生态人工快速渗滤系统(ECRI)处理高浓度生活污水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CRI系统工艺过程简单、工程投资抵、运行成本少,在处理城市生活污水和受污染的地表水时具有明显效果,得到很好的工程应用。但CRI系统对总氮、总磷去除效果不佳、滤料易堵塞、生态景观性差、在低温条件下运行效果差等问题,在对水质要求日益提高的今天限制了其应用推广。
     针对以上问题,本论文研究拟在原CRI系统快渗池中添加植物,形成生态人工快渗系统(Ecology Constructed Rapid Infiltration,简称ECRI系统)。本论文在研究ECRI系统对高浓度生活污水去除效果基础上,在后置反硝化段添加缓释碳源,增加对总氮的去除,并对ECRI系统进行越冬试验,最后选择安徽省某高速公路服务区生活污水进行试验性工程实践。
     在种有紫背天葵的ECRI系统中前段设置微曝气预处理,后置反硝化段,设定运行参数:固定湿干比1:5,水力负荷0.8 m/d,采用一天4个HLC,一次进水为0.5 h,落干时间为5.5 h,稳定运行3个月。试验结果表明,出水CODCr﹑NH4-N和SS平均去除率分别达到94.4%、97.0%、96.9%,均能达到《城镇污水处理厂污染物排放标准》(GB19818-2002)一级A排放标准;出水TP能达到一级B排放标准,但TN去除效果较差,去除率仅为68.9%。
     在ECRI系统中后置反硝化段中添加缓释碳源,出水总氮去除率达到80.0%以上,与未添加缓释碳源相比有明显提高;添加了40cm厚的缓释碳源的2#系统比添加了20cm厚的1#系统出水中TN去除率由88.0%提高至89. 6 %,但是COD,NH4-N,TP等去除率提高不明显;电子显微镜观察分析表明缓释碳源碎树枝表面以丝状菌和球菌为主,为优势菌群。
     对ECRI系统进行越冬试验,通过在进水管加保温层,快渗池表面增加覆膜温室等合理防冻措施,可保证该系统在北方零下10度左右的温度下正常运行,但处理效果低于夏季;出水各污染物指标中,NH4-N和T-N受气温变化影响最大,COD次之,T-P几乎不受影响。
     最后选择安徽省某高速公路服务区生活污水进行工程实例,水力负荷达到2.0 m/d,整个系统运行稳定出水水质良好,CODCr、氨氮、总氮等指标达到《城镇污水处理厂污染物排放标准》(GB/T18918-2002)一级A排放标准。作为一种新型生态处理技术,ECRI系统良好的技术经济性能,比较适合高速公路服务区生活污水的处理,具有良好的应用前景。
CRI, as a simple, low investment, and operation cost-effective process, has a significant effect in the treatment of municipal sewage and polluted surface water and has a good full-scale application. But the total nitrogen (TN) and total phosphorus (TP) removal efficiency of CRI system and the treatment effect under the low temperature are poor. Besides, the filter is easy to be blocked and ecological landscape is poor. Therefore, the enhancing requirements on water quality limit its application and promotion.
     To solve the above problems, this thesis intended to add plants on the surface of the CRI pool to create eco-CRI (Ecology Constructed Rapid Infiltration, called ECRI system). This thesis investigated the ECRI system treatment efficiency of high concentration domestic sewage. On the basis, the effect of denitrification by adding sustained release carbon sources to increase the TN removal was further studied. Moreover, the ECRI system adding sustained release carbon source operating in winter was conducted.
     Gynura was planted on the surface of pool of ECRI system with anterior micro-aeration pretreatment and post-denitrification section. The operating parameters was set as: a fixed 1:5 ratio of wet to dry rate (WDR), hydraulic loading 0.8 m/d, 4 HLC per day, an inlet last for 0.5 h, the drying time is 5.5 h, and stable operation for 3 months. The results showed that the removal efficiencies of CODCr, NH4-N and SS were 94.4%, 97.0%, and 96.9%, respectively, which can meet the requirements of ClassⅠA of the National Wastewater Discharge Standard (GB 18918-2002). The effluent of TP meet the requirements of ClassⅠB of the National Wastewater Discharge Standard (GB 18918-2002), and the TN removal was less effective, only 68.9% was removed.
     After adding the sustained release carbon source in the denitrification sector, the removal efficiency of TN significantly increased to 80.0%. The 40cm-thick slow-release carbon source didn’t show obviously advantage than 20cm-thick, just with TN increasing from 88.0% to 89. 6 %. The increase of COD, NH4-N, and TP are not obvious. The scan electron microscopy (SEM) analysis showed that the surface of rotten branches dominated by filamentous bacteria and coccobacteria.
     The ECRI system can be operated under low temperature in winter using insulation layer outside the inlet pipe and film covering the ECRI pool to ensure that the system can be operated normally at about -10 oC in the north part of China. Nevertheless, the treatment effect was not as good as operating in summer. The removal of NH4-N, and TN most affected by the temperature, followed with COD, and TP was almost unaffected.
     The full-scale application of carbon source adding ECRI system was located in a highway service area in Anhui Province for treating domestic sewage. The entire system was operated stable with hydraulic loading rate 2.0 m/d. The effluent CODCr, NH4-N, and TN achieved the requirements of ClassⅠA of the National Wastewater Discharge Standard (GB 18918-2002). As a new eco-processing technology, ECRI system has good technical and economic performance, which has a good application prospect for highway service area sewage treatment.
引文
Amy G, Wilson L G, Conroy A, et al. Fate of Chlorination byproducts and nitrogen speciesduring effluent recharge and soil aquifer treatment. Water Environ. Res., 1993, 65: 726~734
    Arto L.Multilayer intermittent sand filter.Wat.Sci.Tech.,1993,28(10):125~132
    Arto Latvala.Multilayer intermittent sand filter [J]..Sci. Tech., 1993,Vo1.28, No.10,125-132.
    Boller M., Schwager A., Eugster J., et al. Dynamic behavior of intermittent buried filter. [J].Wat Sci Tech., 1993,28(10):99-107.
    Bosma T N P,Ballemans E M W,Hoekstra N K,et al.Biotransformation of organics in soilcolumns and an infiltration area.Ground Water,1996,34(1):49~56
    Boussaid F, Martin G, Morvan J.1988. Denitrification in-situ of groundwater with solid carbon matter. EnvironTechnol Lett,9:803~816.
    Brix H.Do macrophytes play a role in constructed treatment wetlands.Wat.Sci.Tech.,1997,35(54):11~17
    Brix H.Treatment of wastewater in the rhizosphere of wetland plants-the root-zone method.Wat.Sci.Tech.,1987,19:107~118
    Burgoon P S, Reddy K R, DeBusk T A. Performance of subsurface flow wetlands with batch-load and continuous-flow conditions. Water Environment Research., 1995, 67: 855~862 B.P.Willman,GW.Ptersen,andD.D.Fritton.RenovationofsePtietankeffiuentin sand一elaymixtures[J].EnvironQual.,1981,Vol.10,no.4,439一444.
    Buuren VJ.C.L., Abusam A., Zeeman G, et al. Primary effluent filtration in small scale installations [J]. Wat. Sci. Tech., 1999, 39(5): 195-202.
    Christine M.Rust,C.Marjorie Aelion,Joseph R.V.Flora.Control of pH during denitrificationin subsurface sediment microcosms using encapsulated phosphate buffer.Wat.Res.,2000,34(5):1447~1454
    Christoph Plazer,Klans Mauch.Soil clogging in Vertical flow reed beds-mechanisms, parameters,consequences and solutions.Wat.Sci.Tech.,1997,35(5):175~181
    Cochet C., Derangere D.,Rousselle T. Soil absorption systems and nitrogen removal. [J].Wat. Sci. Tech., 1990,22 (3,4): 109-116.
    Felde K V,Kunst S.N and COD removal in vertical flow system.Wat.Sci.Tech.,1997,35(5):79~85
    Green M,Friedler E,Ruskol Y,et al.Investigation of alternative method for nitrification inconstructed wetlands.Wat.Sci.Tech.,1997,35(5):63~70
    J.C.L.vanBuuren,A.Abusam,GZeemanandGLettinga.Primaryemuentfiltrationin small一scaleinstallations[J].Wat.Sei.Teeh.,1999,Vol.39,No.5:195一202.
    J.Nielsem,A.Lynggaard一JensenandA.Hashing.PurificationeffieieneyofDanishbiologicalsandfiltersystems [J]Wat.Sei.Teeh.,1993,Vol.28,No.10,89一97.
    Kemp M C, George D B. Subsurface flow constructed wetlands treating municipal wastewaterfor nitrogen transformation and removal. Water Environment Research., 1997, 69: 1254~1262
    Kutowy O,Guertin P,Tweddle T A,et al.Use of membranes for oil upgrading.Proc 35th Can Chem Eng Conf.Canada,1985,1:241~256
    Michael J.Baker,David W.Blowes,Carol J.Ptacek.Laboratory development of permeable mieroflora[J].Environ.Qual.,1981,Vol.10,No.3,361一364.
    Mikael P,Fred N,Hans L.Microbial numbers and activity during infiltration of septic-tankeffluent in a subsurface sand filter.Wat.Res.,1990,24(11):1347~1354
    Mikael P,Fred N.Infiltration of wastewater in a newly started pilot sand-filter system:I. System:11.DeveloPmentanddistributionofthebacterialPoPulations[J].Environ.Qual. , 1989 ,VOI.18:457一462.
    MikaelPellandFredNyberg.InfiltrationofwastewaterinanewlystartedPilotsand一filter Reduction of organic matter and phosphorus.Environ.Qual.,1989,18(3):451~457
    Nielsem J,Lynggaard J A,Hashing A.Purification efficiency of Danish biological sand filtersystem.Wat.Sci.Tech.,1993,28(10):89~97
    Pell M., Nyberg F. Infiltration of wastewater in a newly started pilot sand-filter system: III.Transformation of nitrogen [J].Environ Qnal., 1999,28:463-467.
    Powelson David K.,Gerba Charles P..Virus transport and removal in wastewater during aquifer recharge.Water Res.,1993,27(4):583~590
    R.Pujol,M.hamon,X.kandelandLemmel,Biofilters:flexible,reliablebiologieal reactive mixtures for removal of phosphorus from onsite wastewater disposal systems.Environ.Sci.&Tech.,1998,32(15):2308~2316
    Rolv Kristiansen.Sand-filter trench for purification of septic tank effluent:I.The cloggingmechanism and soil physical environment.Environ.Qual.,1981,10(3):353~357
    Schudel P, Boller M. Onsite wastewater treatment with intermittent buried filters. Wat. Sci.Tech., 1990, 22(3/4): 93~100
    Wang X L,Tsuru T,Nakao S,et al.The electrostatic and steric~hindrance model for the transport of charged solutes through nanofiltration membranes[J].Membr Sci,1997,135(1):19~32
    Weng P F.Silica scale inhibition and colloidal silica dispersion for reverse osmosis systems.Desalination,1995,103:59~67
    Wilson L G,Amy G L,Gerba C P,et al.Water quality changes during soil aquifer treatment oftertiary effluent.Water Environ.Res.,1995,67:371~376
    陈云霞.人工复合生态床处理村镇生活污水试验研究:[硕士学位论文].西安:西安建筑科技大学,2003
    崔程颖,马利民,张选军,赵建夫.人工快速渗滤系统对污染物的去除机制.环境污染与防治, 2007, 29, 95-98.
    崔程颖.新型人工强化土地渗滤系统工艺及技术研究[D].硕士论文,同济大学, 2006.
    崔理华,朱夕珍,李国学,等.北京西郊城市污水人工快滤处理与利用系统.中国环境科学,2000,20(1): 45~48
    崔理华,朱夕珍,骆世明.污水渗滤湿地处理系统技术的研究进展.应用生态学报,2003,14(4):623~626
    杜中典,崔理华,肖乡,等.污水人工湿地系统中有机物积累规律与堵塞机制的研究进展.农业环境保护,2002,21(5):474~476
    段永红,李曦,杨名远.我国城市污水处理市场化问题探讨[J].中国农村水利水电,2003,(4):11
    冯素飞.农业废弃生物质资源应用研究[D].山东农业大学, 2009
    高拯民,李宪法.城市污水土地处理利用设计手册.北京:中国标准出版社,1991
    顾夏声,李献文,竺建荣编.水处理微生物学(第三版)〔M〕.北京:中国建筑工业出版社,1998.
    郭伟,李培军.污水快速渗滤土地处理研究进展.环境污染治理技术与设备,2004,5(8):1~7
    国家环保总局.2004年中国环境状况公报.环境保护,2005,(7):3~9
    国家环境保护局科技标准司.城市污水土地处理技术指南.北京:中国环境科学出版社1997
    韩怀强、蒋挺大编著.粉煤灰利用技术[M].北京:化学工业出版社,2001.
    何江涛,段光杰,张金炳,等.污水渗滤土地处理系统中水力停留时间与出水效果的讨论.地球科学—中国地质大学学报,2002,27(2):203~208
    何江涛,马振民,张金炳,等.污水渗滤土地处理系统中的堵塞问题.中国环境科学,2003,23(1):85~89
    何江涛,张达政,陈鸿汉,等.污水渗滤土地处理系统中的复氧方式及效果.水文地质工程地质,2003,1:103~106
    何江涛,钟佐巢,汤鸣皋,陈鸿汉.人工构建快速渗滤污水处理系统的试验研究闭.中国环境科学,2002,No.3,239一243.
    何江涛,钟佐桑,汤鸣皋.解决污水快速渗滤土地处理系统占地突出的新方法[J].现代地质,2001,Vol.15,No.3,339一345.
    何江涛,钟佐燊,汤鸣皋,等.污水土地处理技术与污水资源化.地学前缘(中国地质大学,北京),2001,8(1):155~162
    何江涛.人工构建快速渗滤系统的试验研究:[博士学位论文].北京:中国地质大学(北京),2001
    黄健.高速公路生活污水处理设施简述[J].交通标准化, 2004, (01): 57~59.
    贾宏宇,孙铁珩,李培军,等.污水土地处理技术研究的最新进展.环境污染治理技术与设备,2001,2(1):62~65
    建设部,国家环境保护总局,科技部.城市污水处理及污染防治技术政策.环境保护,2000,(9):8~9
    建筑工程常用数据系列手册编写组.给水排水常用数据手册.北京:中国建筑工业出版社,2002.118~119
    姜桂华关于盆地地下水脆弱性研究.长安大学,2003,11(17)
    金相灿.湖泊富营养化控制和管理技术.北京:化学工业出版社,2003.1~20
    金赞芳,陈英旭,小仓纪雄.以纸为碳源去除地下水硝酸盐的研究[J].应用生态学报,2004,15(12):2359-2363.科学出版社,1997.
    刘家宝,杨小毛,王波等.改进型人工快渗系统处理污染河水中试[J].中国给水排水, 2006, 22(13): 14~17.
    刘家宝.人工快速渗滤系统污染物去除机理及其处理效果研究[博士学位论文].北京:中国地质大学(北京),2006
    刘江下霞,罗泽娇等.地下水有氧反硝化的固态有机碳源选择研究[J].生态环境,2008,17(1):41-46.
    刘玉环,阮榕生,蒋启海等.木质纤维素及其组分转化木材胶黏剂的发展趋势[J].世界林业研究,2006,19(5):49-53.
    刘志强,苗群,华学军,魏秀娟.复合床快速渗滤系统的研究[J].青岛建筑工程学院学报,1995,Vol.16,No.3:37一44.
    娄金生,谢水波,何少华,等.生物脱氮除磷原理及应用.长沙:国防科技大学出版社,2002.165~169
    钱易、米祥友编,《现代废水处理新技术》,中国科学技术出版社,1993; 7~9
    齐兵强,曝气生物滤池研究.博士学位论文.北京:清华大学环境科学与工程系,2001.
    唐受印,汪大翚.废水处理工程.北京:化学工业出版社,1998
    伶玉衡编.实用废水处理技术[M].北京:化学工业出版社,1998.10.
    完颜华,李立房,崔金贵.坡度、水力负荷及布水方式对地表漫流系统冲刷率的影响.兰州铁道学院学报,1994,13(3):49~54
    汪民,吴永锋,钟佐燊,等.污水快渗渗滤土地处理.北京:中国地质出版社,1993
    王禄,喻志平,赵智杰.人工快速渗滤系统氨氮去除机理.中国环境科学, 2006, 26, 500~504.
    王宝贞,王琳.水污染治理新技术.北京:科学出版社,2003
    王宝贞,王琳.水污染治理新技术~新工艺、新概念、新理论.北京:科学出版社,2004.11~25
    王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001.1~59
    王立久,张苗苗.生物陶粒在污水处理中作滤料的研究与应用.工业水处理网络版, 2005, 5,1-4.
    吴永锋,汪民,钟佐燊,等.污水快速渗滤处理系统水力负荷周期的设计.环境科学,1996,17(2):51~53
    吴永锋,钟佐燊,王继堂,等.生活污水快速渗滤处理现场试验研究.环境科学学报,1996,16(3):282~286
    许保玖、龙腾锐,《当代给水与废水处理原理》,高等教育出版社,2001.6
    薛强,张国臣,陈鸿汉,何江涛.人工快渗强化预处理研究.环境工程, 2008, 26, 33-35.
    薛强.人工快速渗滤系统的预处理和强化复氧的研究.中国地质大学(北京)硕士学位论文.
    余杰,陈鸿汉,田宁宁,等.新型防粘闭污水土地处理系统的研究与应用.环境污染治理技术与设备,2004,5(6):54~58
    袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析.环境科学,2005,26(1):51~55
    曾扬,安贞煌.土地处理技术在污水资源化中的应用.环境污染治理技术与设备,2003,4(9):77~80
    张国臣,陈鸿汉,何江涛.高速公路附属区污水人工快渗处理系统技术实践[J].公路交通科技(应用技术版), 2007, (08): 188~192.
    张国臣.人工快速渗滤系统处理高氨氮生活污水的试验研究[D].北京:中国地质大学(北京),2008.
    张金炳,汤鸣皋,陈鸿汉,钟佐,邓雁,宋志勇.人工快渗系统处理洗浴污水的试验研究.岩石矿物学杂志. 2001, 20, 539-543.
    张金炳,陈鸿汉,钟佐燊等.人工快速渗滤复合系统处理洗浴污水的试验研究[J].水文地质工程地质, 2001, 28(6): 30~32, 42.
    张金炳,黄培鸿,杨小毛.东莞华兴电器厂生活污水人工快速渗滤处理系统.环境工程2003,21(6):32~35
    张金炳,汤鸣皋,钟佐燊.人工快渗系统处理洗浴污水的试验研究.岩石矿物学杂志2001,20(4):539~543
    张金炳,张永华,杨小毛等.用人工快速渗滤系统处理受污染河水的试验研究[J].华北水利水电学院学报, 2004, 25(3): 65~67, 77.
    张金炳.污水处理人工快速渗滤系统研究:[博士学位论文].北京:中国地质大学,2002
    张建,黄霞,魏杰,等.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学2002,22(5). 438~441
    张凯松,周启星,孙铁珩,等.城镇生活污水处理技术研究进展.世界科技研究与发展,2005
    张凯松,周启星,孙铁珩,等.城镇生活污水处理技术研究进展.世界科技研究与发展2003,25(5):5~10
    张忠祥,钱易主编.废水生物处理新技术.北京:清华大学出版社,2004.562~572
    赵庆良,刘雨.废水处理与资源化新工艺.北京:中国建筑工业出版社,2006.135~141
    郑平,冯孝善主编.废水生物处理.北京:高等教育出版社,2006.370~418
    郑兴灿等,污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998. 11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700