN, Tohnishi M (2005). Phthalic acid diamides activate ryanodine-sensitive Ca2+release channels ininsects. Cell Calcium39:21-33.
    Ebbinghaus-Kintscher U, Lümmen P, Raming K., Masaki T, Yasokawa N (2007). Flubendiamide, thefirst insecticide with a novel mode of action on insect ryanodine receptors. Pflanzenschutz-Nachrichten Bayer60:117-140.
    Eguchi M (1995). Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme.Comp. Biochem. Physiol. B,111:151–162
    Elliott M, Farnham AW, Janes NF, Needham PH, Pulman DA (1974). Synthetic insecticide with a neworder of activity. Nature,248:710-711.
    Elliott M, Janes NF, Potter C (1978). The future of pyrethroids in insect control. Ann. Rev. Entomol.,23:443-469.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961). A new and rapid colorimetricdetermination of acetylcholinesterase activity. Biochem. Pharmacol.7,88-95.
    EPPO (1996). EPPO Reporting Service6:141.
    Evans HE (1984). Insect Biology: A Textbook of Entomology. Addison-Wesley Publishing Company, SanFrancisco, CA, USA.
    Farnham AW, Murray AWA, Sawicki RM, Denholm I, White JC (1987). Characterization of thestructure-activity relationship of kdr and2variants of super-kdr to pyrethroids in the housefly (Muscadomestica L.). Pest. Sci.19:209-220.
    Feyereisen R (1995). Molecular biology of insecticide resistance. Toxicol. Lett.82/83:83-90.
    Feyereisen R (1999). Insect P450enzymes. Annu. Rev. Entomol.44:507-533.
    Finney DJ (1971). Probit analysis, third ed. Cambridge University Press, London, UK. pp.383.
    Fitt GP (1989). The ecology of Heliothis in relation to agroecosystems. Annu Rev Entomol.,34:17-52.
    Fournier D and Mutero A (1994). Modification of acetylcholinesterase as a mechanism of resistance toinsecticides. Comp. Biochem. Physiology C: Toxicol. Pharmacol.,108:19-31.
    Fournier D, Bride JM, Poire M, Berge JB, Plapp FW (1992). Insect glutathione S-transferases:Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides.J. Biol. Chem.,267:1840–1845.
    Furlong MJ and Wright DJ (1994). Examination of stability of resistance and cross resistance patterns toacylurea insect growth regulators in field populations of diamond back moth, Plutella xylostella fromMalaysia. J. Pestic. Sci.,42:315–326.
    Gammon DW, Brown MA, Casida JE (1981). Two classes of pyrethroid action in the cockroach. Pestic.Biochem. Physiol.,15:181-191.
    Gao X., Zhang F, Zheng B, Wang R, Lin B (1996). Biochemical aspects of insecticide resistance incotton bollworm from Handan of Hebei province. Insect Sci.,3:243-255.
    GOLD version5.1(2012). The Cambridge Crystallographic Data Centre (CCDC): Cambridge, U.K.
    Goodman D (1982). Optimal life histories, optimal notation, and the value of reproductive value. Am Nat.,119:803–823.
    Grant DF, Dietze EC, Hammock BD (1991). Glutathione S-transferase isozymes in Aedes aegypti:purification, characterization and isozyme specific regulation. Insect. Biochem.,21:421–433.
    Grant DF and Matsumura F (1989). Glutathione S-transferase1and2in susceptible and insecticideresistant Aedes aegypti. Pest. Biochem. Physiol.,33:132–140.
    Graziano MJ and Casida JE (1987). Comparison of the acute toxicity of endothal and cantharidic acid onmouse liver in vivo. Toxicol Lett.,37:143–148.
    Graziano MJ, Casida JE (1987). Comparison of the acute toxicity of endothal and cantharidic acid onmouse liver in vivo. Toxicol. Lett.,37:143–148.
    Graziano MJ, Waterhouse AL, Casida JE (1987). Cantharidin poisoning associated with specificbinding site in liver. Biochem. Biophys. Res. Commun.,149:79–85.
    Gullan PJ and Cranston PS (2005). The insects: An outline of entomology. Third Edition, BlackwellPublishing, Oxford, England.
    Gunning RV and Moores GD (2001). Insensitive acetylcholinesterase as sites for resistance toorganophosphates and carbamates in insects: insensitive acetylcholinesterase confers resistance inLepidoptera. In: Biochemical Sites of Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin, Heidelberg, pp.221-238.
    Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases. J. Biol. Chem.,249:7130–7141.
    Harold JA and Ottea JA (1997). Toxicological significance of enzyme activities in profenofos-resistanttobacco budworms, Heliothis virescens (F.). Pestic. Biochem. Physiol.,58:23–33.
    Hayes JD and Pulford DJ (1995). The glutathione S-transferase supergene family-regulation of GST andthe contribution of isozymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol.Biol.,30:445–600.
    Hayes JD and Wolf CR (1988). Role of glutathione transferases in drug resistance. In GlutathioneConjugation: Mechanisms and Biological Significance, Sites H, Ketter B, Eds.; Academic Press:London, UK, pp.3150–355.
    Hemingway J, Hawkes N, Prapanthadara L, Indrananda J, Ranson H (1999). Therole of gene splicing,gene amplification and regulation in mosquito insecticideresistance. In: Insecticide Resistance: FromMechanisms to Management.(Eds. I. Denholm, J.A. Pickett and A.L. Devonshire), CABI PublishingLondon, pp.19-23.
    Hemingway J (2000). The molecular basis of two contrasting metabolic mechanisms ofinsecticideresistance. Insect Biochem. Molec. Biol.30:1009-1015.
    Hemingway J, Malcolm CA, Kissoon KE, Boddington RG, Curtis CF, Hill N (1985). The biochemistryof insecticide resistance in Anopheles sacharovi: Comparative studies with a range of insecticidesusceptible and resistance Anopheles and Culex species. Pest. Biochem. Physiol.,24:68–71.
    Hodgson E (1983). The significance of cytochrome P-450in insects. Insect Biochem.13:237-246
    Hoffmann GM, Nienhaus F, Poehling HM, Sch nbeck F, Weltzien HC, Wilbert H (1994). TierischeSch dlinge und ihre natürlichen Gegenspieler. In: Lehrbuch der Phytomedizin.3. Auflage, BlackwellWissenschafts-Verlag, Berlin, Germany, pp.171-175.
    Horie B (1998). The alkaline phosphatase in the midgut of silkworm, Bombyx mori L, Bull. Seric. Exp. Stn.,15:275–289
    Huang ZP, Shi JD, Du J (2004). Protein metabolism in Spodoptera litura (F.) is influenced by thebotanical insecticide azadirachtin. Pest Biochem Physiol.,80:2–85.
    Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, Sun CN (1998). Molecular cloning and heterologousexpression of glutathione S-transferase involved in insecticide resistance from the diamondback moth,Plutella xylostella. Insect. Biochem. Mol. Biol.,28:651–658.
    ICRISAT (2003). Annual report, ICRISAT, Patancheru, AP. India.
    Ishaaya I (2001). Biochemical processes related to insecticide action: an overview. In: Biochemical Sitesof Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin, Heidelberg, pp.1-16.
    Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A,Varadarajan K, Schulten K (1999). Namd2: Greater Scalability for Parallel Molecular Dynamics. J.Comput. Phys.,151:283–312.
    Kao CH, Hung CF, Sun CN (1989). Parathion and methyl parathion resistance in diamond back moth(Lepidoptera: Plutellidae) larvae. J. Econ. Entomol.,82:1299–1300.
    Kawamura N, Li YM, Engel JL, Dauben WG, Casida JE (1990). Endothall thioanhydride: structuralaspects of unusually high mouse toxicity and specific binding site in liver. Chem. Res. Toxicol.,3:318–324.
    Kawamura N, Li YM, Engel JL, Dauben WG, Casida JE (1990). Endothall thioanhydride: structuralaspects of unusually high mouse toxicity and specific binding site in liver. Chem. Res. Toxicol.,3:318–324.
    Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Maurkidou E (2001).Glutathione S-transferase in the defense against pyrethroids in insects. Insect. Biochem. Mol. Biol.,31:313–319.
    Kucera M and Weiser J (1974). Alkaline-phosphatase in last larval instar of Barathra brassicae(Lepidoptera) infected by Nosema Plodiae. Acta. Entomol. Bohemoslov.,71:289–293.
    Lammers JW and McLeod A (2007). Report of a pest risk analysis.http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/helicoverpa.pdf (2April2013).
    Legadic L, Cuany A, Berge JB, Echaubard M (1993). Purification and partial characterization ofglutathione S-transferases from insecticide resistant and lindane-induced susceptible Spodopteralittoralis (Boisd.) larvae. Insect Biochem. Mol. Biol.,23:467–474.
    Lewontin RC (1965). Selection for colonizing ability. In: Baker, H.G., Stebbins, G.L.(Eds.), The Geneticsof Colonizing Species. Academic Press, San Diego, California. pp.77–91.
    Li YM and Casida JE (1992). Cantharidin-binding protein: Identification as protein phosphatase2A. ProcNatl Acad Sci.,89:11867–11870.
    Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X (2010)."Cantharidin, a potent and selectivePP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cellsthrough G2/M cell-cycle arrest and apoptosis". Cancer Science101:1226–1233. doi:10.1111/j.1349-7006.2010.01523.x
    Li YM and Casida JE (1992). Cantharidin-binding protein: Identified as protein phosphatase2A. Proc.Natl. Sci. U.S.A.,89:11867–11870.
    Ma Y, Liu RR, Ma ZQ, Zhang YL (2010). Effects of cantharidin on four metabolizing enzymes and PPOin Mythimna separata (Walker)(Lepidoptera: Noctuidae). Acta Entomol. Sinica.,53:870–875.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L,Taylor R, Van de streek J, Wood PA (2008). Mercury CSD2.0-new features for the visualizationand investigation of crystal structures. Appl. Cryst.,41:466-470.
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007). Silencing acotton bollworm P450monooxygenase gene by plant mediated RNAi impairs larval tolerance togossypol. Nat. Biotechnol.,25:1307-1313.
    Martinez-Torres D, Devonshire AL, Williamson MS (1997). Molecular studies of knockdown resistanceto pyrethroids: cloning of domain II sodium channel gene sequences from insects. Pestic. Sci.51:265-270.
    McCaffery A and Nauen R (2006). The Insecticide Resistance Action Committee (IRAC): Publicresponsibility and enlightened industrial self-interest. Outlooks Pest Manag.,17:11-14.
    McCaffery AR (1999). Resistance to insecticides in heliothine Lepidoptera: a global view.In: InsecticideResistance: From Mechanisms to Management.(Eds. I. Denholm, J.A.Pickett and A.L. Devonshire),CABI Publishing London, pp.59-74.
    Mestrovic V, Pavela-Vrancic M (2003). Inhibition of alkaline phosphatase activity by okadaic acid, aprotein phosphatase inhibitor. Biochimie,85:647–650.
    Meyer JS, Ingersoll CG, McDonald LL, Boyee MS (1986). Estimating uncertainty in population growthrates: Jackknife vs; bootstrap techniques. Ecology,67:1156–1166.
    Microsoft (2003). Microsoft Excel [computer software]. Redmond, Washington: Microsoft.
    Moed L, Tor A, Shwayder M, Wu C (2001)."Cantharidin revisited: a blistering defense of an ancientmedicine". Archives of dermatology137:1357. Retrieved2013-03-19.
    Mohan M and Gujar GT (2003). Local variation in susceptibility of diamondback moth, Plutellaxylostella (L.) to insecticides and role of detoxifying enzymes. Crop Prot.,2:495–504.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998). AutomatedDocking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J.Comput. Chem.,19:1639–1662.
    Motoyama N, Dauterman WC (1980). Glutathione S-transferases: their role in the metabolism oforganophosphorus insecticides. Rev. Biochem. Toxicol.,20:49–70.
    Motoyama N, Dauterman WC (1975). Inter-strain comparison of glutathione dependent reactions insusceptible and resistant houseflies. Pest. Biochem. Physiol.,5:489–493.
    Narahashi T (2000). Neuroreceptors and Ion Channels as the Basis for Drug Action: Past, Present, andFuture. J. Pharmacol. Exp. Ther.,294:1-26.
    Nathan SS, Kalaivani K, Murugan K, Chung PG (2005). The toxicity and physiological effect of neemlimonoids on Cnaphalocrocis medinalis (Guenée) the rice leaf folder. Pest Biochem Physiol81:113–122.
    Nauen R (2006). Insecticide mode of action: return of the ryanodine receptor. Pest Manag. Sci.,62:690-692.
    Nauen R and Bretschneider T (2002). New modes of action of insecticides. Pestic. Outlook13:241-245.
    Oaks WW, DiTunno JF, Magnam T, Levy HA, Mills LC (1960). Cantharidin Poisoning. Arch. Intern.Med.,105:574–582.
    Ozoe Y and Akamatsu M (2001). Non-competitive GABA antagonists: probing the mechanisms of theirselectivity for insect versus mammalian receptors. Pest Manag. Sci.57:923-931.
    Pasteur N and Georghiou GP (1989). Improved filter paper test for detecting and quantifying inorganophosphate-resistant mosquitoes (Diptera: Culicidae). J. Econ. Entomol.82:347-353.
    Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. NucleicAcids Res.,29:2002–2007.
    Prestwitch GD and Blomquist GJ (1987). Pheromone Biochemistry. Academic Press: Orlando, p.565.
    Rauschenbach IY, Bogomolova EV, Gruntenko NE, Adonyeva NV, Chentsova NA (2007b). Effects ofjuvenile hormone and20-hydroxyecdysone on alkaline phosphatase activity in Drosophila undernormal and heat stress conditions. J Insect Physiol.,53:587–591
    Rauschenbach IY, Chentsova NA, Gruntenko NE, Karpova EK, Alekseev AA, Komarova TN, et al(2007a). Dopamine and octopamine regulate20-hydroxyecdysone level in vivo in Drosophila. ArchInsect Biochem Physiol.,65:95–102
    Robinson, GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM (2010)."HOSTS-A Databaseof the World's Lepidopteran Hostplants". London: Natural History Museum.
    Robiquet PJ (1810). Expériences sur les cantharides. Ann. Chim.,76:302–322.
    Sakharov IY, Makarova IE, Ermolin GA (1998). Chemical modification and composition of tetramericisozyme K of alkaline phosphatase from harp seal intestinal mucosa. Comp. Biochem. Physiol. B,92:119–122.
    Sali A and Blundell TL (1993). Comparative protein modeling by satisfaction of spatial restraints. J. Mol.Biol.,234:779–815.
    Sambrook J and Russel DW (1989). Molecular cloning: A laboratory manual. Cold Spring HarborLaboratory Press: New York, USA, pp.18.1–18.85.
    Sarrouilhe D, Lalegerie P, Baudry M (1992). Endogenous phosphorylation and dephosphorylation of ratliver plasma membrane proteins, suggesting a18kDa phosphoprotein as a potential substrate foralkaline phosphatase. Biochim. Biophys. Acta.,1118:116–122.
    Sarrouilhe D, Lalegerie P, Baudry M (1992). Endogenous phosphorylation and dephosphorylation of ratliver plasma membrane proteins, suggesting a18kDa phosphoprotein as a potential substrate foralkaline phosphatase, Biochim. Biophys. Acta,1118:116–122.
    Scott JG (1999). Cytochromes P450and insecticide resistance. Insect. Biochem. Molec. Biol.29:757-777.
    Scott JG (2001). Cytochrome P450monooxygenases and insecticide resistance: lessons form CYP6D1. In:Biochemical Sites of Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin,Heidelberg, pp.255-267.
    Sharma V, Walia S, Dhingra S, Kumar J, Parmar BS (2006). Azadirachtin-A andtetrahydroazadirachtin-A concentrates: preparation, LC-MS characterization and insectantifeedant/IGR activity against Helicoverpa armigera (Hubner). Pest Manag. Sci.,62:965–975.
    Siegfried BD and Scharf ME (2001). Mechanisms of organophosphate resistance in insects. In:Biochemical Sites of Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin,Heidelberg, pp.269-321.
    Soderlund DM (1997). Molecular mechanisms of insecticide resistance. In: Molecularmechanisms ofresistance to agrochemicals.(Vol.13Ed. V. Sjut), Spinger, Heidelberg New York, pp.21-56.
    Soderlund DM, Hessney CW, Helmuth DW (1983). Pharmacokinetics of cis-and trans-substitutedpyrethroids in the American cockroach. Pestic. Biochem. Physiol.,20:161–168.
    SPSS (2007). SPSS Inc.,233South Wacker Drive,11th Floor Chicago, IL60606-6412.
    Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004). Identification of factors responsible forinsecticide resistance in Helicoverpa armigera. Comp. Biochem. Physiol. C,137:261–269.
    Suganuma M, Fujiki H, Okabe S, Nishiwaki S, Brautigan D, Ingebritsen TS, Rosner MR (1992).Structurally different members of the okadaic acid class selectively inhibit protein serine/threonine butnot tyrosine phosphatase activity, Toxicon,30:873–878.
    Sujak P, Ziemnicki K, Ziemnicka J, Lipa JJ, Obuchowicz L (1978). Acid and alkaline-phosphataseactivity in fat-body and midgut of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae),infected with nuclear polyhedrosis virus. J. Invertebr. Pathol.,31:4–9.
    Sukhanova MJ, Grenback LG, Gruntenko NE, Khlebodarova TM, Rauschenbach IY (1996).Alkaline phosphatase in Drosophila under heat stress. J. Insect. Physiol.,42:161–165.
    Sun CN, Huang SY, Hu NT, Chung WY (2001). Glutathione S-transferases and insect resistance toinsecticides. In: Biochemical Sites of Insecticide Action and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin, Heidelberg, pp.239-254.
    Thompson G and Hutchins S (1999). Spinosad. Pestic. Outlook4:78-81.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The ClustalX windowsinterface: flexible strategies for multiple sequence alignment aided by quality analysis tools. NucleicAcids Res.,24:4876–4882.
    Treacy M, Miller T, Black B, Gard I, Hunt D, Hollingworth RM (1994). Uncoupling activity andpesticidal properties of pyrroles. Biochem. Soc. Trans.22:244-247.
    Tsubata K, Tohnishi M, Kodama H, Seo A (2007). Chemistry of flubendiamide–discovery, synthesisand X-ray structure. Pflanzenschutz-Nachrichten Bayer60:105-116.
    Tuleva B, Vasileva-Tonkova E, Galabova D (1998). A specific alkaline phosphatase fromSaccharomyces cerevisiae with protein phosphatase activity, FEMS Microbiol. Lett.,161:139–144.
    Vais H, Williamson MS, Devonshire AL, Usherwood PNR (2001). The molecular interactions ofpyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci.,57:877-888.
    Vontas JG, Small GJ, Hemingway J (2001). Glutathione S-transferases as antioxidant defense agentsconfer pyrethroid resistance in Nilaparvata lugens. Biochem. J.,357:65–72.
    Wallace AC, Laskowski RA, Thornton JM (1995). LIGPLOT: A program to generate schematicdiagrams of protein-ligand interactions. Prot. Eng.,8:127–134.
    Wang GS (1989). Medical uses of Mylabris in ancient China and recent studies. J. Ethnoparmacol.,26:147–162.
    Waring P, Martin T, Richard L (2003). Field Guide to the Moths of Great Britain and Ireland. BritishWildlife Publishing. p.374.
    Werck-Reichhart, D. and Feyereisen, R.(2000). Cytochrome P450: a success story. Genome Biol.1:1-9.
    Wing KD, Schnee ME, Sacher M, Connair M (1998). A novel oxadiazine insecticide is bioactivated inlepidopteran larvae. Arch. Insect Biochem. Physiol.37:91-103.
    Wolter H (1995). Kompendium der Tier rztlichen Hom opathie. Enke. ISBN978-3432978925.
    Wright TRF (1987). Genetic of biogenic amines metabolism, sclerotisation and melanisation inDrosophila melanogaster. Adv Genet.,24:127–221
    Wu Y and Shen DJ (1996). Character of Fenvalerate resistance in Helicoverpa arraigera (Hubner) fromChina. Resistant Pest Manag. Newsl.,8:25–27.
    Yu SJ (1986). Molecular Aspects of Insect–Plant Association, Brattsten, L. B.&Ahmad, S. eds.; Plenum:New York, USA, pp.153.
    Yu SJ and Nguyen SN (1992). Detection and biochemical characterization of insecticide resistance in thediamond back moth. Pestic. Biochem. Physiol.,44:74–81.
    Zar JH (1996). Biostatistical Analysis. Prentice Hall, New Jersey, USA.
    Zhang YL, Zhou Y, Zhang ZY (2003). Effect of cantharidin on the midgut of orient armyworm(Methimna seperata) and diamond moth Plutella xylostella. Acta Entomol. Sin.,46:272–276.
    Zheng SL, Zhang YL, An FX, Zhang X (2007). The synergism of cantharidin with some insecticides.Acta Phytophylacica Sinica.,34:83–86.
    Zibaee A, Jalali SJ, Alinia F, Ghadamyari M (2008). Diazinon resistance in different selected strains ofChilo suppressalis Walker (Lepidoptera: Pyralidae), rice striped stem borer, in the north of Iran. J.Econ. Entomol.,102:1189–1196.
    Zlotkin E (2001). Insecticides affecting voltage-gated ion channel. In: Biochemical Sites of InsecticideAction and Resistance.(Ed. I. Ishaaya), Springer-Verlag, Berlin, Heidelberg, pp.43-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700