基于ΔT-贡献值的换热网络综合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性能源危机的加深,过程工业的系统节能越来越受到人们的重视。换热网络作为过程工业中能量回收的重要系统,其设计水平的高低直接决定了过程系统的能耗和经济性。因此,换热网络的最优综合逐渐成为人们研究的热点问题。与此同时,现有的各类换热网络的综合方法都存在着一些问题和缺陷,迫切需要深入研究。
     在现有的各类换热网络的综合方法中,夹点设计法较为成熟,这种方法的理论基础建立在过程系统中的流股具有相近的传热膜系数基础上,但是在实际的过程工业中这种假设并不成立,因此本文在引入温差ΔT-贡献值的基础上,针对传热膜系数有较大差异的过程系统,进行换热网络综合的研究。本文围绕这一主题,主要开展的研究工作如下:
     1.本文首先从传热温差驱动力的角度出发,对确定流股ΔT-贡献值的关联式进行了论证和推导,因为流股的ΔT-贡献值是本文方法的基础。在此基础上提出了基于ΔT-贡献值的系统性换热网络综合方法,给出运用此方法进行网络综合的流程步骤,并通过一个案例对此方法进行研究和讨论,结果表明:运用此方法综合换热网络时,能够合理地对传热温差进行分配,从而减小了换热面积和年度总费用。
     2.本文通过对基于ΔT-贡献值的换热网络综合方法的深入研究,进一步提出了基于ΔT-贡献值法的三级优化策略,并给出了基于三级优化策略综合换热网络的具体实施步骤。本文分别对这三步优化进行了详细的阐述,着重研究讨论了参数κ、z的寻优范围,并在此范围内通过二维优化方法进行寻优;而参数κ、z的优化过程中又包含了网络超结构的优化,其关系为内嵌关系,即在求解网络超结构的热负荷分配时,需进一步对网络超结构进行优化,从而在能量费用一定的情况下,使得投资费用降低;最后一步优化则是通过网络调优和能量松弛,进一步简化换热网络的结构,提高网络的适应性和调节性。
     3.本文在上述理论基础上,基于MATLAB GUI软件设计平台开发了换热网络综合的软件。该软件能够采用常规夹点设计法和本文提出的基于三级优化策略的ΔT-贡献值法来合成换热网络,为本文的理论研究提供了快速验证和比较平台,随后的案例研究也对本软件系统的有效性和实用性进行了检验。
     4.最后,本文运用开发的换热网络综合的软件对几个案例进行了分析和研究,第一个案例着重对基于三级优化策略综合换热网络的详细步骤进行阐述,后两个案例着重对工程实际的过程系统进行网络综合。网络综合的结果表明,与传统夹点设计法相比,运用本文提出的综合方法能够合理地对传热温差进行分配,降低了网络换热面积,年度总费用较小,网络结构简单,可用于解决流股传热膜系数不同的实际换热网络集成问题。
With the deepening of the world energy crisis, the energy saving of process system is by more and more people's attention. As an important energy recovery system of process industrial, heat exchanger networks design directly determines the level of energy recovery and economy of the process system. Therefore, heat exchanger networks synthesis gradually becomes a hotspot. Meanwhile, the existed methods of heat exchanger networks synthesis exist some problems and defects, need further research urgently.
     In the existing methods of heat exchanger networks synthesis, pinch design method is a mature one, and its theoretical basis is based on the similar heat transfer coefficient of the streams in the process system, but this assumption is not practical in the actual process industry. Therefore, this paper aimed at the process system with different heat transfer coefficient of streams, researched heat exchanger networks synthesis based on the theory ofΔT-contribution. Based on this topic, the main research work are as follows:
     1. This paper deducted the relational theory formula ofΔT-contribution values in the view of the heat transfer driving force, becauseΔT-contribution of streams is the foundation of the method proposed in this paper. On the basis ofΔT-contribution, this paper proposed the method of heat exchanger networks synthesis systemically. This paper displayed the detailed steps of this method, discussed and studied this method through a case study, the results show that: this method is reasonable to the transfer temperature’s distribution, thus can reduce the area and the total annual cost of heat exchanger networks.
     2. Through the deep research of heat exchanger networks synthesis method based onΔT-contribution values, this paper put forward the three-level optimization strategy and introduced the detailed procedure. This paper studied the three-level optimization strategy in deep, studied and discussed the range of parametersκand z, and used a two-dimensional optimization method in this range. This process includes the optimization of superstructure, that is we need further optimize the superstructure of networks, thus in the fixed energy cost, we can get lower investment cost. The last step is networks optimization and energy relaxation, further simplify the structure of heat exchanger networks, improve the flexibility and regulatory.
     3. On the basis of theories upwards, this paper developed the software of heat exchanger networks synthesis based on MATLAB GUI. This software can use the conventional pinch design method to synthesize heat exchanger networks. At the same time, the method proposed in this paper can also be used in the software to synthesize heat exchanger networks. The software provides a quick test and comparing platform for this paper’s theory research. Subsequently, the effectiveness and practicability of the software system is tested by some case studies.
     4. Finally, several cases were analyzed and studied using the software of heat exchanger networks synthesis. The first one focused on the detailed steps of the three-level optimization strategy, and another two cases lay stress on networks design to the actual process system. The results show that compared with the traditional pinch design method, the transfer temperature’s distribution is more reasonable using the method this paper proposed, the area and the total annual cost are lower, the structure of networks can be simpler. The method this paper proposed can be used to solve actual heat exchanger networks synthesis problems with the streams having different heat transfer coefficient.
引文
[1]胡徐腾,李振宇.我国能源化工面临的挑战及发展方向[J].炼化广角, 2005, 13(9): 41-45.
    [2]傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学, 2005.
    [3]冯霄.化工节能原理与技术[M],第三版.北京:化学工业出版社, 2009.
    [4] Masso A H, Rudd D F. The synthesis of system designs:Ⅱ. Heuristic structuring [J]. AIChE J, 1969, 15(1): 10-17.
    [5] Gundersen T, Naess L. The synthesis of cost optimal heat exchanger networks. An industrial review of the state of the art [J]. Computers & Chemical Engineering, 1988, 12(6): 503-530.
    [6] Je(?)owski J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the-art: PartⅠ. Heat exchanger network targeting and insight based methods of synthesis [J]. Hungarian Journal of Industrial Chemistry, 1994, 22(4): 279-294.
    [7] Je(?)owski J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the-art: PartⅡ. Heat exchanger network synthesis based mathematical methods and approaches for retrofit design [J]. 1994, 22(4): 295-308.
    [8] Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century [J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335-2370.
    [9]姚平经.全过程系统能量优化综合[M].大连:大连理工大学出版社, 1995.
    [10] Umeda T, Itoh J, Shiroko K. Heat exchanger system synthesis networks [J]. Chemical Engineering Progressing, 1978, 74(7): 70-76.
    [11] Linnhoff B, Flower J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks [J]. AIChE J, 1978, 24(4): 633-642.
    [12] Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science, 1983, 38(5): 745-763.
    [13] Challand T B, Colbert R W, Venkatesh C K. computerized heat exchanger networks [J]. Chemical Engineering Progressing, 1981, 77(7): 65-71.
    [14] Colbert R W. Heat transfer in action industrial heat exchanger networks [J]. Chemical Engineering Progressing, 1982, 78(7): 47-54.
    [15]谢启明,杨东华.工业规模换热网络的计算机自动合成—双最小换热温差法[J].石油化工, 1994, 23(3):159-165.
    [16]王莉,姚平经,袁一.换热网络的新设计方法—三温差法的应用研究[J].化学工程, 1995, 23(1): 25-30.
    [17]王莉,姚平经,袁一.有阈值问题的换热网络三温差设计法[J].高校化学工程学报, 1996, 10(4): 372-376.
    [18]王莉,王玲,姚平经,等.一种具有不同传热膜系数网络的新设计方法—虚拟温度法[J].大连理工大学学报, 1995, 35(2): 203-207.
    [19]李晖,王莉,姚平经.采用虚拟温度法设计换热网络[J].高校化学工程学报, 1997, 11(1): 100-103.
    [20] Wood R M, Suaysompol K, Oineill B K, et al. A new option for heat exchanger network design [J]. Chemical Engineering Process, 1991, 87(9): 38-43.
    [21] Suaysompol K, Wood R M. The flexible pinch design method for heat exchanger networks: PartⅠ. Heuristic guidelines for free hand designs [J]. Chemical Engineering Research & Design, 1991, 69(A6): 458-464.
    [22] Feng X, Zhu X X. Combing pinch and exergy analysis for process modification [J]. Applied Thermal Engineering, 1997, 17(3): 249-261.
    [23] Sorin M, Paris J. Combined exergy and pinch approach to process analysis [J]. Computers & Chemical Engineering, 1997, 21(Suppl. ): S23-S28.
    [24] Anantharaman R, Abbas O S, Gundersen T. Energy level composite curves—a new graphical methodology for the integration of energy intensive processes [J]. Applied Thermal Engineering, 2006, 26(13): 1378-1384.
    [25]靳遵龙,董其伍,刘敏珊.基于火用经济学观点确定换热网络传热温差[J].化学工程, 2007, 35(7): 11-14.
    [26]范维,王彧斐,冯霄,等.确定公用工程夹点温差的新方法[J].石化技术与应用, 2008, 26(1): 23-26.
    [27] Grossmann I E, Kravanja Z. Mixed integer nonlinear programming techniques for process systems engineering [J]. Computers & Chemical Engineering, 1995, 19(Suppl. ): S189-S204.
    [28] Floudas C A, Ciric A R, Grossmann I E. Automatic synthesis of optimum heat exchanger network configurations [J]. AIChE J, 1986, 32(2): 276-290.
    [29] Zhu X X. Automated design method for heat exchanger network using block decomposition and heuristic rules [J]. Computers & Chemical Engineering, 1997, 21(10):1095-1104.
    [30] Dolan W B, Cummings P T, Van M D. Process optimization via simulated annealing: Application to network design [J]. AIChE J, 1989, 35(5): 725-736.
    [31] Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration:Ⅰ. Area and energy targeting and modeling of multi-stream exchangers [J]. Computers & Chemical Engineering, 1990, 14(10):1151-1164.
    [32] Yee T F, Grossmann I E. Simultaneous optimization models for heat integration:Ⅱ. Heat exchanger network synthesis [J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
    [33] Ciric A R, Floudas C A. Application of the simultaneous match network optimization approach to the pseudo-pinch problem [J]. Computers & Chemical Engineering, 1990, 14(3): 241-250.
    [34] Ciric A R, Floudas C A. Heat exchanger network synthesis without decomposition [J]. Computers & Chemical Engineering, 1991, 15(6): 385-396.
    [35] Bjork K M, Westerlund T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption [J]. Computers & Chemical Engineering, 2002, 26(11): 1581-1593.
    [36]魏关锋.用遗传/模拟退火算法进行具有多流股换热器的换热器网络综合[D].大连:大连理工大学, 2003.
    [37] Je?owski J. Heat exchanger network synthesis algorithms of ordered search [J]. Ind. Chem. Proc., 1981, 2(1): 45-58.
    [38] Grimes L E, Rychener M D. Weaterberg A W. The synthesis and evolution of networks of heat exchangerthat feature the minimum number of units [J]. Chemical Engineering Communication, 1982, 14: 339-360.
    [39]陈丙珍,沈静珠,何小荣,等.热回收网络优化综合的专家系统[J].石油炼制与化工, 1988, 19(4): 34-38.
    [40]高维平,于为人,韩方煜.智能法合成最优换热器网络[J].化工学报, 1990, 41(3): 353-363.
    [41]李志红.换热器网络最优合成及弹性分析和弹性合成的研究[D].广州:华南理工大学, 1998.
    [42]陆明亮.化工专家系统工具—CHEEST的开发[D].大连:大连理工大学, 1990.
    [43] Ra(?)kovi(?)P, Stoiljkovi(?) S. Pinch design method in the case of a limited number of process streams [J]. Energy, 2009, 34(5): 593-612.
    [44]肖武.基于流股有效温位的大规模多流股换热器网络综合[D].大连:大连理工大学, 2006.
    [45] Serna M, Jiménez A. An area targeting algorithm for the synthesis of heat exchanger networks [J]. Chemical Engineering Science, 2004, 59(12): 2517-2520.
    [46] Nishimura H. A theory for the optimal synthesis of heat exchanger systems [J]. Optimization Theory and Applications, 1980, 30(3): 423-450.
    [47] Ahmad S, Linnhoff B, Smith R. Cost optimum heat exchanger networks: 2. Targets and design for detailed capital cost models [J]. Computer & Chemical Engineering, 1990, 14(7): 751-767.
    [48] Rev E, Fonyo Z. Diverse pinch concept for heat exchange network synthesis: The case of different heat transfer conditions [J]. Chemical Engineering Science, 1991, 46(7): 1623–1634.
    [49] Fraser D M. The use of minimum ?ux instead of minimum approach temperature as a design specification for heat exchanger networks [J]. Chemical Engineering Science, 1989, 44(5): 1121–1127.
    [50]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社, 2009.
    [51]曹忠,王英龙,朱兆友.基于贡献温差的换热网络超结构优化[J].计算机与应用化学, 2008, 25(11): 1374-1378.
    [52]高孝忠,崔国民,郭嘉,等.流体定性温度对换热网络模拟及优化的影响[J].石油机械, 2008, 36(7): 32-35.
    [53] Lein T. Heat exchanger network synthesis using HENCALC (a Matlab computer program) and second law insights [D]. Science of university of Massachusetts Lowell, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700