跨流域调水远程受水区水资源规划若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是一切生命赖以生存的自然资源,人类社会的发展离不开水资源的开发与利用。近年来,随着我国社会经济的快速发展,很多水资源禀赋较差的地区,水资源纷纷告急。由于我国水资源时空分布极为不均,南方水多,北方水少。跨流域调水已经成为我国解决水资源危机的重要途径之一。调水工程往往路线长,布局复杂,而一些远程受水区因其政治经济地位显著,往往是调水工程补水的重中之重。由于远程受水区距离水源区遥远,与水源区水文特性往往差异显著,而且漫长的距离使得工程建设技术难度高、投资耗费大。如果对其水资源的规划不足,决策有误,就会因过大的工程量造成巨大的经济损失。如果确定的调水量过小,会给远程受水区遗留水资源问题;而受到调水距离、工程难度的限制,遗留的水资源问题在今后很难弥补。所以对远程受水区的水资源规划进行深入的研究,对调水工程的实施与运行有着重要的意义。
     虽然目前对远程受水区的规划仍然存在很多问题,但是在众多的问题中最基础、最关键的问题是对远程受水区水资源系统的分析、对远程受水区未来发展阶段需水量的预测,以及远程受水区与水源区之间的水文联合特性等,这些问题对于调水的可行性、补水方案的制定都十分关键。所以本文针对跨流域调水工程规划中远程受水区的水资源利用变动分析及需水预测、水资源可持续评价及水资源系统的演化机理、不同水文区降水丰枯遭遇分析等关键问题,以EW调水工程远程受水区为对象进行了研究。主要研究内容和成果如下:
     (1)受水区水资源利用变动分析研究。针对因素分解法进行水资源利用变动分析时存在残差的问题,引入了无残差的LMDI完全分解法进行分解分析。通过在EW调水工程远程受水区的应用,表明非完全分解的拉氏法和帕氏法的残差都较大,应谨慎使用;简单平均迪氏法的残差较拉氏法和帕氏法的残差小很多,而LMDI的分解效果最好,残差为0。
     (2)受水区需水预测研究。在目前的需水预测中,往往缺乏对用水机理的深入分析。本文通过对因素分解法完全分解及非完全分解公式的分析推导,在寻找用水量驱动因子与其对应驱动水量之间相关关系的基础上,发展了基于因素分解法的需水预测模型。结合EW调水工程远程受水区的实例验证,表明该法的预测准确度较高,预测结果可靠。
     (3)受水区水资源可持续利用水平评价研究。对于跨流域调水工程的受水区,由于水资源严重匮乏,供水子系统对水资源系统的运行状态有着极大的影响;而且由于水资源的缺乏,受水区生态环境往往也很脆弱。针对这样的特点,从供水水平、用水水平、社会经济发展水平及生态环境建设水平等四个方面建立指标体系;考虑到区域水资源复合系统的复杂性及模糊性,采用可变模糊评价模型及径向基函数网络(Radial Basis Function Network,简称RBF)对远程受水区1980-2009年以及2015规划年的水资源可持续利用水平进行评价。基于评价结果对受水区水资源利用的“态”和“势”分别进行了分析,并对2015规划年远程受水区不调水的情景与调水情景进行了对比。
     (4)受水区水资源复合系统演变轨迹研究。清楚认识受水区水资源系统演化的机理是有效监测和调控受水区社会经济和水资源(环境)适宜发展的基础。针对Logistic增长模型在描述区域水资源复合系统演变轨迹时不能够反映演变模式多样性的问题,在对区域水资源复合系统可持续发展特点进行理论分析的基础上,引入了更有弹性的Richards模型来描述区域水资源复合系统的演变过程。根据系统发展速度的不同,将区域水资源复合系统的演变模式分为迅速崛起型、缓慢崛起型和前后相近型。并利用自组织演化理论分析了区域水资源复合系统可持续发展的长期演变轨迹,分析表明区域水资源系统长期的演变轨迹并非完全的连续性路径演化,而是连续性渐变和间断性“涨落”的结合。“涨落”中孕含着动力,潜藏着时机,对于跨流域调水工程的受水区,由于水资源极其缺乏,水资源系统脆弱,“涨落”现象的出现更应该被重视,而不应该被忽视。这对于提高受水区水资源系统的稳定性和抗干扰性,引导系统的良性发展,实现受水区水资源复合系统的可持续发展有着重要的意义。最后,基于对受水区可持续利用水平的评价结果,利用Richards演化机制,对远程受水区水资源复合系统的演化特征进行了分析。
     (5)不同水文区降水丰枯遭遇研究。针对一般多元Copula方法在进行多维变量频率分析时未能考虑变量间局部相关特性的缺陷,引入Pair-Copula建模方法,该法允许引入不同类型的Copula分布函数,可以准确地捕捉到随机变量之间存在的局部相关结构。通过在EW调水工程水源区、通过区及远程受水区三个水文区降水丰枯遭遇分析中的应用发现:即使在三维情形下,水文变量之间都会存在明显的局部相关结构,以至于无法使用一般三元Copula分布拟合;而通过Pair-Copula方法逐层引入不同类型的Copula,可以较好的描述水文变量之间的复杂相关结构,有效地对多元随机变量进行相关性分析。
Water is the fundamental substance for all lives on the earth. The development of human society cannot live without the exploitation and utilization of water resources. In recent years, Water shortages are already a major issue in many regions with China's rapid development of economic and social. Due to the unbalanced distribution of water resources, interbasin water transfer has become an important way to solve the water crisis in China. Water diversion projects are often long and complex route, which some remote intake areas are often the most important replenishment of the water diversion project because these areas have significantly political and economic position.
     Due to remote intake areas are far away from water resources area, their hydrologic characteristics are significantly different. And constructions technical are difficulties and the investments are high. If the preliminary planning of remote intake areas is wrong, the large amount of engineering will cause huge economic losses; or the determined volume of water is too small, the problem of water scarcity has still not been solved fundamentally in intake area. Therefore, it is great significance to study the water resources planning in remote intake area for the implementation and operation of the water diversion project.
     Of many problems, the most basic and critical points are the analyses of water resources system and water demand prediction in intake area. For remote intake area, the hydrological properties are often great different from water source area, the joint hydrological characteristics of remote area and water resources area are crucial to the formulation of the transfer scheme. In this paper, the remote intake area in EW inter-basin water transfer project are taken as a research object, some research on these problems above were done The main research contents and results are as follows:
     (1) Analysis on the utilization change of water in intake area. A complete decomposition method-log mean divisia index method (LMDI) is introduced for analyzing the change of water use because general factor decomposition leaves over residual. Through the application in the intake area of EW water transfer project, it shows that:the residuals of Laspeyres decomposition (LAS) and Paache decomposition (PAA) are large, these two methods should be used with caution; the residual of Arithmetic Mean Divisia Index decomposition (AMDI) is much small, LMDI has the best decomposition effect, its residual is
     (2) The water demand prediction in intake area. At present, the prediction accuracy of water demand is not satisfied due to the mechanism analysis on water utilization is lacked. In this paper, a new forecasting model is developed by analyzing the correlation between water drive factor and its corresponding drive water based on the derivation of completely factor decomposed and non-complete factor decomposition formula. Through the application in the intake area of EW water transfer project, it shows that the prediction accuracy of this method is high and the method has great practical value.
     (3) Evaluate the levels of water sustainable use in intake area. Due to the severe shortage of water resources, the ecological environment is often weak in intake area of water transfer project; water supply subsystem and ecological environment subsystem have a great influence on the whole water system. Taken into account such characteristics, an index system is constructed from the four aspects:water supply level, water use level, socio-economic level and ecological environmental level. The variable fuzzy evaluation model and radial basis function networks (RBF) are adopted by considering the complexity and vagueness of the composite system of regional water resources. Through the evaluation on the intake area of EW water transfer project in1980-2009and2015, the "state" and "potential" of water resources utilization in the intake area are analyzed, and the diversion scenarios are compared with non-diversion scenarios.
     (4) Study on the evolution of water resources composite system in intake area. Understanding the evolution mechanism of water resources composite system is the foundation of monitoring and regulation of the development of socio-economic and water environment in intake area. Logistic growth model can not reflect the diversity of evolution pattern in the analysis on water resources complex system. So, Richards model is introducted to describe the evolution of water resources composite system based on the analysis on the characteristics of sustainable development of the composite system of regional water resources. Depending on the speed of system development, the evolution of the composite system of regional water resources model is divided into the type of rapid rise, the the type of slow rise and the type of symmetry. And the long-term evolution of the complex system of regional water resources for sustainable development is analyzed by using self-organizing evolutionary theory. It shows that the long-term evolution of the water resources system is not completely continuous path, but the combination of continuous gradient and intermittent fluctuations. Fluctuations imply the new opportunities and dynamics of development. Fluctuation phenomenon should be given greater prominence, but not be ignored because the water resources systems are more vulnerable in intake area. This is of great significance for improving the stability and robustness of the receiving area of water resources systems. Finally, the evolutionary characteristics of the intake area of EW water transfer project are analysized by using Richards evolutionary mechanisms.
     (5) Analysis of asynchronism-synchronism of regional precipitations in inter-basin water transfer areas. The local characteristics of multi-dimensional random variables are seldom considered in general modeling method of multivariate copula. A new modeling method, so called Pair-Copula Construction, is introduced to remedy this defect. Different types of copula distribution functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitations in EW inter-basin water transfer areas, pair-copula construction method is compared with general modeling method of multivariate copula. It shows that the local dependence structure would exist among hydrologic variables even in three dimensional cases. In this situation, general modeling method of multivariate copula would face difficulties in fitting distribution. However, pair-copula construction could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions.
引文
[1]沈福新,耿雷华,曹霞莉,等.中国水资源长期需求展望.水科学进展.2005,16(4):552-555.
    [2]沈大军,刘斌,郭鸣荣,等.以供定需的水资源配置研究——以海拉尔流域为例.水利学报.2006,37(11):1398-1402.
    [3]水利电力部水利水电规划总院.中国水资源利用.1986.
    [4]国务院.中国21世纪议程——中国21世纪人口、环境与发展白皮书.1994.
    [5]水利部规划计划司.全国水中长期供求计划.1998.
    [6]王忠静,熊雁晖,赵建世.基于区域经济层次交互分析的流域需水预测方法.水力发电学报.2004,23(5):78-82.
    [7]工煜.灰色系统理论在需水预测中的应用.系统工程.1996,14(1):60-64.
    [8]巩琳琳.基于遗传模拟退火算法的神经网络模型在陕西省需水预测中的应用.地下水.2006,28(5):10-13.
    [9]雷雨,郑旭荣,李玉芳,等.神经网络方法在城市需水量预测中的应用.石河子大学学报(自然科学版).2006,24(1):22-25.
    [10]Wu L, Zhou HC. Urban water demand forecasting based on HP filter and fuzzy neural network. Journal of Hydroinformatics.2010,12(2):172-184.
    [11]段凯,梅亚东,周研来,等.基于耦合主成分法的小波网络模型城市需水预测.人民长江.2010,41(24):32-34.
    [12]Simon Kuznets. Econoic growth and income inequality. American Economic Review.1955, 45(1):1-28.
    [13]Grossman G. M., Krugeger A. B. Environmental impact of a north American Free Trade Agreement. National Bureau of Economic Research, MA:Cambridge,1991.
    [14]贾绍凤,张士锋,杨红,等.工业用水与经济发展的关系——用水库兹涅茨曲线.自然资源学报.2004,19(3):279-284.
    [15]Jia S, Yang H, Zhang S, et al.Industrial water use Kuznets curve:Evidence from industrialized countries and implications for developing countries. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE.2006,132(3):183-191.
    [16]刘渝,杜江,张俊飚.中国农业用水与经济增长的Kuznets假说及验证.长江流域资源与环境.2008,17(4):593-597.
    [17]袁洪林,高波,孟庆佳.河北省农业用水的经济规律研究.河北农业科学.2010,14(1):97-98.
    [18]侯培强,任珺,赵乃妮,等.上海市用水量与经济发展的关系研究.环境科学与管理.2008,33(2):58-60.
    [19]何希吾,顾定法,唐青蔚.我国需水总最零增长问题研究.自然资源学报.2011,26(6): 901-909.
    [20]贾绍凤.工业用水零增长的条件分析——发达国家的经验.地理科学进展.2001,20(1):51-59.
    [21]柯礼丹.人均综合用水量方法预测需水量—观察未来社会用水的有效途径.地下水.2004,26(1):1-5.
    [22]左其亭.人均生活用水量预测的区间S型模型.水利学报.2008,39(3):351-354.
    [23]张志果,邵益生,徐宗学.基于恩格尔系数与霍夫曼系数的城市需水量预测.水利学报.2010,41(11):1304-1309.
    [24]ED M. The management of water resources:a synthesis of goal programming and input-output analysis with application to the Iowa economy:(博士学位论文). Iowa State University,1980.
    [25]汪党献,王浩,倪红珍,等.国民经济行业用水特性分析与评价.水利学报.2005,36(2):167-173.
    [26]杨蕾.安徽省供水业的投入产出分析:(硕士学位论文).合肥:合肥工业大学,2005.
    [27]S L, R M, J S. Index number analysis of Namibian water intensity. Ecological Economics. 2006,57 (3):374-381.
    [28]JF B, S R. Water use intensities and the composition of production in Canada. Journal of Water Resources Planning and Management.2010,136(1):72-76.
    [29]贾绍凤,张士锋,夏军,等.经济结构调整的节水效应.水利学报.2004,35(3):111-116.
    [30]孙才志,王妍.基于因素分解模型的辽宁省用水变化驱动力测度及时空分异.干旱区地理.2009,32(6):850-858.
    [31]马宏志.石羊河流域水资源承载能力分析:(博士学位论文).北京:清华大学,1998.
    [32]施雅风,曲耀光.乌鲁木齐河流域水资源承载力及其合理利用.北京:科学出版社,1992.
    [33]Forrester J. W.. Industrial dynamics.M.I. T Press,1961.
    [34]王建华,江东,顾定法,等.基于SD模型的干旱区城市水资源承载力预测研究.地理学与国土研究.1999,15(2):19-23.
    [35]李丽娟,郭怀成,陈冰等.柴达木盆地水资源承载力研究.环境科学.2000,21(2):20-23.
    [36]陈冰,李丽娟,郭怀成,等.柴达木盆地水资源承载方案系统分析.环境科学.2000,21(3):16-21.
    [37]惠泱河,蒋晓辉,黄强,等.二元模式下水资源承载力系统动态仿真模型研究.地理研究.2001,5(2):191-198.
    [38]Loucks D., Sustainable water resources management. Water International.2000,25(1): 3-10.
    [39]Walmasley J., Framework for measuring sustainable development in catchment systems. Environment Management.2002,29(2):195-206.
    [40]徐中民.情景基础的水资源承载力多目标分析理论及应用.冰川冻土.1999,21(2):99-106.
    [41]薛小杰,惠泱河,黄强,等.城市水资源承载力及其实证研究.西北农业大学学报.2000,28(6):135-139.
    [42]王嫒,徐利淼.天津水资源承载力与经济协调发展研究.天津师范大学学报(自然科学版).2003,23(1):68-72.
    [43]高彦春,刘昌明.区域水资源开发利用的闽限分析.水利学报.1997, (8):74-80.
    [44]阮本清,韩宇平,王浩,等.水资源短缺风险的模糊综合评价.水利学报.2005,36(8):906-912.
    [45]金菊良,洪天求,王文圣.基于熵和FAHP的水资源可持续利用模糊综合评价模型.水力发电学报.2007,26(4):22-28.
    [46]胡吉敏.沿海地区水资源承载力评价研究:(博士学位论文).大连:大连理工大学,2008.
    [47]李敏.基于可变模糊集理论的径流预报方法研究:(博士学位论文).大连:大连理工大学,2008.
    [48]吴丽.城市水资源系统中若干重要问题的研究:(博士学位论文).大连:大连理工大学,2009.
    [49]宋松柏,蔡焕杰.区域水资源可持续利用评价的人工神经网络模型.农业工程学报.2004,20(6):89-92.
    [50]杨晓华,杨志峰,沈珍瑶,等.区域水资源开发利用程度评价的RBF网络模型.环境科学.2004,25(S):31-34.
    [51]张先起,刘慧卿,梁川.云南水资源可持续利用程度评价的自组织神经网络模型.长江流域资源与环境.2007,16(4):456-460.
    [52]傅春,欧阳莹,陈炜.环鄱阳湖区水足迹的动态变化评价.长江流域资源与环境.2011,20(12):1520-1524.
    [53]门宝辉,梁川.水质量评价的物元分析法.哈尔滨工业大学学报.2003,35(3):358-361.
    [54]冯尚友,梅亚东,刘国全.水资源生态经济复合系统及其持续发展.武汉水利电力大学学报.1995,28(6):62-64.
    [55]Ludwig Von Bertalanffy. General System Theory:Foundations, Development, Applications George Braziller,2003.
    [56]Ilya Prigogine. The End of CERTAINTY:Time,Chaos,and the New Laws of Nature. New York: Free Press,1997.
    [57]Haken H. Synergetics, an introduction. New York:Berlin Heidelberg,1975.
    [58]艾南山.侵蚀流域系统的信息熵.水土保持学报.1987,1(2):1-8.
    [59]岳天祥,艾南山,张英保.论流域系统稳定性的判别指标——超熵.水土保持学报.1989,3(2):20-28.
    [60]蒋忠信.泥石流流域系统的超熵.中国地质灾害与防治学报.1992,3(1):35-42.
    [61]畅建霞,黄强,王义民,等.基于耗散结构理论和灰色关联熵的水资源系统演化方向判别模型研究.水利学报.2002, (11):107-112.
    [62]戴洪刚,梁虹,黄法苏,等.基于灰关联熵的喀斯特地区枯水资源演化趋势的探讨——以贵阳 地区为例.中国岩溶.2006,25(1):18-22.
    [63]姜纪沂,张宇东,谷洪彪,等.基于灰色关联熵的地下水环境演化模式判别模型研究.吉林大学学报(地球科学版).2009,39(6):1111-1116.
    [64]刘燕,胡安焱,邓亚芝.基于信息熵的用水系统结构演化研究.西北农林科技大学学报(自然科学版).2006,36(6):141-144.
    [65]具杏祥,宋春山.基于耗散结构理论和信息熵的河流系统水质演化模型的研究.黑龙江水利科技.2006,34(1):1-3.
    [66]刘丙军,陈晓宏,雷洪成,等.流域水资源供需系统演化特征识别.水科学进展.2011,22(3):331-336.
    [67]韩雁,黄跃飞,王光谦,等.基于区间不确定性水资源复杂系统的协调演化研究.水利学报.2011,42(8):892-898.
    [68]李爱花,李原园,郦建强.水资源与经济社会及生态环境系统协同发展初探.人民长江.2011,42(18):117-121.
    [69]冯宝平,张展羽,贾仁辅.区域水资源可持续利用机理分析.水利学报.2006,37(1):16-20.
    [70]丛方杰,周惠成.区域水资源复合系统可持续发展机制研究.水科学进展.2008,19(4):512-518.
    [71]郑红星,刘昌明.南水北调东中两线不同水文区降水丰枯遭遇性分析.地理学报.2000,55(5):523-532.
    [72]韩宇平,蒋任飞,阮本清.南水北调中线水源区与受水区丰枯遭遇分析.华北水利水电学院学报.2007,28(1):8-11.
    [73]王玉峰,贺顺德,贾新平,等.南水北调东线工程向黄河相机补水研究.人民黄河.2007,29(2):3-5.
    [74]费永法.多元随机变量的条件概率计算方法及其在水文中的应用.水利学报.1995,(8):60-66.
    [75]戴昌军,梁忠民.多维联合分布计算方法及其在水文中的应用.水利学报.2006,37(2):160-165.
    [76]郭生练.设计洪水研究进展与评价.北京:中国水利水电出版社,2005.
    [77]Guo S. Flood Frequency Analysis Based on Parametric and Nonparametric Statistics:(博 士). Galway:National University of Ireland,1990.
    [78]Silverman B. Density Estimation for Statistics and Data Analysis. London:Chapman and Hall,1986.
    [79]Lall U, Bosworth K.Multivariate kernel estimation of functions of space and time hydrologic data. Stochastic and statistical methods in hydrology and environmental engineering.1994,3:301-315.
    [80]王文圣,丁晶.基于核估计的多变量非参数随机模型初步研究.水利学报.2003,02(2):9-14.
    [81]康玲,何小聪,熊其玲.基于贝叶斯网络理论的南水北调中线工程水源区与受水区降水丰枯遭遇风险分析.水利学报.2010,41(8):908-913.
    [82]Sklar. Fonctions de repartition a n dimensions et leurs marges.Publ. Inst. Statist. Univ.1959, (8):229-231.
    [83]Genest C, MacKay J. The joy of copulas:Bivariate distributions with uniform marginals. American Statistician.1986, (40):280-283.
    [84]Joe. Parametric families of multivariate distributions with given marginals. Journal of Multivariate Analysis.1993, (46):262-282.
    [85]Joe. Multivariate models and dependence concepts. New York:Chapman and Hall,1997.
    [86]Frees E, Valdez E. Understanding relationships using copulas.North American Actuarial Journal.1998,2(1):1-25.
    [87]Nelson R.An Introduction to copulas. New York:Springer,1999.
    [88]闫宝伟,郭生练,肖义.南水北调中线水源区与受水区降水丰枯遭遇研究.水利学报.2007,38(10):1178-1185.
    [89]冯平,牛军宜,张永,等.南水北调西线上程水源区河流与黄河的丰枯遭遇分析.水利学报.2010,41(8):900-907.
    [90]辽宁省水利厅.大伙房水库输水应急入连工程概况[Z].2008.
    [91]大连市水务局,大连理工大学,大连市水利科学研究所,等.气候变化和人类活动对大连市水资源的影响研究[Z].2010.
    [92]中华人民共和国水利部.用水指标评价导则(征求意见稿)[z].2010.
    [93]大连市第十届人民代表大会常务委员会第十九次会议通过,辽宁省第七届人民代表大会常务委员会第十七次会议批准.大连市城市总体规划[z].1990.
    [94]大连市水务局.大连市水资源公报(2001-2009)[Z].大连.
    [95]FAO国际粮农组织.国际粮农组织各国水和食品统计数据[Z].2001.
    [96]陆志波,陆雍森,王娟ARIMA模型在人均生活用水量预测中的应用.给水排水.2005,31(10):97-101.
    [97]中国信息协会国际会展部.建设节约型社会专题-数字节约[z].2010.
    [98]国家统计局中华人民共和国发展改革委水利部.关于2008年各地区万元工业增加值用水量的情况通报[Z].2010.
    [99]李理,张兴文,曹伟娜.大连市建立节水型城市成果浅析.水资源保护.2008,24(Supplement 1):124-129.
    [100]中华人民共和国水利部.十一五大连市节水型社会建设工作总结[Z].2010.
    [101]大连市水务局,大连市水利建筑设计院.大连市水资源供需十一五及2020年规划[Z].大连:2006.
    [102]大连理工大学,大连市水务局.大连市水资源合理配置及初始水权问题研究[Z].大连:2008.
    [103]大连市水务局,大连理工大学,大连市水利建筑设计院.大连市水资源可持续利用综合规划[Z].2010.
    [104]张爱静,张弛,王本德.碧流河水库对下游径流情势的影响分析.水文.2009,29(6):28-32.
    [105]Ang B, Zhang F. A survery of index decomposition analysis in energy and environmental studies. Energy.2000,25(12):1149-1176.
    [106]Boyd G, Roop J. A note on the fisher ideal index decomposition for structural change in energy intensity. Energy.2004,25(1):87-101.
    [107]Ang B, Liu F. A new energy decomposition method:perfect in decomposition and consistent in aggregation. Energy.2001,26(6):537-548.
    [108]Diewert W. Exact and superlative index numbers. Econometrics.1976,4):114-145.
    [109]Diewert W. Superlative index numbers and consistency in aggregation. Econometrica.1978, (46):883-900.
    [110]Ang B. Decomposition methodology in industrial energy demand analysis.Energy.1995,20(11):1081-1095.
    [111]Ang B, Lee S. Decomposition of industrial energy consumption:Some methodological and application issues. Energy economics.1994,16(2):83-92.
    [112]Liu X, Ang B, Ong H. Interfuel substitution and decomposition of changes in industrial energy consumption.Energy.1992,17(7):689-696.
    [113]Vartia Y.Relative changes and economic Indices:(University of Helsinki,1974.
    [114]大连市第十四届人民代表大会第四次会议批准.大连市国民经济和社会发展第十二个五年规划纲要[Z].2011.
    [115]中共大连市九届五次全会审议.建设“大大连”规划纲要[Z].2003.
    [116]易军.建设旅顺南路高新技术产业带.大连干部学刊.2003, (3):23.
    [117]贺丽媛,夏军,张利平.水资源需求预测的研究现状及发展趋势.长江科学院院报.2007,24(1):61-64.
    [118]张建勋.合理预测需水要求实现水资源可持续利用.浙江水利科技.2002, (4):7-8.
    [119]冯尚友.水资源持续利用与管理导论.北京:科学出版社,2000.
    [120]Loucks DP.水资源系统规划与分析.北京:水利电力出版社,1988.
    [121]丛方杰.基于水基和复杂适应理论的北方沿海城市水资源可持续利用研究:(博士学位论文).大连理工大学,2008.
    [122]柴智平.基于经济发展阶段的水资源承载能力研究:(硕士学位论文).大连:大连理工大学,2011.
    [123]彭慧.基于水资源可再生性评价的大连市水资源合理配置研究:(博士学位论文).大连:大连理工大学,2009.
    [124]姜文来,唐曲,雷波,等.北京:化学工业出版社,2005.
    [125]陈守煜.水资源与防洪系统可变模糊集理论与方法.大连:大连理工大学出版社,2005.
    [126]Saaty T.How to make a decision:The analytic hierarchy process.European Journal of Operational Research.1990,48(1):9-26.
    [127]王莲芬,徐树柏.层次分析法引论.北京:中国人民大学出版社,1990.
    [128]Singh V. The use of entropy in hydrology and water resources, hydrological Processes. 1997,11:587-626.
    [129]朱雪龙.应用信息论基础.北京:清华大学出版社,2001.
    [130]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000.
    [131]Moody J, Darken C. Fast Learning in Networks of Locally-tuned Processing. Neural Computation.1989, (1):281-294.
    [132]大连市水务局,大连市水利建筑设计院.2020年大连市水资源供需预测与对策研究[Z].2005.
    [133]大连市水利建筑设计院.引洋入连供水工程项目建议书[Z].大连:2005.
    [134]大连市地方志编纂委员会办公室.大连年鉴(1987-1994)[Z].大连出版社.
    [135]大连市史志办公室.大连年鉴(1995-2003)[Z].大连出版社.
    [136]中共大连市委员会主管大连市史志办公室主办.大连年鉴(2004-2008)[Z].大连出版社.
    [137]刘丕基.大连社会经济发展通鉴1978-1998[Z].大连市统计局,1999.
    [138]大连市水利建筑设计院.输水应急入连工程可行性研究报告[Z].大连:2005.
    [139]大连统计局.大连市国民经济和社会发展统计公报(1998-2009)[Z].
    [140]梅业东,冯尚友.水资源复合系统基本特征的探讨.水科学进展.1992,03(1):31-36.
    [141]冯宝平,张展羽,贾仁辅.区域水资源可持续利用机理分析.水利学报.2006,37(1):16-20.
    [142]李文灿.对Logistic方程的再认识.北京林业大学学报.1990,12(2):121-128.
    [143]邢黎峰,孙明高,王元军.生物生长的Richards模型.生物数学学报.1998,13(3):348-353.
    [144]Yang YQ, Wu LH, Wu JM. On the Richards curve. Journal of Biomathematics, 2000,15(4):385-387.
    [145]王本德,周惠成.水库汛限水位动态控制理论与方法及其应用.北京:中国水利水电出版社,2006.
    [146]工峰.水电站水库优化调度模型及GFS预报信息的应用研究:(硕士学位论文).大连:大连理工大学,2007.
    [147]赵景柱.持续发展的理论分析.生态经济.1991, (2):12-15.
    [148]颜泽贤,陈忠,胡皓.复杂系统演化论.北京:人民出版社,1993.
    [149]曹利军.区域可持续发展轨迹及其度量.中国人口.资源与环境.1998,8(2):46-50.
    [150]朱正元,陈伟侯,陈丰. Logistic曲线与Gompertz曲线的比较研究.数学的实践与认识.2003,33(10):66-71.
    [151]Yue S.Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfall. Hydrological Sciences Journal.2000,45 (2):315-326.
    [152]Yue S. The Gumbel logistic model for representing a multivariate storm event. Advances in Water Resources.2000,24:179-185.
    [153]Yue S. A review of bivariate gamma distributions for hydrological application. Journal of Hydrology.2001,246:1-18.
    [154]Song S, Singh V. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess.2010,24 (5):783-805.
    [155]Wong G, Lambert M F, Leonard M, et al. Drought Analysis Using Trivariate Copulas Conditional on Climatic States. Journal of Hydrologic Engineering.2010,15 (2):129-141.
    [156]Zhang L, Singh V. Gumbel-Hougaard Copula for Trivariate Rainfall Frequency Analysis. Journal of Hydrologic Engineering.2007,12 (4):409-419.
    [157]牛军宜,冯平,丁志宏.基于多元Copula函数的引滦水库径流丰枯补偿特性研究.吉林大学学报(地球科学版).2009,39(6):1095-1100.
    [158]Asa K, Czado C, A Frigessi E. Pair-copula constructions of multiple dependence. Insurance:Mathematics and Economics.2009,44 (2):182-198.
    [159]温晓虹.高维相关建模的pair-copula方法及其应用:(硕士学位论文).厦门大学,2009.
    [160]Bedford T, Cooke R. vine-a new graphical model for dependent random variables. Annals of Statistics.2002,30 (4):1031-1068.
    [161]Rosenblatt M.Remarks on a multivariate transformation. Annals of Statistics.1952, 23:470-472.
    [162]Dobric J, Schmid F. A goodness of fit test for copulas based on Rosenblatt's transformation. Computational Statistics & Data Analysis.2007,51 (9):4633-4642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700