大豆抗逆相关miR169c及其靶位点GmNFYA3和miR394a的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国主要的油料经济作物,由于我国大豆产量及含油量低、易受干旱和盐碱等非生物胁迫影响等特点,我国每年需要进口六千万吨以上才能满足需求。因此培育高产、优质、抗逆大豆新品种是我国大豆产业亟待解决的重大问题。研究表明,植物miRNA在应答非生物胁迫中具有重要的作用。因此,大豆抗逆miRNA的功能研究对阐明其抗逆机理及其调控网络、培育高产、优质、抗逆大豆新品种具有较高的科学意义及应用价值。本研究分析了大豆gma-miR169c基因及其靶位点GmNFYA3和gma-miR394a基因在干旱胁迫中的生物学功能,旨在解释大豆抗旱抗逆机理及其调控网络,为大豆的抗逆研究及新品种培育提理论基础。
     1、本研究克隆了一个大豆gma-miR169c基因的GmNFYA3靶位点,它编码NF-Y复合物中的NF-YA亚基。Real time RT-PCR分析表明GmNFYA3受脱落酸(ABA)和非生物胁迫,如PEG,NaCl和冷诱导。亚细胞定位分析表明GmNFYA3可能在细胞核中激活它特异的靶位点。GUS组织化学染色分析表明在转基因拟南芥的不同组织中GmNFYA3启动子驱动的GUS基因均有表达。烟草共注射和5' RACE实验表明miR169在体内直接切割GmNFYA3mRNA。在拟南芥中,过表达GmNFYA3减少叶片水分丧失且增强转基因拟南芥的干旱忍耐能力。另外,转基因拟南芥表现出增加对高盐和外源ABA的敏感性。而且,在正常条件下,相比野生型对照,过表达GmNFYA3株系中ABA代谢(ABA1,ABA2),ABA信号(ABI1,ABI2)和胁迫应答基因包括RD29A和CBF3的转录水平显著提高。这些结果表明,GmNFYA3靶位点是一个干旱胁迫忍耐的正调控子。
     2、本研究分析了大豆gma-MIR394a基因的功能,特别是它在干旱胁迫忍耐中的作用。表达模式分析表明在大豆各种组织中gma-MIR394a的表达不同且在叶片中gma-MIR394a的表达受干旱、高盐、低温和ABA处理诱导。预测了一个gma-MIR394a靶mRNAGlyma08g11030,并通过修饰的5' RLM-RACE实验进行了验证。过表达gma-MIR394a减少叶片水分丧失且增强转基因拟南芥的干旱忍耐能力。而且,在拟南芥中过表达gma-MIR394a减少一个包含miR394a互补位点的拟南芥F-box基因(At1g27340)的转录水平。这些结果表明,gma-MIR394a基因在干旱胁迫忍耐中具有正调控功能。
Soybean (Glycine max L. Merr.) is China's leading economic oilseed crop. Due to the low yieldand oil content of soybean in China, and soybean is vulnerable affected by a wide range of abioticstresses, such as drought and salinity, China's annual needs more than sixty million tons of soybeanimport to meet demand. Therefore, breeding for high yielding, high quality, stress tolerance soybeanvariety is needed to solve major problems in China's soybean industry. Recent evidence indicates thatplant microRNAs have an important function in adaptive responses to abiotic stresses. Thus, toelucidate the molecular adaptation mechanisms of stress and stress regulatory networks, breeding forhigh yielding, high quality, stress tolerance soybean variety, functional studies of stress-responsivemiRNA in soybean has high scientific significance and application value. In this paper, we described indetail the biological functions of soybean gma-miR169c and its target gene GmNFYA3, andgma-miR394a in drought stresses. This research will explain the mechanism and regulation network ofsoybean drought tolerance, provides the theoretical basis for soybean stress tolerance research andcultivation of new varieties. The main results were listed as follows:
     1. In this study, we identified and characterized a gene, GmNFYA3, which encodes the NF-YAsubunit of the NF-Y complex in soybeans. Real time RT-PCR analysis indicated that GmNFYA3wasinduced by abscisic acid (ABA) and abiotic stresses, such as PEG, and cold. Subcellular localizationanalysis suggested that GmNFYA3may activate its specific targets in the nucleus. Histochemicalβ-glucuronidase (GUS) staining revealed that the expression of the GUS gene driven by the GmNFYA3promoter occurred in various transgenic Arabidopsis tissues. Coexpression in Nicotiana benthamianaand5' RACE assays indicated that miR169directs GmNFYA3mRNA cleavage in vivo. Overexpressionof GmNFYA3resulted in Arabidopsis with reduced leaf water loss and enhanced drought tolerance. Inaddition, the transgenic Arabidopsis exhibited increased sensitivity to high salinity and exogenous ABA.Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI1, ABI2) andstress-responsive genes, including RD29A and CBF3, were generally higher in GmNFYA3plants than inwild-type controls under normal conditions. These results suggest that the GmNFYA3gene functions inpositive modulation of drought stress tolerance and has potential applications in molecular breeding toenhance drought tolerance in crops.
     2. In this study, a soybean gma-MIR394a gene was functionally characterized, especially withregard to its role in drought stress resistance. Expression analysis revealed that gma-MIR394a wasexpressed differentially in various soybean tissues and was induced by drought, high salinity, lowtemperature stress, and abscisic acid treatment in leaves. One target gene of gma-miR394a,Glyma08g11030, was predicted and verified using a modified5' RLM-RACE (RNA ligase-mediatedrapid amplification of5' cDNA ends) assay. Overexpression of gma-MIR394a resulted in plants withlowered leaf water loss and enhanced drought tolerance. Furthermore, overexpression of gma-MIR394a in Arabidopsis reduced the transcript of an F-box gene (At1g27340) containing a miR394complementary target site. These results suggest that the gma-MIR394a gene functions in positivemodulation of drought stress tolerance and has potential applications in molecular breeding to enhancedrought tolerance in crops.
引文
1. Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper proteinexpression in response to low copper availability in Arabidopsis. J Biol Chem,2008,283(23):15932-15945.
    2. Achard P, Herr A, Baulcombe DC, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development,2004,131(14):3357-3365.
    3. Agarwal S, Grover A. Molecular biology, biotechnology and genomics of flooding-associated lowO2stress response in plants. Crit Rev Plant Sci,2006,25(1):1-21.
    4. Allen E, Xie Z, Gustafson AM, et al. microRNA-directed phasing during trans-acting siRNAbiogenesis in plants. Cell,2005,121(2):207-221.
    5. Arenas-Huertero C, Perez B, Rabanal F, et al. Conserved and novel miRNAs in the legumePhaseolus vulgaris in response to stress. Plant Mol Biol,2009,70(4):385-401.
    6. Aung K, Lin SI, Wu CC, et al. pho2, a phosphate overaccumulator, is caused by a nonsensemutation in a microRNA399target gene. Plant Physiol,2006,141(3):1000-1011.
    7. Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell,2005,17(6):1658-1673.
    8. Bailey-Serres J, Voesenek LA. Flooding stress: acclimations and genetic diversity. Annu Rev PlantBiol,2008,59:313-339.
    9. Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAsare required for methylation of the template chromosome. Dev Cell,2004,7(5):653-662.
    10. Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1define a phosphate-signalingpathway in plants. Plant Physiol,2006,141(3):988-999.
    11. Baulcombe D. RNA silencing in plants. Nature,2004,431(7006):356-363.
    12. Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1is an RNA Slicer that selectivelyrecruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A,2005,102(33):11928-11933.
    13. Bazzini AA, Hopp HE, Beachy RN, et al. Infection and coaccumulation of tobacco mosaic virusproteins alter microRNA levels, correlating with symptom and plant development. Proc Natl AcadSci U S A,2007,104(29):12157-12162.
    14. Ben Amor B, Wirth S, Merchan F, et al. Novel long non-protein coding RNAs involved inArabidopsis differentiation and stress responses. Genome Res,2009,19(1):57-69.
    15. Ben-Naim O, Eshed R, Parnis A, et al. The CCAAT binding factor can mediate interactionsbetween CONSTANS-like proteins and DNA. Plant J,2006,46(3):462-476.
    16. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiationstep of RNA interference. Nature,2001,409(6818):363-366.
    17. Bonnet E, Wuyts J, Rouze P, et al. Detection of91potential conserved plant microRNAs inArabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A,2004,101(31):11511-11516.
    18. Borsani O, Zhu J, Verslues PE, et al. Endogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123(7):1279-1291.
    19. Boualem A, Laporte P, Jovanovic M, et al. MicroRNA166controls root and nodule development inMedicago truncatula. Plant J,2008,54(5):876-887.
    20. Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stress responses, and systemicmobility. BMC Plant Biol,2010,10:64.
    21. Buhtz A, Springer F, Chappell L, et al. Identification and characterization of small RNAs from thephloem of Brassica napus. Plant J,2008,53(5):739-749.
    22. Cao S, Kumimoto RW, Siriwardana CL, et al. Identification and characterization of NF-Ytranscription factor families in the monocot model plant Brachypodium distachyon. PLoS ONE,2011,6(6):e21805.
    23. Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways.Nat Rev Genet,2007,8(11):884-896.
    24. Chen NZ, Zhang XQ, Wei PC, et al. AtHAP3b plays a crucial role in the regulation of floweringtime in Arabidopsis during osmotic stress. J Biochem Mol Biol,2007,40(6):1083-1089
    25. Chen R, Hu Z, Zhang H. Identification of microRNAs in wild soybean (Glycine soja). J IntegrPlant Biol,2009,51(12):1071-1079.
    26. Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol,2009,25:21-44.
    27. Chiou TJ. The role of microRNAs in sensing nutrient stress. Plant Cell Environ,2007,30(3):323-332.
    28. Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by MicroRNA inArabidopsis. Plant Cell,2006,18(2):412-421.
    29. Clarke JM, Romagosa I, Jana S, et al. Relationship of excised-leaf water loss rate and yield ofdurum wheat in diverse environments. Can J Plant Sci,1989,69:1075–1081
    30. Combier JP, Frugier F, de Billy F, et al. MtHAP2-1is a key transcriptional regulator of symbioticnodule development regulated by microRNA169in Medicago truncatula. Genes Dev,2006,20(22):3084-3088.
    31. de Carvalho F, Gheysen G, Kushnir S, et al. Suppression of beta-1,3-glucanase transgeneexpression in homozygous plants. EMBO J,1992,11(7):2595-2602
    32. Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress inmaize roots. Ann Bot,2009,103(1):29-38.
    33. Ding YF, Zhu C. The role of microRNAs in copper and cadmium homeostasis. Biochem BiophysRes Commun,2009,386(1):6-10.
    34. Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell,2002,14Suppl (suppl1):S15-45.
    35. Franco-Zorrilla JM, Gonzalez E, Bustos R, et al. The transcriptional control of plant responses tophosphate limitation. J Exp Bot,2004,55(396):285-293.
    36. Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism forregulation of microRNA activity. Nat Genet,2007,39(8):1033-1037.
    37. Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response inArabidopsis. Curr Biol,2005,15(22):2038-2043.
    38. Furini A, Koncz C, Salamini F, et al. High level transcription of a member of a repeated genefamily confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J,1997,16(12):3599-3608.
    39. Gao T, Wu Y, Zhang Y, et al. OsSDIR1overexpression greatly improves drought tolerance intransgenic rice. Plant Mol Biol,2011,76(1-2):145-156.
    40. Ge Y, Li Y, Zhu YM, et al. Global transcriptome profiling of wild soybean (Glycine soja) rootsunder NaHCO3treatment. BMC Plant Biol,2010,10:153.
    41. Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmentalplasticity. Proc Natl Acad Sci U S A,2008,105(2):803-808.
    42. Gusmaroli G, Tonelli C, Mantovani R. Regulation of novel members of the Arabidopsis thalianaCCAAT-binding nuclear factor Y subunits. Gene,2002,283(1-2):41-48
    43. Hamilton AJ. A species of small antisense RNA in posttranscriptional gene silencing in plants.Science,1999,286(5441):950-952.
    44. Hannon GJ. RNA interference. Nature,2002,418(6894):244-251.
    45. He XF, Fang YY, Feng L, et al. Characterization of conserved and novel microRNAs and theirtargets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica.FEBS Lett,2008,582(16):2445-2452.
    46. Hewezi T, Howe P, Maier TR, et al. Arabidopsis small RNAs and their targets during cystnematode parasitism. Mol Plant Microbe In,2008,21(12):1622-1634.
    47. Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database:
    1999. Nucleic Acids Res,1999,27(1):297-300
    48. Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factorenhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A,2006,103(35):12987-12992.
    49. Hu Z, Jiang Q, Ni Z, et al. Analyses of a Glycine max degradome library identify microRNAtargets and microRNAs that trigger secondary SiRNA biogenesis. J Integr Plant Biol,2013,55(2):160-176.
    50. Huang SQ, Peng J, Qiu CX, et al. Heavy metal-regulated new microRNAs from rice. J InorgBiochem,2009,103(2):282-287.
    51. Huang SQ, Xiang AL, Che LL, et al. A set of miRNAs from Brassica napus in response tosulphate deficiency and cadmium stress. Plant Biotechnol J,2010,8(8):887-899.
    52. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol CellBiol,2008,9(1):22-32.
    53. Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcriptionfactors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol,2006,47(1):141-153.
    54. Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398expression inArabidopsis. Planta,2009,229(4):1009-1014.
    55. Jefferson R, Kavanagh T, Bevan M. GUS fusions:B-glucuronidase as a sensitive and versatile genefusion marker in higher plants. EMBO J,1987,6(13):3901-3907
    56. Jia X, Ren L, Chen QJ, et al. UV-B-responsive microRNAs in Populus tremula. J Plant Physiol,2009a,166(18):2046-2057.
    57. Jia X, Wang WX, Ren L, et al. Differential and dynamic regulation of miR398in response to ABAand salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol,2009b,71(1-2):51-59.
    58. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets,including a stress-induced miRNA. Mol Cell,2004,14(6):787-799.
    59. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. AnnuRev Plant Biol,2006,57:19-53.
    60. Joshi T, Yan Z, Libault M, et al. Prediction of novel miRNAs and associated target genes inGlycine max. BMC Bioinformatics,2010,11Suppl1:S14.
    61. Jung HJ, Kang H. Expression and functional analyses of microRNA417in Arabidopsis thalianaunder stress conditions. Plant Physiol Biochem,2007,45(10-11):805-811.
    62. Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins that mediatestress-responsive abscisic acid signaling. Plant Cell,2002,14(2):343-357.
    63. Kantar M, Lucas SJ, Budak H. miRNA expression patterns of Triticum dicoccoides in response toshock drought stress. Planta,2011,233(3):471-484.
    64. Kasschau KD, Xie ZX, Allen E, et al. P1/HC-Pro, a viral suppressor of RNA silencing, interfereswith Arabidopsis development and miRNA function. Dev Cell,2003,4(2):205-217.
    65. Katiyar-Agarwal S, Gao S, Vivian-Smith A, et al. A novel class of bacteria-induced small RNAs inArabidopsis. Genes Dev,2007,21(23):3123-3134.
    66. Katiyar-Agarwal S, Jin H. Role of small RNAs in host-microbe interactions. Annu RevPhytopathol,2010,48:225-246.
    67. Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA inplant immunity. Proc Natl Acad Sci U S A,2006,103(47):18002-18007.
    68. Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression bymicroRNAs. Cell,2010,140(1):111-122.
    69. Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses ofplants. Biochim Biophys Acta,2012,1819(2):137-148.
    70. Kim VN. MicroRNA precursors in motion: exportin-5mediates their nuclear export. Trends CellBiol,2004,14(4):156-159.
    71. Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2gene, XERICO, confersdrought tolerance through increased abscisic acid biosynthesis. Plant J,2006,47(3):343-355.
    72. Kong WW, Yang ZM. Identification of iron-deficiency responsive microRNA genes andcis-elements in Arabidopsis. Plant Physiol Biochem,2010,48(2-3):153-159.
    73. Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, et al. The use of microRNAs asreference genes for quantitative polymerase chain reaction in soybean. Anal Biochem,2010,406(2):185-192.
    74. Léon-Kloosterziel KM, Gil MA, Ruijs GJ, et al. Isolation and characterization of abscisicacid-deficient Arabidopsis mutants at two new loci. Plant J,1996,10(4):655-661.
    75. Lanet E, Delannoy E, Sormani R, et al. Biochemical evidence for translational repression byArabidopsis microRNAs. Plant Cell,2009,21(6):1762-1768.
    76. Lappartient AG, Vidmar JJ, Leustek T, et al. Inter-organ signaling in plants: regulation of ATPsulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocatedcompound. Plant J,1999,18(1):89-95
    77. Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in humancells. Science,2005,308(5721):557-560.
    78. Lechner E, Achard P, Vansiri A, et al. F-box proteins everywhere. Curr Opin Plant Biol,2006,9(6):631-638.
    79. Lee H, Fischer RL, Goldberg RB, et al. Arabidopsis leafy cotyledon1represents a functionallyspecialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci U S A,2003,100(4):2152-2156.
    80. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAswith antisense complementarity to lin-14. Cell,1993,75(5):843-854.
    81. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J,2004,23(20):4051-4060.
    82. Li H, Deng Y, Wu T, et al. Misexpression of miR482, miR1512, and miR1515increases soybeannodulation. Plant Physiol,2010,153(4):1759-1770.
    83. Li H, Dong Y, Yin H, et al. Characterization of the stress associated microRNAs in Glycine max bydeep sequencing. BMC Plant Biol,2011,11:170.
    84. Li H, Sun J, Xu Y, et al. The bHLH-type transcription factor AtAIB positively regulates ABAresponse in Arabidopsis. Plant Mol Biol,2007,65(5):655-665.
    85. Li WX, Oono Y, Zhu J, et al. The Arabidopsis NFYA5transcription factor is regulatedtranscriptionally and posttranscriptionally to promote drought resistance. Plant Cell,2008,20(8):2238-2251.
    86. Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cystnematode infection by deep sequencing. PLoS ONE,2012,7(6):e39650.
    87. Liang M, Hole D, Wu J, et al. Expression and functional analysis of NUCLEAR FACTOR-Y,subunit B genes in barley. Planta,2012,235(4):779-791.
    88. Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs inArabidopsis thaliana. RNA,2008,14(5):836-843.
    89. Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10bymicroRNA160is critical for seed germination and post-germination stages. Plant J,2007,52(1):133-146.
    90. Liu Q, Zhang YC, Wang CY, et al. Expression analysis of phytohormone-regulated microRNAs inrice, implying their regulation roles in plant hormone signaling. FEBS Lett,2009,583(4):723-728.
    91. Liu YX, Chang W, Han YP, et al. In silico detection of novel microRNAs genes in soybeangenome. Agr Sci China,2011,10(9):1336-1345.
    92. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCR and the2(-Delta Delta C(T)) Method. Methods,2001,25(4):402-408.
    93. Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a classof Arabidopsis miRNA. Science,2002,297(5589):2053-2056.
    94. Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1gene encoding a dsRNA binding proteinaffects responses to abscisic acid, auxin, and cytokinin. Plant Cell,2000,12(12):2351-2366
    95. Lu S, Sun YH, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and theirassociation with fusiform rust gall development. Plant J,2007,51(6):1077-1098.
    96. Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J,2008,55(1):131-151.
    97. Lu S, Sun YH, Shi R, et al. Novel and mechanical stress-responsive MicroRNAs in Populustrichocarpa that are absent from Arabidopsis. Plant Cell,2005,17(8):2186-2203.
    98. Lv D, Ge Y, Jia B, et al. miR167c is induced by high alkaline stress and inhibits two auxinresponse factors in Glycine soja. J Plant Biol,2012,55(5):373-380.
    99. Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression of earlyauxin response genes. Plant Cell,2005,17(5):1360-1375.
    100. Mantovani R.The molecular biology of the CCAAT-binding factor NF-Y. Gene,1999,239(1):15-27
    101. Merlot S, Gosti F, Guerrier D, et al. The ABI1and ABI2protein phosphatases2C act in a negativefeedback regulatory loop of the abscisic acid signalling pathway. Plant J,2001,25(3):295-303
    102. Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17(3):705-721.
    103. Mishra AK, Agarwal S, Jain CK, et al. High GC content: critical parameter for predicting stressregulated miRNAs in Arabidopsis thaliana. Bioinformation,2009,4(4):151-154
    104. Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends PlantSci,2004,9(10):490-498.
    105. Moldovan D, Spriggs A, Yang J, et al. Hypoxia-responsive microRNAs and trans-acting smallinterfering RNAs in Arabidopsis. J Exp Bot,2010,61(1):165-177.
    106. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol,2008,59:651-681.
    107. Najafabadi MS. Improving rice (Oryza sativa L.) drought tolerance by suppressing a NF-YAtranscription factor. Iranian J Biotechnol,2012,10(1):40-48
    108. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petuniaresults in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2(4):279-289.
    109. Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance byrepressing auxin signaling. Science,2006,312(5772):436-439.
    110. Navarro L, Jay F, Nomura K, et al. Suppression of the microRNA pathway by bacterial effectorproteins. Science,2008,321(5891):964-967.
    111. Nelson DE, Repetti PP, Adams TR, et al. Plant nuclear factor Y (NF-Y) B subunits confer droughttolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A,2007,104(42):16450-16455.
    112. Oh SJ, Song SI, Kim YS, et al. Arabidopsis CBF3/DREB1A and ABF3in transgenic rice increasedtolerance to abiotic stress without stunting growth. Plant Physiol,2005,138(1):341-351.
    113. Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003,425(6955):257-263.
    114. Pant BD, Buhtz A, Kehr J, et al. MicroRNA399is a long-distance signal for the regulation of plantphosphate homeostasis. Plant J,2008,53(5):731-738.
    115. Pant BD, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis andrapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and smallRNA sequencing. Plant Physiol,2009,150(3):1541-1555.
    116. Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs inArabidopsis. Proc Natl Acad Sci U S A,2005,102(10):3691-3696.
    117. Quinn JM, Merchant S. Two copper-responsive elements associated with the ChlamydomonasCyc6gene function as targets for transcriptional activators. Plant Cell,1995,7(5):623-628.
    118. Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev,2002,16(13):1616-1626.
    119. Reyes JL, Chua NH. ABA induction of miR159controls transcript levels of two MYB factorsduring Arabidopsis seed germination. Plant J,2007,49(4):592-606.
    120. Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphatestarvation signaling both in vascular plants and in unicellular algae. Genes Dev,2001,15(16):2122-2133.
    121. Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev PlantBiol,2009,60:485-510.
    122. Schramke V, Allshire R. Those interfering little RNAs! Silencing and eliminating chromatin. CurrOpin Genet Dev,2004,14(2):174-180.
    123. Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome.Dev Cell,2005,8(4):517-527.
    124. Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genesunder drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J,2002,31(3):279-292.
    125. Sha A, Chen Y, Ba H, et al. Identification of Glycine max MicroRNAs in response to phosphorusdeficiency. J Plant Biol,2012,55(4):268-280.
    126. Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific andtissue-specific miRNA targets by degradome sequencing. BMC Genomics,2012,13:310.
    127. Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs inplant stress responses. Biochim Biophys Acta,2008,1779(11):743-748.
    128. Song JB, Huang SQ, Dalmay T, et al. Regulation of leaf morphology by microRNA394and itstarget leaf curling responsiveness. Plant Cell Physiol,2012,53(7):1283-1294.
    129. Song QX, Liu YF, Hu XY, et al. Identification of miRNAs and their target genes in developingsoybean seeds by deep sequencing. BMC Plant Biol,2011,11:5.
    130. Stephenson TJ, McIntyre CL, Collet C, et al. Genome-wide identification and expression analysisof the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol,2007,65(1-2):77-92.
    131. Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybeanroots. BMC Genomics,2008,9:160.
    132. Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responsesand nutrient deprivation. Trends Plant Sci,2007,12(7):301-309.
    133. Sunkar R, Girke T, Jain PK, et al. Cloning and characterization of microRNAs from rice. Plant Cell,2005,17(5):1397-1411.
    134. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutasegenes in Arabidopsis is mediated by downregulation of miR398and important for oxidative stresstolerance. Plant Cell,2006,18(8):2051-2065.
    135. Sunkar R, Zhou X, Zheng Y, et al. Identification of novel and candidate miRNAs in rice by highthroughput sequencing. BMC Plant Biol,2008,8:25.
    136. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis. Plant Cell,2004,16(8):2001-2019.
    137. Takahashi H, Yamazaki M, Sasakura N, et al. Regulation of sulfur assimilation in higher plants: asulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana.Proc Natl Acad Sci U S A,1997,94(20):11102-11107
    138. Thao NP, Tran LS. Potentials toward genetic engineering of drought-tolerant soybean. Crit RevBiotechnol,2012,32(4):349-362.
    139. Thirumurugan T, Ito Y, Kubo T, et al. Identification, characterization and interaction of HAPfamily genes in rice. Mol Genet Genomics,2008,279(3):279-289.
    140. Tian AG, Wang J, Cui P, et al. Characterization of soybean genomic features by analysis of itsexpressed sequence tags. Theor Appl Genet,2004,108(5):903-913.
    141. Trindade I, Capitao C, Dalmay T, et al. miR398and miR408are up-regulated in response to waterdeficit in Medicago truncatula. Planta,2010,231(3):705-716.
    142. Turner M, Yu O, Subramanian S. Genome organization and characteristics of soybean microRNAs.BMC Genomics,2012,13:169.
    143. Vaucheret H, Vazquez F, Crete P, et al. The action of ARGONAUTE1in the miRNA pathway andits regulation by the miRNA pathway are crucial for plant development. Genes Dev,2004,18(10):1187-1197.
    144. Vazquez F, Legrand S, Windels D. The biosynthetic pathways and biological scopes of plant smallRNAs. Trends Plant Sci,2010,15(6):337-345.
    145. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Curr Opin Biotechnol,2005,16(2):123-132.
    146. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell,2009,136(4):669-687.
    147. Wang JW, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes andCYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell,2008,20(5):1231-1243.
    148. Wang JW, Wang LJ, Mao YB, et al. Control of root cap formation by MicroRNA-targeted auxinresponse factors in Arabidopsis. Plant Cell,2005,17(8):2204-2216.
    149. Wang Y, Li P, Cao X, et al. Identification and expression analysis of miRNAs from nitrogen-fixingsoybean nodules. Biochem Biophys Res Commun,2009,378(4):799-803.
    150. Wei L, Zhang D, Xiang F, et al. Differentially expressed miRNAs potentially involved in theregulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci,2009,170(8):979-989.
    151. Werner JE, Finkelstein RR. Arabidopsis mutants with reduced response to Nacl and osmotic-stress.Physiol Plant,1995,93(4):659-666.
    152. Williams L, Grigg SP, Xie M, et al. Regulation of Arabidopsis shoot apical meristem and lateralorgan formation by microRNA miR166g and its AtHD-ZIP target genes. Development,2005,132(16):3657-3668.
    153. Wong CE, Zhao YT, Wang XJ, et al. MicroRNAs in the shoot apical meristem of soybean. J ExpBot,2011,62(8):2495-2506.
    154. Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156and its target SPL3. Development,2006,133(18):3539-3547.
    155. Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Mol Cell,2010,38(3):465-475.
    156. Xie FL, Huang SQ, Guo K, et al.Computational identification of novel microRNAs and targets inBrassica napus. FEBS Lett,2007,581(7):1464-1474.
    157. Xin M, Wang Y, Yao Y, et al. Diverse set of microRNAs are responsive to powdery mildewinfection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol,2010,10:123.
    158. Xu F, Liu Q, Chen L, et al. Genome-wide identification of soybean microRNAs and their targetsreveals their organ-specificity and responses to phosphate starvation. BMC Genomics,2013,14(1):66.
    159. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene isinvolved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6(2):251-264
    160. Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci,2005,10(2):88-94.
    161. Yamasaki H, Abdel-Ghany SE, Cohu CM, et al. Regulation of copper homeostasis by micro-RNAin Arabidopsis. J Biol Chem,2007,282(22):16369-16378.
    162. Yan YS, Chen XY, Yang K, et al. Overexpression of an F-box protein gene reduces abiotic stresstolerance and promotes root growth in rice. Mol Plant,2011,4(1):190-197.
    163. Yang F, Liang G, Liu D, et al. Arabidopsis miR396mediates the development of leaves and flowersin transgenic tobacco. J Plant Biol,2009,52(5):475-481.
    164. Yang Z, Ebright YW, Yu B, et al. HEN1recognizes21-24nt small RNA duplexes and deposits amethyl group onto the2' OH of the3' terminal nucleotide. Nucleic Acids Res,2006,34(2):667-675.
    165. Yao Y, Ni Z, Peng H, et al. Non-coding small RNAs responsive to abiotic stress in wheat (Triticumaestivum L.). Funct Integr Genomics,2010,10(2):187-190.
    166. Yin X, Wang J, Cheng H, et al. Detection and evolutionary analysis of soybean miRNAsresponsive to soybean mosaic virus. Planta,2013,237(5):1213-1225
    167. Yoo CY, Pence HE, Jin JB, et al. The Arabidopsis GTL1transcription factor regulates water useefficiency and drought tolerance by modulating stomatal density via transrepression of SDD1.Plant Cell,2010,22(12):4128-4141.
    168. Zabala G, Campos E, Varala KK, et al. Divergent patterns of endogenous small RNA populationsfrom seed and vegetative tissues of Glycine max. BMC Plant Biol,2012,12:177.
    169. Zeng HQ, Zhu YY, Huang SQ, et al. Analysis of phosphorus-deficient responsive miRNAs andcis-elements from soybean (Glycine max L.). J Plant Physiol,2010,167(15):1289-1297.
    170. Zeng QY, Yang CY, Ma QB, et al. Identification of wild soybean miRNAs and their target genesresponsive to aluminum stress. BMC Plant Biol,2012,12:182.
    171. Zhang B, Pan X, Stellwag EJ. Identification of soybean microRNAs and their targets. Planta,2008a,229(1):161-182.
    172. Zhang J, Xu Y, Huan Q, et al. Deep sequencing of Brachypodium small RNAs at the globalgenome level identifies microRNAs involved in cold stress response. BMC Genomics,2009,10:449.
    173. Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169confers enhanced droughttolerance to tomato. Biotechnol Lett,2011,33(2):403-409.
    174. Zhang Y, Xu W, Li Z, et al. F-Box protein DOR functions as a novel inhibitory factor for abscisicacid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol,2008b,148(4):2121-2133.
    175. Zhang Y, Yang C, Li Y, et al. SDIR1is a RING finger E3ligase that positively regulatesstress-responsive abscisic acid signaling in Arabidopsis. Plant Cell,2007,19(6):1912-1929.
    176. Zhang Z, Wei L, Zou X, et al. Submergence-responsive MicroRNAs are potentially involved in theregulation of morphological and metabolic adaptations in maize root cells. Ann Bot,2008c,102(4):509-519.
    177. Zhao B, Ge L, Liang R, et al. Members of miR-169family are induced by high salinity andtransiently inhibit the NF-YA transcription factor. BMC Mol Biol,2009,10:29.
    178. Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. BiochemBiophys Res Commun,2007,354(2):585-590.
    179. Zhou L, Liu Y, Liu Z, et al. Genome-wide identification and analysis of drought-responsivemicroRNAs in Oryza sativa. J Exp Bot,2010,61(15):4157-4168.
    180. Zhou X, Sunkar R, Jin H, et al. Genome-wide identification and analysis of small RNAs originatedfrom natural antisense transcripts in Oryza sativa. Genome Res,2009,19(1):70-78.
    181. Zhou X, Wang G, Sutoh K, et al. Identification of cold-inducible microRNAs in plants bytranscriptome analysis. Biochim Biophys Acta,2008a,1779(11):780-788.
    182. Zhou X, Wang G, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol SystBiol,2007,3:103.
    183. Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identification and expression analysis of newmicroRNAs from Medicago truncatula. Biochem Biophys Res Commun,2008b,374(3):538-542.
    184. Zhu JK. Genetic analysis of plant salt tolerance using arabidopsis. Plant Physiol,2000,124(3):941-948
    185. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700