干旱与低温胁迫下木薯基因表达谱分析及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯(Manihot esculenta Crantz),大戟科木薯属,是典型的热带、亚热带地区经济作物,是人类和动物的重要食物来源之一,也是工业上生产淀粉和燃料乙醇的重要原材料。在我国,木薯的主要种植区分布在热带北缘及亚热带地区,干旱和低温成为影响木薯生长发育和地理分布的主要环境胁迫因子,因此研究木薯抗旱耐寒机制具有重要的生物学及经济意义。植物的抗旱、耐寒能力不是因为单个基因或少数基因的作用,而是由复杂的基因网络协调作用的结果。本研究在转录组水平上,通过高通量数字基因表达谱测序技术分别获得木薯SC124在干旱和低温胁迫下的转录本数据,并通过系统生物学方法、利用生理生化及分子生物学分析手段,深入地探究了木薯抗旱耐寒相关基因复杂的协调作用机制。本文的主要研究结果如下:
     (1)分别对木薯SC124驯化后旱害处理样品及对照和驯化后寒害处理样品及对照进行数字基因表达谱测序,所得每个样品文库共产生约3.7×106个Tag数,其中丰度大于100的Tag分别约占Tag总数的1.25%和2%,丰度51-100的Tag约占Tag总数的1.5%和2%,丰度21-50的Tag约占Tag总数的3%和3.5%,丰度11-20的Tag约占Tag总数的3.25%和4%,丰度6-10的Tag约占Tag总数的5.25%和6%,丰度2-5的Tag约占Tag总数的24.25%和24.25%,拷贝数小于2的Tag约占Tag总数的60.5%和54.2%。
     (2)本研究最终得到木薯SC124成熟功能叶在驯化后旱害第4天、第6天和第10天共2235个差异表达基因,其中上调表达的差异基因占差异表达基因总数的59.8%,在第4、第6和第10天特异上调表达的基因分别为518、221和322个,下调表达的差异基因占差异表达基因总数的40.2%,在第4、第6和第10天特异下调表达的基因分别为262、113和183个;得到木薯SC124心叶在驯化后寒害第6小时、第24小时和第48小时共3266个差异表达基因,其中上调表达的差异基因占差异表达基因总数的54.5%,在第6、第24和第48小时特异上调表达的基因分别为521、128和473个,下调表达的差异基因占差异表达基因总数的45.5%,在第6、第24和第48小时特异下调表达的基因分别为305、88和382个。
     (3)差异表达基因GO功能分析得到,"response to stimulus"、"metabolic process"、"transcription regulator"、"antioxidant"、和"organelle"等与干旱、低温胁迫紧密相关的生物学途径、分子功能、细胞组成等都有明显的响应变化。其中在于旱胁迫下具有"cell killing"、"metallochaperone"、"protein tag"功能的差异基因完全上调表达;在低温胁迫下具有"virion"功能的差异基因完全上调表达,与干旱胁迫后差异基因的表达结果有很大差异的是低温胁迫下具"cell killing"、"protein tag"功能的差异基因完全下调表达。
     (4)差异表达基因代谢路径分析得到,干旱、低温胁迫显著影响的代谢通路包括光合作用、呼吸作用、二级代谢、三羧酸循环、细胞壁代谢、氨基酸代谢、脂类代谢和淀粉代谢等;此外旱、寒胁迫还显著影响植物的调控通路如植物激素代谢、氧化还原相关代谢、转录因子、蛋白代谢、钙调节及激酶代谢等。
     (5)植物抗旱耐寒过程中的各种重要生理生化活动都与气孔的运动密切相关。本研究通过扫描电镜分别观察了非驯化和驯化后干旱胁迫下抗旱品种SC124与不抗旱品种C4成熟功能叶下表面以及非驯化和驯化后低温胁迫下耐寒品种SC124与不耐寒品种KU50心叶下表面气孔的开闭状态。结果表明,旱、寒胁迫显著影响了木薯的气孔运动;旱、寒胁迫时抗旱耐寒品种SC124迅速关闭气孔,有效地减少了水分的损失,待植株逐渐适应外界胁迫环境时,气孔又逐渐打开,从而保证了植株正常基础代谢活动的进行;并且驯化后的抗性植株当再次受到逆境胁迫时能更加快速地响应且能更快地适应外界环境。
     (6)基于对旱、寒胁迫下调控通路中激素代谢的分析以及植物激素对气孔运动的重要调节作用,本研究利用酶联免疫吸附法测定了非驯化和驯化后干旱胁迫下抗旱品种SC124与不抗旱品种C4成熟功能叶以及非驯化和驯化后低温胁迫下耐寒品种SC124与不耐寒品种KU50心叶内四种常见激素ABA、IAA、GA和ZR的含量变化。结果表明,旱、寒害胁迫下抗性品种SC124叶内的激素总体趋势为ABA含量上升,而IAA、GA和ZR含量下降;经旱、寒驯化后的SC124植株抗性增强,激素调节幅度普遍提高。
     (7)渗透调节是植物抗旱、耐寒的重要手段之一,细胞内可溶性糖(主要包括葡萄糖、果糖和蔗糖)含量的变化是反应植株抗旱、耐寒性的有效指标之一。本研究通过高效液相色谱法测定了非驯化和驯化后干旱胁迫下抗旱品种SC124与不抗旱品种C4成熟功能叶以及非驯化和驯化后低温胁迫下耐寒品种SC124与不耐寒品种KU50心叶内葡萄糖、果糖和蔗糖的含量变化。结果表明,干旱胁迫可提高抗旱品种SC124成熟功能叶内葡萄糖、果糖及早期蔗糖含量,且前期干旱驯化可增加可溶性糖的积累,不抗旱品种C4中可溶性糖积累不明显;低温胁迫也能有效提高木薯心叶内葡萄糖、果糖、蔗糖含量,且前期低温驯化增加了可溶性糖的积累,提高了植株的耐寒性。
     (8)基于对旱、寒胁迫下木薯重要代谢通路和调控通路的分析,本研究利用实时荧光定量PCR方法,分别鉴定了多个与木薯细胞壁代谢、蛋白代谢、二级代谢、胁迫响应及转录调节相关的基因表达模式,从而进一步解释了木薯抗旱、耐寒的分子机理。
     (9)分析驯化后干旱和驯化后低温胁迫下差异表达基因的启动子区上游2000bp序列,寻找差异表达基因共同的顺式作用元件,最终得到与木薯抗旱、耐寒相关的反式作用因子,如ACIPVPAL2、EMBP1TAEM、SGBFGMGMAUX28、MYB1AT、 AGCBOXNPGLB、CMSRE1IBSPOA、RBENTGA3等。其中反式作用因子如ACIIPVPAL2、AGMOTIFNTMYB2、MYCATERD1等与旱、寒胁迫响应均相关。由此可以看出,当受到干旱、低温胁迫时,植物体内不同反式作用因子可通过与胁迫诱导启动子间的相互作用,使不同胁迫诱导的抗逆基因呈网络状交互作用。
Cassava (ManihotesculentaCrantz), a typical cash crop in the tropics and subtropics, is not only one of the most important sources of energy for humans and animals, but also an important raw material for industrial production of starch and fuel ethanol. The major growing areas of cassava are located in the subtropical regions and northern margin of tropics in China, drought and low-temperature become the major abiotic stress to its growth and development as well as geographic distribution, so the research on drought and cold tolerance of cassava has an important biological and economic significance. The ability of plant drought and cold resistance is not because the role of a single gene or a few ones, but by the role of complex gene network. In this study, a digital gene expression profiling of cassava SC124subjected to drought and cold stress was conducted using high-throughput sequencing technology on the level of transcriptome. At the same time, the transcripts data was analyzed by system biology methods and the means of physiological, biochemical and molecular analysis. As a result, the complex cassava drought and cold resistance coordination mechanism was explored in depth. The main results are as follows:
     (1) The gene expression profiling of cassava SC124under the treatment of drought acclimation hurt and control, cold acclimation injury and control, was conducted in the study. In total, around3.7×106tags were obtained from each sample library. Among the gene expression profiling data, the copy number which is above100accounts for about1.25%and2%of the total tags, respectively; the copy number which is51to100accounts for about1.5%and2%of the total tags, respectively; the copy number which is21to50accounts for about3%and3.5%of the total tags, respectively; the copy number which is11to20accounts for about3.25%and4%of the total tags, respectively; the copy number which is6to10accounts for about5.25%and6%of the total tags, respectively; the copy number which is2to5accounts for about24.25%and24.25%of the total tags, respectively; the copy number which is below2accounts for about60.5%and54.2%of the total tags, respectively.
     (2) In this study,2235differentially expressed genes were identified from the gene expression profiling of SC124unfolded leaves subjected to drought acclimation hurt at the4th,6th and10th day;the up-regulated differentially expressed genes accounts for59.8%of the total differentially expressed genes, and the number of specific expressed gene is518,221,322corresponds to the4th,6th and10th day; the down-regulated differentially expressed genes accounts for40.2%of the total differentially expressed genes, and the number of specific expressed gene is262,113,183corresponds to the4th,6th and10th day.3266differentially expressed genes were identified from the gene expression profiling of SC124folded leaves subjected to cold acclimation injury at the6th,24th and48th hour; the up-regulated differentially expressed genes accounts for54.5%of the total differentially expressed genes, and the number of specific expressed gene is521,128,473corresponds to the6th,24th and48th hour; the down-regulated differentially expressed genes accounts for45.5%of the total differentially expressed genes, and the number of specific expressed gene is305,88,382corresponds to the6th,24th and48th hour.
     (3)GO functional analysis indicated that drought-stress and cold-stress related biological pathways, molecular function, cell composition, such as "response to stimulus","metabolic process","transcription regulator","antioxidant" and "organelle", have obvious response to the stress. The drought-stress related differentially expressed genes with the "cell killing","metallochaperone","protein tag" function are up-regulated completely."Virion" responses only in the up-regulated differentially expressed genes to chilling injury stress. The cold-stress related differentially expressed genes with the "cell killing","protein tag"function are down-regulated completely, unlike the result of drought stress.
     (4) Metabolic pathway analysis showed that drought stress and cold stress can significantly influence metabolic pathways including photosynthesis, respiration, secondary metabolites, citric acid cycle, cell wall metabolism, amino acid metabolism, lipid metabolism, starch metabolism and so on. In addition, drought stress and cold stress significantly affected regulatory pathways such as phytohormone metabolism, redox metabolism, transcription factors, protein metabolism, calcium regulation and kinase metabolism.
     (5) The plant important physiological and biochemical activities during drought and cold resistance process are closely related to stomatal movement. Stomatal opening and closing on the lower unfolded leaf surface of SC124(drought-resistant) and C4(not drought-resistant), also on the lower folded leaf surface of SC124(cold-resistant) and KU50(not cold-resistant), were observed by scanning electron microscopy. The results showed cassava stomatal movement was significantly affected by drought and cold stress. The drought-resistant and cold-resistant SC124closed the stomata quickly when plant felt the stress to reduce the loss of water effectively, gradually opened when the plant adapt to the environment in order that the plant can ensure the normal basal metabolic activities. The drought and cold acclimation plant can respond to stress and adapt to external environment more quickly.
     (6) The content of endogenous phytohormone (ABA, IAA, GA, ZR) in the unfolded leaves of SC124(drought-resistant) and C4(not drought-resistant), also in the folded leaves of SC124(cold-resistant) and KU50(not cold-resistant), both under acclimation and non-acclimation treatment, was determined by enzyme-linked immunosorbent assay (ELISA) based on the analysis of phytohormone metabolic pathway and the importance of hormone to regulate stomatal movement. The result showed the content of ABA in drought and cold resistant SC124unfolded leaves increased, while the content of IAA, GA, ZR decreased under drought and cold stress. Drought and cold acclimation enhanced SC124tolerance to stress, and increased the amplitude of accommodation.
     (7) Osmotic adjustment plays an important role in plant drought and cold resistance, the content of soluble sugar including glucose, fructose, sucrose and so on is an effective indicator of drought and cold resistance. The content of glucose, fructose and sucrose in the unfolded leaves of SC124(drought-resistant) and C4(not drought-resistant), also in the folded leaves of SC124(cold-resistant) and KU50(not cold-resistant), both under acclimation and non-acclimation treatment, was determined by HPLC-ELSD. The result showed that the content of glucose, fructose and sucrose (in the early stage) increased in drought and cold resistant SC124unfolded leaves under drought and cold stress, drought and cold acclimation can enhance the accumulation of glucose and fructose, the accumulation of soluble sugar in C4(not drought-resistant) was not obvious. Cold stress can also effectively improve the content of glucose, fructose and sucrose in cassava folded leaves, and cold acclimation can enhance the accumulation of soluble and cold tolerance.
     (8) Multiple of gene expression patterns related to cassava cell wall metabolism, protein metabolism, secondary metabolism, stress-responsive and important transcriptional factors were identified by real-time quantitative PCR based on the analysis of metabolic pathways and regulatory pathways under drought and cold stress, to further explain the molecular mechanism of cassava drought and cold resistance.
     (9) The2,000bp upstream sequences relative to the transcription starting site of all of the differentially expressed genes from each co-expression module under drought acclimation hurt and cold acclimation injury was analyzed to find out the common cis-acting elements. Finally, we obtained drought and cold resistance related trans-acting factors like ACIPVPAL2, EMBP1TAEM, SGBFGMGMAUX28, MYB1AT, AGCBOXNPGLB,CMSRE1IBSPOA, RBENTGA3, etc.Some transcription factors like ACIIPVPAL2. AGMOTIFNTMYB2、 MYCATERDlwere related to drought and cold resistance at the same time, which proved the cross talk between the drought-resistance and cold-resistance mechanism.
引文
[1]El-Sharkawy MA. Cassava biology and physiology [J].Plant Molecular Biology,2003, 53:621-641.
    [2]FAOSTAT. Food and Agricultural Commodities Production [EB/OL]. http://faostat.fao.org,2010.
    [3]Allem AC. The origins and taxonomy of cassava [A]. CAB International,2002.
    [4]Le'otard G, Duputie'A, Kjellberg F, Douzery EJP et al. Phylogeography and the origin of cassava:new insights from the northern rim of the Amazonian basin [J]. Molecular Phylogeneticsand Evolution,2009,53:329-334.
    [5]Olsen KM, Schaal BA. Insights on the evolution of a vegetatively propagated crop species [J]. Molecular Ecology,2007,16:2838-2840.
    [6]Cock J H. Cassava:a basic energy-source in the tropics [J]. Science,1982, 218:755-762.
    [7]张振文,李开棉,黄杰,等.我国木薯产业发展形势与策略[J].广西农业科学,2006.37(6):743-747.
    [8]Jansson C, Westerbergh A, Zhang JM, et al. Cassava, a potential biofuel crop in the People's Republic of China[J].Applied Energy,2009,86(Suppl.1):S95-S99.
    [9]Nguyen T, Gheewala SH, Garivait S. Full chain energyanalysis of fuel ethanol from cassava in Thailand[J].Environmental Science and Technology,2007,41:4135-4142.
    [10]潘友仙,柯佑鹏.中国木薯生产及贸易的发展趋势分析[J].中国热带农业,2010,1(23):31-33.
    [11]El-Sharkawy MA. International research on cassava photosynthesis,productivity, eco-physiology, and responses to environmental stresses inthe tropics[J]. Photosynthetica,2006,44:481-512.
    [12]黎贞崇,黄志民,杨登峰等.影响木薯燃料乙醇产业发展的不利因素及对策[J].可再生能源,2008,26(3):106-110.
    [13]Shinozaki KY, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2006,57:781-803.
    [14]Erwin H B, Sebastian F, Claudia K, et al. Specific and unspecific response of plants to cold and drought stress [J]. Biosci,2007,32:501-510.
    [15]Shilpi M, Narendra T. Cold, salinity and drought stresses:An overview[J]. Archives of Biochemistry and Biophysics,2005,444:139-158.
    [16]中国科学院.植物生物化学与分子生物学[M].北京:科学出版社,2002,1159-1202.
    [17]M. Farooq, A Wahid, N. Kabayashi, et al. Plant drought stress:effects, mechanisms and management[J]. Agronomy for Sustainable Development,2009,29(1):185-211.
    [18]Shinozaki K, Shinozaki KY. Molecular responses to dehydration and low temperature:differences and cross-talk between two signaling pathways [J]. Current Opinion in Plant Biology,2000,3:217-223.
    [19]K. Urano, Y. Kurihara, M. Seki, et al.'Omics'analyses of regulatory networks in plant abiotic stress responses[J]. Current Opinion in Plant Biology,2010, 13(2):132-138.
    [20]Shinozaki KY, Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology,2003, 6:410-417.
    [21]Shinozaki K, Shinozaki KY. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany,2007,58(2):221-227.
    [22]Motoaki S, Mari N, Junko I, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray [J]. The Plant Journal,2002,31(3):279-292.
    [23]武维华主编.植物生理学[M].北京:科学出版社.2003,440.
    [24]Paul E, Verslues, Manu A, et al. Methods and concepts in quantifying resistance to drought, salt and freezing abiotic stresses that affect plant water status[J]. The Plant Journal,2006,45:523-539.
    [25]H R Arthar, M. Ashraf. Strategies for crop improvement against salinity and drought stress:an overview [J]. Salinity and Water Stress,2009,44:1-16.
    [26]Grant R C, Kaoru U, Serge D, et al. Effect of abiotic stress on plants:a systems biology perspective [J]. BMC Plant Biology,2011,11:163.
    [27]Alex M., Reidunn B. A., Dominique A. et al. Tackling drought stress:receptor-like kinases present new approaches [J]. The Plant Cell,2012,24:2262-2278.
    [28]Tardieu F., Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator? [J]. Curr. Opin. Plant Biol,2012,14:283-289.
    [29]Neumann PM. Coping mechanisms for crop plants in drought-prone environments [J]. Annals of Botany,2008,101:901-907.
    [30]李冀南,李朴芳,孔海燕,等.干旱胁迫下植物根源化学信号研究进展[J].生态学报,2011,31(9):2610-2620.
    [31]Farooq M., Wahid A., Kobayashi N., et al [J]. Plant drought stress:effects, mechanisms and management. Agronomy for Sustainable Development,2009, 29:185-212.
    [32]Kashiwagi J., Krishnamurthy L., Upadhyaya H., et al [J]. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicerarietinum L.) [J]. Euphytica,2005,146:213-222.
    [33]Kent G A, Douglass F J, R Kasten D. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip [J].Plant and Soil,2009,315 (1-2):229-240.
    [34]李卫民,张佳宝.植物木质部导管栓塞[J].植物生理学通讯,2008,44(3):581-582.
    [35]Egilla J N, Davies Jr F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations[J].Photosynthetica,2005,43:135-140.
    [36]Gabriel C, Angelo M. Leaf photosynthesis under drought stress [J]. Photosynthesis and the Environment,2004,5:347-366.
    [37]Abduwasit G, Zhaoliang L, Qiming Q, et al. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index [J]. Science in China:Earth Sciences,2007,50 (9):1359-1368.
    [38]R A Bustomi R, Afandi, Masateru S, et al. Critical water content and water stress coefficient of soybean (Glycine max L Merr.) under deficit irrigation [J]. Paddy and Water Environment,2005,3(4):219-223.
    [39]Xiong L, Wang RG, Mao G, et al. Identification of drought tolerance determinants by genetic analysis of root response to drought stress an abscisic acid[J]. Plant Physiology,2006,142:1065-1074.
    [40]Brodribb T. J., McAdam A. M., et al. ABA mediates a divergence in the drought response of two conifers [J]. American Society of Plant Biologists,2013,5.
    [41]Y J Zhang, Z K Xie, Y J Wang, et al. Effect of water stress on leaf photosynthesis, chorophyII content, and growth of oriental lily [J]. Russian Journal of Plant Physiology,2011,58(5):844-850.
    [42]柯世省.干旱胁迫对下腊梅光合特性的影响[J].西北植物学报,2007,27(6):1209-1215.
    [43]Bartels D, Sunkars R. Drought and salt tolerance in plants[J]. Critical Reviews in PlantScience,2005,24:23-58.
    [44]Jaume Flexas, Jeroni G, Miquel R, et al. The effect of water stress on plant respiration[J].Plant Respiration,2005,27 (3):85-94.
    [45]D M Pandey, C L Goswami, B Kumar. Physiological effects of plant hormones in cotton under drought [J]. Biologia Plantarum,2003,47(4):535-540.
    [46]Pustovoitova T N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought [J].Russian Journal of Plant Physiology.2004,51(4):513-517.
    [47]Lorena P, Vicent A, Aurelio G C, et al. A relationship between tolerance to dehydration of rice cell lines and ability for ABA synthesis under stress[J].Plant Physiology and Biochemistry,2005,43(8):786-792.
    [48]Meirong Zhao, Yangyang Han, Yana Feng, et al. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat[J].Plant Cell Reports,2012,31(4):671-685.
    [49]M Yasin A, Nazila A, M Hussain. Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress [J].Plant Growth Regulation,2006,50(1):85-90.
    [50]Tomas Werner, Thomas Schmulling. Cytokinin action in plant development[J].Current Opinion in Plant Biology,2009,12(5); 527-538.
    [51]刘义,张春梅,谢晓蓉等.干旱胁迫对紫花苜蓿叶片和根系多胺代谢的影响[J].草业学报,2012,21(6):102-107.
    [52]Julia Walter, Laura Nagy, Roman Hein, et al. Do plants remember drought? Hints towards a drought-memory in grasses [J]. Environmental and Experimental Botany, 2011,71(1):34-40.
    [53]Diego H S, Franziska S, Alexander E, et al. Comparative metabolomics of drought acclimation in model and forage legumes [J]. Plant Cell and Environment,2012,35(1): 136-149.
    [54]M Babita, M Maheswan, L M Rao, et al. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids[J]. Environmental and Experimental Botany,2010,69(3):243-249.
    [55]杨启良,张富仓,刘小刚,等.植物水分传输过程中的调控机制研究进展[J].生态学报,2011,31(15):4427-4436.
    [56]Lopez R, Aranda I, Gil L. Osmotic adjustment is a significant mechanism of drought resistance in Pimus pinaster and Pinus canariensis[J].Investigacion Agraria:Sistemas y Recursos Forestales,2009,18:159-166.
    [57]Nayer M, Reza H, et al. Drought-induced accumulation of soluble sugars and proline in two maize vaeities [J]. World Applied Sciences Journal,2008,3(3):448-453.
    [58]Luo Y Y, Zhao R L, Zuo X A, et al. Physiological acclimation of two psammophytes to repeated soil drought and rewatering [J].Acta Physiology Plant,2011,33:79-91.
    [59]黄国宾,张晓海,杨双龙,等.渗透调节参与循环干旱锻炼提高烟草植株抗旱性的形成[J].植物生理学报,2012,48(5):465-471.
    [60]吉增宝,王进鑫,李继文.不同季节干旱及复水对刺槐幼苗可溶性糖含量的影响[J].西北植物学报,2009,29(7):1358-1363.
    [61]Guanfu Fu, Jian Song, Jie Xiong, et al. Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress [J]. Agricultural Sciences in China,2011,10(7):1016-1025.
    [62]Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.)[J].European Journal of Agronomy,2007,26(1):30-38.
    [63]Peter S, Claudia P, Gitta F. Release of reactive oxygen produced [J]. Journal of Experimental Botany,2001,52(5):369-373.
    [64]李潮海,尹飞,王群.不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应[J].生态学报,2006,26(6):1915-1919.
    [65]Guo Qiaosheng, Zhou Linjun, Zhi Yuan. Effect of water stress on physiological and growth characters of Prunella vulgaris at the vegetative stage [J]. China Journal of Chinese Materia Medica,2009,34(14):1761-1764.
    [66]Zhang M Y, Bourbouloux A, Cagnac O, et al. A novel family of transpoters mediating the transport glutathione derivatives in plants [J]. Plant Physiology,2004, 134:482-491.
    [67]Shaomin Bian, Yiwei Jiang. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery [J]. Scientia Horticulturae,2009,120(2):264-270.
    [68]Yuqin Ke, Guoqiang Han, Huaqin He. Differential regulation of proteins and phosphoproteins in rice under drought stress [J]. Biochemical and Biophysical Research Communications,2009,379 (1):133-138.
    [69]G Bernacchia, A Furini. Biochemical and molecular responses to water stress in resurrection plants [J]. Physiologia Plantarum,2004,121:175-181.
    [70]Shao H B, Guo Q J, Chu L Y, et al. Understanding molecular mechanism of higher plant plasticity under abiotic stress [J]. Colloids Surf B Biointerfaces,2007,54:37-45.
    [71]贾文锁,邢宇,卢从明,等.从水分胁迫的识别到ABA积累的细胞信号转导[J].植物学报,2002,44(10):1135-1141.
    [72]Bartel DP, Sunkar R. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences,2005,24(1):23-58.
    [73]Xiao B, Huang Y, Tang NX, et al. Over-expression of a LEA gene in rice improves drought resistance under the field conditions [J]. Theoretical and Applied Genetics, 2007,115(1):35-46.
    [74]Yamada M, Morishita H, Urano K, et al. Effects of free proline accumulation in petunias under drought stress [J]. Journal of Experimental Botany,2005, 56(417):1975-1981.
    [75]Guo P, Baum M, Grando S, et al. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage [J]. Journal of Experimental Botany,2009, 60(12):3531-3544.
    [76]Niu X, Zheng W, Lu BR, et al. An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions [J]. Plant Physiology,2007,143(4):1929-42.
    [77]Forrest KL, Bhave M. The PIP and TIP aquaporins in wheat from a large and diverse family with unique gene structures and functionally important features [J]. Functional and Interative Genomics,2008,8(2):115-133.
    [78]杨淑慎,山仑,郭蔼光等.水通道蛋白与植物的抗旱性[J].干旱地区农业研究,2005,23(6):214-218.
    [79]Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance [J]. Trends in Plant Science,2001,6:431-438.
    [80]Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway [J]. Plant Journal,2002,30:679-689.
    [81]Dortje G., Ines L., Oksoon Y. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network [J]. Plant Cell Reports,2011,30:1383-1391.
    [82]Kizis D, Lumbreras V, Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress [J]. FEBS Letters,2001,498:187-189.
    [83]Shinozaki K, Shinozaki KY. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters [J]. Trends in Plant Science,2005,10: 88-94.
    [84]Monica Y, Susan C, Sandra O, et al. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulated stress-related genes [J]. Plant Cell Reports,2009,28(10):1497-1507.
    [85]刘子会,郭秀林,王刚,等.干旱胁迫与ABA的信号转导[J].植物学通报,2004,21(2):228-234.
    [86]Jung C., Seo J S., Han S W., et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Abrabidopsis[J].Plant Physiology,2007,146:623-635.
    [87]Chen M., Wang Q Y., Cheng X G., et al. GmDREB2, a soybean DRE binding transcription factor, conferred drought and high salt tolerance in transgenic [J]. Biochemical and Biophysical Research Communications,2007,353(2):299-305.
    [88]黄杰.木薯丰产栽培技术[M].海口:三环出版社,2007.
    [89]Y.Lokko, JV Anderson, S Rudd et al. Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes [J]. Plant Cell Pep,2007,26:1605-1618.
    [90]TF Lanban, EB Kizito, Y Baguma et al. Evaluation of Uganadan cassava germplasm for drought tolerance [J]. Intl J Agri Crop Sci,2013,5(3):212-226.
    [91]C Zeng, W Wang, Y Zheng et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants [J]. Nucleic Acids Research,2009,38(3): 981-995.
    [92]Sudesh K Y. Cold stress tolerance mechanisms in plants [J]. Agronomy for Sustainable Development,2010,30(3):515-527.
    [93]邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及功能[J].植物学通报,2001,18(5):521-530.
    [94]Pearce RS. Plant freezing and damage [J]. Annual Botany,2001,87:417-424.
    [95]Amolkumar U S, Arun K S. Signal transduction during cold stress in plants[J]. Physiology and Molecular Biology of Plants,2008,14(1-2):69-79.
    [96]徐呈祥.提高植物抗寒性的机理研究进展[J].生态学报,2012,32(24):7966-7980.
    [97]Pekka H, E Tapio P. Signal transduction in plant cold acclimation[J]. Plant Responses to Abiotic Stress,2004,4:151-186.
    [98]孙玉洁,王国槐.植物抗寒生理的研究进展[J].作物研究,2009,23(5):293-297.
    [99]Jun Yang, Dong An, Peng Zhang. Expression profiling of cassava storage roots reveals an active process of glycolusis/gluconeogenesis [J] Journal of Integrative Plant Biology,2011,53(3):193-211.
    [100]曹琴,孔维府,温鹏飞.植物抗寒及其基因表达研究进展[J].生态学报,2004,24(4):806-810.
    [101]Erwin H B, Sebastian F, Claudua K, et al. Specific and unspecific responses of plants to cold and drought stress [J]. Journal of Biosciences,2007,32(3):501-510.
    [102]Kuk YI, Shin JS, Burgos NR. Antioxidative enzymes offer protection from chilling damage in rice plants [J]. Crop Science,2003,43(6):2109-2111.
    [103]S Komatsu, E Yamada, K Furukawa. Cold stress changes the concanavalin a positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths[J]. Amino Acids,2009,36(1):115-123.
    [104]Strand, Foyer CH, Gustafsson P. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance [J]. Plant, Cell and Environment,2003,26:523-536.
    [105]Seyyede S K S, Reza M A, Hassan Z, et al. Change in membrane fatty acid compositions and cold-induced responses in chickpea[J]. Molecular Biology Reports, 2013,40(2):893-903.
    [106]Sanghera G S, Wani S H, Hussain W, et al. Engineering cold stress tolerance in crop plants [J]. Current Genomics,2011,12:30-43.
    [107]Xin Z, Browse J. Cold comfort farm:the acclimation of plants to freezing temperature [J]. Plant Cell and Environment,2000,23:893-902.
    [108]Beck E H, Heim R, Hansen J. Plant resistance to cold stress:Mechanisms and environmental signals triggering frost hardening and dehardening [J]. Biosci,2004, 29:449-459.
    [109]Emsminger I, Busch F, Huner N P A. Photostasis and cold acclimation:sensing low temperature through photosynthesis [J]. Physiologia Plantarum,2006,126(1):28-44.
    [110]Nakashima K, Ito Y, Yamaguchi S. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grass [J]. Plant Physiology,2009,149:88-95.
    [111]Mahajan S, Tuteja N. Cold, Salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444:139-158.
    [112]Gibson S I. Sugar and phytohormone response pathways:navigating a signaling network [J]. Journal of Experimental Botany,2004,55:253-264.
    [113]李春燕,陈思思,徐雯,等.妙苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响[J].作物学报,2011,37(12):2293-2298.
    [114]Dirdre G, Marie L, Michael P. Overproduction of proline in transgenic hybrid larch (Larix x leptoeropaea) cultures renders them tolerant to cold salt and frost [J]. Molecular Breeding,2005,15(1):21-29.
    [115]Nagao M, Oku K, Minami A, et al. Accumulation of theanderose in association with development of freezing tolerance in the moss Physomitrella patens [J]. Phytochemistry,2006,67(7):702-709.
    [116]Rook F, Bevan M W. Genetic approaches to understanding sugar response pathways [J]. Journal of Experimental Botany,2003,54:495-501.
    [117]梁颖,王三根.Ca2+对低温下水稻幼苗膜的保护作用[J].作物学报,2001,27(1):59-63.
    [118]Engel N, Schmidt M, Lutz C. Molecular identification, heterologous expression and properties of lightinsensitive plant catalases [J]. Plant Cell and Environment,2006, 29(4):593-607.
    [119]Lim S, Kim Y, Sum H. Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl vioiogen-mediated oxidative stress and chilling [J]. Molecular Breeding,2007,19(3):227-239.
    [120]Foyer C H, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomers and mitochondria [J]. Physiologia Plantarum,2003, 119:355-364.
    [121]Matsumura T, Tabayashi N, Kamagata Y, et al. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress [J]. Physiologia Plantarum,2002,116:317-327.
    [122]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry,2010,48(12): 909-930.
    [123]Cui S X, Huang, Wang. A proteomic analysis of cold stress response in rice seedlings [J]. Proteomics,2005,5(12):3162-3172.
    [124]Yan S P, Zhang Q Y, Tang ZC. Comparative protemics analysis provides new insights into chilling stress responses in rice [J]. Molecular and Cellular Proteomics, 2006,12:484-496.
    [125]Griffith M, Yaish MWF. Antifreeze proteins in overwintering plants:atale of two activities[J]. Trends in Plant Science,2004,9(8):399-405.
    [126]Szabados L, Kovacs H, Zilberstein A, et al.Plants in extremeenvironments: importance of protective compounds in stresstolerance [J]. Advances in Botanical Research,2011,57 (4):105-150.
    [127]Winfield MO, Lu C, Wilson ID, et al. Plant responses to cold:Transcriptome analysis of wheat [J]. Plant Biotechnology Journal,2010,8(7):749-771.
    [128]Nishida I, Sugiura M, Enju A, et al. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash Cucurbita moschata cv Shirogikuza codes for an oleate-selective isozyme:molecular cloning and protein purification studies [J]. Plant and Cell Physiology.2000,41(12):1381-1391.
    [129]Kwon JH, Lee YM, An CS. cDNA cloning of chloroplast omega-3 fatty acid desaturase from capsicum annuum and its expression upon wounding [J]. Molecules and Cells.2000,10(5):493-497.
    [130]SugaK, Honjoh K, Furuya N, et al. Two low-temperature-inducible Chlorella genes for delta12 and omega-3 fatty acid desaturase (FAD):isolation of delta12 and omega-3 fad cDNA clones expression of delta12 fad in saccharomyces cerevisiae and expression of omega-3 fad in nicotiana tabacum [J]. Bioscience Biotechnology and Biochemistry,2002,66(6):1314-1327.
    [131]Kernodle SP, Scandalios JG. Structural organization regulation and expression of the chloroplastic superoxide dismutase Sodl gene in maize [J]. Archives of Biochemistry and Biophysics,2001,391(1):137-147.
    [132]Hannah M A, Heyer A G, Hincha D K. A global survey of gene regulation during coldacclimation in Arabidopsis thaliana [J]. PLoS Genetics,2005,1:e26.
    [133]Toledo-Ortiz G, Huq E, Quail P. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell,2003,15(8):1749-1770.
    [134]Fursova OV, Pogorelko GV, Tarasov VA. Identificationof ICE2, a gene involved in cold acclimation which determinesfreezing tolerance in Arabidopsis thaliana [J].Gene,2009,429(1-2):98-103.
    [135]Sharma P, Sharma N, Deswal R. The molecular biology of the low-temperature response in plants [J]. Bioessays,2005,27:1048-1059.
    [136]Kreps JA, Wu Y, Chang HS, et al. Transcriptome changes forArabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiology,2002,130:2129-2141.
    [137]Lee H, Won SH, Lee BH, et al. Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var [J]. Pekinensis Molecular Cells,2002, 13(2):245-251.
    [138]Bravo LA, Gallardo J, Navarrete A, et al. Cryoprotective activity of a cold-induced dehydrin purified from barley [J]. PlantPhysiology,2003,118:262-269.
    [139]Krojer T, Garrido-Franco M, Huber R, et al. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine [J]. Nature,2002,416:455-459.
    [140]Hundertmark M. Hincha D. LEA (Late Embryogenesis Abundant) proteins and their encodinggenes in Arabidopsis thaliana [J]. BMC Genomics,2008,9:118.
    [141]钟克亚,叶妙水,胡新文,等.转录因子CBF在植物抗寒中的重要作用[J].遗传,2006,28(2):249-254.
    [142]Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant physiology,2002,130(2):639-648.
    [143]Morran S, Eini O, Pyvovarenko T, et al. Improvement of stress tolerance of wheat and barley by modulation ofexpression of DREB/CBF factors [J]. Plant Biotechnology Journal,2011,9:230-249.
    [144]Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsisabiotic stress tolerance, development and gene expression [J]. Plant Cell and Environment,2011,34:1345-1359.
    [145]Hsieh TH, Lee JT, Yang PT, et al. Heterology expression of the Arabidopsis C-repeat/Dehydration Response Element Binding Factor 1 gene confer elevated tolerance to chilling and oxidative stresses in transgenic tomato [J]. Plant Physiology, 2002,129:1086-1094.
    [146]Welling A, Palva E T. Involvement of CBF transcription factors in winter hardiness in birch[J]. Plant Physiology,2008,147:1199-1211.
    [147]Medina J, Catala R, Salinas J. The CBFs:Three arabidopsis transcription factors to coldacclimate[J]. Plant Science,2011,180:3-11.
    [148]Xin Z, Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures [J]. Plant Cell and Environment,2000,23:893-902.
    [149]Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress acclimation in plants [J]. Methods in Molecular Biology,2010,639:39-55.
    [150]Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation [J]. Current Opinion in Plant Biology,2007,10:290-295.
    [151]Lee BH, Henderson D A, Zhu J K. The Arabidopsis cold-responsivetranscriptome and itsregulation by ICE1 [J]. Plant Cell,2005,17:3155-3175.
    [152]Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factorsinvolved in cold-responsive gene expression in transgenic rice[J].Plant and Cell Physiology,2006,47:141-153.
    [153]Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants [J]. Physiologia Plantarum,2006,126:52-61.
    [154]Agarwal M, Hao Y, Kapoor A et al. A R2R3 type MYBtranscription factor is involved in the cold regulation of CBFgenes and in acquired freezing tolerance [J].Journal of Biological Chemistry,2006,281:37636-37645.
    [155]Xin Z, Mandaolar A, Chen J, et al. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance [J]. Plant Journal,2007,49:786-799.
    [156]Zhu J, Shi H, Lee BH, et al. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway [J]. PNAS, 2004,101:9873-9878.
    [157]Zhu J, Verslues PE, Zheng X, et al. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants [J]. PNAS,2005, 102:9966-9971.
    [158]Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signaling pathway, regulon andincrease in freeze tolerance are conserved in Populus spp [J]. Plant Cell and Environment,2006,29:1259-1272.
    [159]Vogel J T, Zarka D G, Van Buskirk, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis [J]. Plant Journal,2005,41:195-211.
    [160]Kim K, Cheong Y H, Grant J J, et al. CIPK3, a calciumsensor associated protein kinase that regulates abscisic acid andcold signal transduction in Arabidopsis[J].Plant Cell,2003,15 (2):411-423.
    [161]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报,2007,24(1):114-122.
    [162]Lecourieux D, Ranjeva R, Pugin A. Calcium in plant defence signaling pathways[J]. New Phytologist,2006,171(2):249-269.
    [163]Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid [J]. Plant Physiology,2002,128:682-695.
    [164]Yang T, Poovariah B W. Calcium/calmodulin-mediated signal network in plants [J]. Trends in Plant Science,2003,8(10):505-512.
    [165]Reddy V S, Reddy A S. Proteomics of calcium-signaling components in plants [J]. Phytochemistry,2004,65(12):1745-1776.
    [166]Dong An, Jun Yang, Peng Zhang. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress [J]. BMC Genomics,2012,13:64.
    [167]岳桂东,高强,罗龙海,等.高通量测序技术在动植物研究领域中的应用[J].中国科学:生命科学,2012,42(2):107-124.
    [168]Glenn T C. Field guide to next generation DNA sequencers [J]. Molecular Ecology Resources,2011,11:759-769.
    [169]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. PNAS,1977,74(12):5463-5467.
    [170]Maxam AM, Gilbert W. A new method for sequencing DNA [J]. PNAS,1977, 74(2):560-564.
    [171]AlKan C, Kidd J M, Marques-Bonet T, et al. Personalized copy number and segmental duplication maps using next generation sequencing[J].Nature Genetics, 2009,41:1061-1067.
    [172]Bentley D R, Balasubramanian S, Swerdlow H P, et al. Accurate wholehuman genome sequencing using reversible terminator chemistry[J].Nature,2008,456(7218):53-59.
    [173]Shen Y, Sarin S, Liu Y, et al. Comparing platforms for C. elegansmutant identification using high-throughput whole-genome sequencing[J]. PLoS One,2008, 3(12):4012.
    [174]Xu X, Pan S, Cheng S, et al. Genome sequence and analysis of the tuber crop potato [J].Nature,2011,475:189-195.
    [175]Bowers J, Mitchell J, Beer E, et al. Virtual terminator nucleotides fornext-generation DNA sequencing [J]. Nature Methods,2009,6(8):593-595.
    [176]Wang J, Wang W, Li R, et al. The diploid genome sequence of anAsian individual [J]. Nature,2008,456(7218):60-65.
    [177]Thomas R K, Nickerson E, Simons J F, et al. Sensitive mutationdetection in heterogeneous cancer specimens by massively parallelpicoliter reactor sequencing[J]. Nature Medicine,2006,12(7):852-855.
    [178]Qian J, Ferguson TM, Shinde DN, et al. Sequence dependence ofisothermal DNA amplification via EXPAR [J]. Nucleic Acids Research,2012,40(11):e87.
    [179]Ruparel H, Bi L, Li Z, et al. Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis [J]. PNAS,2005,102(17):5932-5937.
    [180]Seo TS, Bai X, Kim DH, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides [J]. PNAS,2005,102(17):5926-5931.
    [181]Flusberg B A, Webster D R, Lee J H, et al. Direct detection of DNAmethylation during single-molecule and real-time sequencing [J]. NatureMethods,2010,7(6): 461-465.
    [182]Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from singlepolymerase molecules [J]. Science,2009,323(5910):133-138.
    [183]Treffer R, Deckert V. Recent advances in single-moleculesequencing [J]. Current Opinion in Biotechnology,2010,21(1):4-11.
    [184]Harris T D, Buzby P R, et al. Single-molecule DNA sequencing of aviral genome [J]. Science,2008,320(5872):106.
    [185]Emrich SJ, Barbazuk WB, Li L, et al. Gene discovery and annotation using LCM-454 transcriptome sequencing [J]. Genome Research,2007,17:69-73.
    [186]Weber APM, Weber KL, Carr K, et al. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing [J].Plant Physiology,2007,144:32-42.
    [187]Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J]. Nature Biotechnology, 2000,18:630-634.
    [188]Jongeneel CV, Iseli C, Stevenson BJ, et al. Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing [J]. PNAS,2003,100:4702-4705.
    [189]Meyers BC, Tej SS, Vu TH, Haudenschild CD, et al. The use of MPSS for whole-genome transcriptional analysis in Arabidopsis [J]. Genome Research,2004, 14:1641-1653.
    [190]Hoen PAC, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms [J]. Nucleic Acids Research,2008,36:e141.
    [191]Asmann YW, Klee EW, Thompson EA, et al.3'tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer [J]. BMC Genomics,2009,10:531.
    [192]Morrissy AS, Morin RD, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Research,2009,19:1825-1835.
    [193]Babbitt CC, Fedrigo O, Pfefferle AD, et al. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain [J]. Genome Biology and Evolution,2010,2:67-79.
    [194]Cole Trapnell, Steven L Salzberg. How to map billions of short reads onto genomes [J]. Nature Biotechnology,2009,27:455-457.
    [195]Ruan J, Zhang W. Identification and evaluation of functional modules in gene co-expresseion networks [J]. Sytems Biology and Computational Proteomics,2007, 4532:57-76.
    [196]Ruan J, Zhang W. Identifying network communities with a high resolution [J]. Physical Review E,2008,77(1):016104.
    [197]Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis [J]. Plant Cell,2002,14:817-831.
    [198]Hartmann U, Valentine WJ, Christie JM, et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system [J]. Plant Molecular Biology,1998,36:741-754.
    [199]Ezcurra I, Wycliffe P, Nehlin L, et al. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements:B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box [J]. Plant Journal,2000,24:57-66.
    [200]Patzlaff A, Newman LJ, Dubos C, et al. Characterisation of Pt MYB1, an R2R3-MYB from pine xylem [J]. Plant Molecular Biology,2003,53:597-608.
    [201]Hong JC, Cheong YH, Nagao RT, et al. Isolation of two soybean G-box binding factors which interact with a G-box sequences of an auxin-responsive gene [J]. Plant Journal,1995,8:199-211.
    [202]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell,2003, 15:63-78.
    [203]Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco [J]. Planta,2004,220:262-270.
    [204]Morikami A, Matsunaga R, Tanaka Y, et al. Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco [J]. Molecular Genetics and Genomics,2005, 272:690-699.
    [205]Hatton D,Sablowski R, Yung MH, et al.Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco [J]. Plant Journal,1995,7:859-876.
    [206]Gomez-Maldonado J, Avila C, Torre F, et al. Campbell MM Functional interactions between a glutamine synthetase promoter and MYB proteins [J]. Plant Journal,2004, 39:513-526.
    [207]Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger proteinAGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2[J]. Plant Journal,2003,36:550-564.
    [208]Nakashima K, Narusaka Y, Seki M, et al. Two different novel cis-acting elements of erdl, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence [J]. Plant Journal,2003,33:259-270.
    [209]Tran LS, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell,2004,16:2481-2498.
    [210]Fernandez P, Di-Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA. Transcriptomeic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis [J]. BMC Plant Biol, 2008,8:11.
    [211]Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M. Sequencing analysis of 20,000 full length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response [J]. BMC Plant Biol,2007,7:66.
    [212]'t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platform [J]. Nucleic Acids Res,2008,36(21):e141.
    [213]Feng L, Liu H, Liu Y, Lu Z, Guo G, Guo S, Zheng H, Gao Y, Cheng S, Wang J, et al. Power of deep sequencing and agilent microarray for gene expression profiling study [J]. Mol Biotechnol,2010,45(2):101-110.
    [214]Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis:An eclectic enzyme family with disparate regulation and protein localization [J]. Plant Physiol,1998,118(2):637-650.
    [215]Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002,7(9):405-410.
    [216]尹永强,胡建斌,邓明军[J].中国农学通报,2007,23(1):105-110.
    [217]余小林,曹家树,崔慧梅等[J].细胞生物学杂志,2004,26:561-566.
    [218]Brazer M, Cole DJ, Edwards R. O-glucoayl transferase activities toward phenolic natural products and xenobiotics in wheat and herbicide resistant and herbicider susceptible black grass [J]. Phytochemistryi,2002,59(2):149-156.
    [219]Y Fujita, M Fujita, K Shinozaki et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants [J]. J Plant Res,2011,124:509-525.
    [220]X X Xuan, S H Bo, M Y Yuan et al. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions [J]. Critical Reviews in Biotechnology,2010,30(3):222-230.
    [221]Marinova K, Kleinschmidt K, Weissenbock G, et al.Flavonid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport [J].Plant Physiol,2007,144:432-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700