花生四烯酸发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生四烯酸(ArachidonicAcid,简称AA,即5,8,11,14.二十碳四烯酸)属于ω-6系列长链多不饱和脂肪酸,是人体前列腺素、凝血噁烷、环前列腺素、白三烯合成的重要前体物质,具有多种生理活性。AA被广泛应用于医药、化妆品、食品、农业及其他领域。目前,高山被孢霉发酵法被公认为AA最好的工业化生产方法。但至今此生产方法发酵过程AA含量难以控制,饱和、单不饱和脂肪酸含量过高以及葡萄糖转化率低等关键问题没有得到解决。本文引入代谢工程的方法研究Mortierella alpina ME-1体内AA合成过程,采用多种策略提高AA单产水平。
     1.应用响应曲面法优化花生四烯酸发酵培养基
     通过响应曲面优化法优化了Mortierella alpina ME-1发酵生产生物质及AA的培养基组成。生成了2个经验多项式模型。根据模型优化,最优的生物质发酵培养基组成为:葡萄糖90.16g/L,酵母膏12.50g/L,KH_2PO_4 3.80g/L,NaNO_33.54 g/L。生物质单产水平预测为36.86 g/L。最优的AA发酵培养基为:葡萄糖103.16g/L,酵母膏11.66g/L,KU_2PO_4 3.80g/L,NaNO_3 3.43 g/L。该培养基下,AA单产水平预测为9.65 g/L。验证试验表明这两个模型较好的解释了生物质及AA的生成,预测值与实际值十分接近。同时发酵罐试验表明优化后的培养基同样提升了罐上的发酵水平:最大生物量34.21±1.01 g/L;最大AA单产水平9.86±0.45 g/L。
     2.花生四烯酸合成过程的代谢通量分析与调控
     代谢通量分布分析已经成为研究发酵过程特性的有效方法。今建立了花生四烯酸在高山被孢霉ME-1(Mortierella alpina ME-1)体内合成的代谢通量模型,求解不同氮源浓度下发酵各时期的碳流分布。充足氮源发酵时,指数生长期、减速期、稳定期流向AA的碳流分别占总碳流的3.28%,8.80%和6.97%。而通过限制性氮源发酵并在96 h补加0.05%的NaN03成功地引导了发酵碳流迁移,将各时期流向AA的碳流分别提高至3.95%,19.21%和39.29%,并最终实现AA单产水平从1.3 g/L提高到3.5 g/L。这些结果表明限制性氮源发酵并在稳定期补加低浓度的氮源能显著提高AA单产水平。
     3.基于动力学模型的动态代谢通量分析模型
     分析高山被孢霉发酵生产花生四烯酸动力学特征,建立了氮源与葡萄糖双底物限制动力学模型,在此基础上结合代谢流分析理论提出了花生四烯酸发酵动态代谢通量分析模型,通过非线性最小二乘优化拟合获得参数。进一步试验表明这个模型具有较高的精确度,能很好模拟发酵过程,并能很容易地获得不同发酵时间的代谢流分布。
Arachidonic acid(AA;5,8,11,14-cis-eicosatetraenoic acid) belongs to omega-6 class polyunsaturated fatty acids(PUFAs).As a precursor of prostaglandins,thromboxane,prostacyclin,and leucotrienes,it owns various physiological functions and has been found wide application in medicine, pharmacology,cosmetics,food industry,agriculture and other fields.Production of AA by cultivation of Mortierella fungi,which are thought to be the most prominent AA source,has been widely reported and industrialized.However,several key problems such as the hardness to control the AA percentage in lipids,high content of saturated and monounsaturated fatty acids and low conversion ratio of glucose to AA are not solved,which lead to high market price of AA.This maybe caused by the complicated fatty aicds biosynthesis mechanism and traditional methods' lack of metabolic network analysis on AA fermentation.In the present work,metabolic engineering was introduced to analyze the mechanism of AA synthesis in Mortierella alpina ME-1,and several strategies were applied to enhance AA production.
     1.Optimization of media components for biomass and arachidonic acid production by Mortierella alpina ME-1 using response surface methodology
     The media for biomass and arachidonic acid production by Mortierella alpina ME-1 were optimized in shake flask cultures using response surface methodology (RSM).Two imperial polynomial models were developed,and the maximum biomass yield of 36.86 g/L appeared at glucose,yeast extract(YE),KH_2PO_4 and NaNO_3 of 90.16,12.50,3.80 and 3.54 g/L,respectively,while a maximum AA yield of 9.65 g/L appeared at glucose,YE,KH_2PO_4 and NaNO_3 of 103.16,11.66,3.80 and 3.43 g/L,respectively,in 6.5-day fermentation were predicted.These predicted values were also verified by validation experiments which showed excellent correlation between predicted and measured values.The results of bioreactor fermentation also illustrated that the optimized culture medium enhanced both biomass(34.21±1.01 g/L in 5-day fermentation) and AA(9.86±0.45 g/L in 6-day fermentation) production by Mortierella alpina ME-1 in a large-scale fermentation process.
     2.Metabolic flux analysis on arachidonic acid Fermentation
     Analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid(AA) synthesis in Mortierella alpina ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source.During exponential, decelerating and stationary phase,carbon fluxes to AA were 3.28%,8.80%,6.97%, respectively,with sufficient N-source broth based on the flux of glucose uptake,and those were increased to 3.95%,19.21%and 39.29%,respectively,by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05%NaNO_3 at 96h.Eventually AA yield was increased from 1.3 g/L to 3.5 g/L. These results suggest a way to improve AA fermentation,that is,fermentation with limited N-source broth and adding low concentration N-source during stationary phase.
     3.Dynamic flux analysis model for arachiconic acid fermentation
     Kinetic models of arachidonic acid fermentation by Mortierella alpina ME-1 with limited N-source and glucose were established based on the experimental data. Then a dynamic flux analysis model based on the kinetic models was proposed according to the theory of metabolic flux analysis.And the optimal parameters were evaluated.Further experiment data verified the accuracy of the models and the results showed that the models appeared to provide a reasonable description for the fermentation,and the flux distributions in different time can be easily obtained.
引文
[1]Benthold K,Tamas D,Hans D.Arachidonic acid supply and metabolism in human infants born at full term[J].Lipids,1996,31(1):79-83.
    [2]郑建仙,耿立萍.功能性食品基料-γ-亚麻酸[J].食品与发酵工业,1991,1:49-54.
    [3]曹国许,翁新楚.鱼油氧化稳定性的研究[J].中国油脂,1995,20(4):49-52.
    [4]Certik M,Shimizu S.Biosynthesis and regulation of microbial polyunsaturated fatty acid production[J].Journal of Bioscience and Bioengineering.1999,87(1):1-14.
    [5]罗大力,张幼怡,韩启德.花生四烯酸的生物活性及其钙信号转导作用[J].生理科学进展,2002,33(3):251-254.
    [6]Zeldin DC.Epoxygenase pathways of arachidonic acid metabolism[J].J Biol Chem,2001,276:36059-36062.
    [7]Carlson S.E.Long-chain polyunsaturated fatty acids and development of human infant[J].Acta Paediatric Supplement,1999,430:72-77.
    [8]Meydani M.Modulation of platelet thromboxane A2 and aortic prostacyclin synthesis by dietary selenium and vitamin E[J].Biol.Trace Elem.Res.1992.33-79.
    [9]Greeberg-Levy S.H.,Budowski P.,Grossman S.Lipoxygenase and other enzymes of arachidonic acid metabolism in the brain of chicks affected by nutritional encephalomalacia[J].Int.J.Biochem.1993,3(25):403-409.
    [10]Van der Zee L.,Nelemans A.,Den Hertog A.Arachidonic acid is functioning as a second messenger in activating the Ca~(2+) entry process on H 1-histam inoceptor stimulation in DDT1 MF-2 cells[J].Biochem.J.,1995,305(3):859-864.
    [11]王啸,邱树毅.微生物发酵生产花生四烯酸的研究进展[J].中国油脂,2004,29(9):37-40.
    [12]汤逢.油脂化学[M].南昌:江西科技出版社,1985.
    [13]薛飞燕,张栩,谭大伟.微生物油脂的研究进展及展望[J].生物加工过程,2005,3(1):23-28.
    [14]Singh A,Ward O P.Production of High Yields of Arachidonic Acid in a Fed-Batch System by Mortierella Alpina ATCC 32222[J].Appl.Microbiol Biotechnol,1997,48:1-5.
    [15]周莲蓬,秦文敏.余龙江,朱敏.KLa对高山被孢霉产花生四烯酸的影响.生命科学研究[J].2002,6(4):339-342.
    [16]周蓬蓬,余龙江.吴元喜.朱敏.李为.高山被孢霉产花生四烯酸发酵条件的研究[J].工业微生物,2003,33(2):41-45.
    [17]汪志明.花生四烯酸生产及应用[J].中国食品添加剂,2001,1:30-33.
    [18]黄惠琴,鲍时翔,朱法科等.被孢霉发酵生产花生四烯酸工艺的研究[J].华南热带农业大学学报,1999.5(2):1-4,33.
    [19]鲍时翔,朱法科,林炜铁,姚汝华.被孢霉菌发酵产生花生四烯酸的研究.微生物学报[J],1997,37(5):374-377.
    [20]Yuan C.et al.Production of Arachidonic Acid[J].Food Technol.Biotechnol,2002,40(4):311-315.
    [21]鲍时翔,黄惠琴.被孢霉生物合成花生四烯酸的初步研究[J].菌物系统,1999,8(3):326-329.
    [22]朱法科,鲍时翔,林炜铁,姚汝华.菌丝体老化对被孢霉菌产花生四烯酸的影响[J].中国油脂,1997,22(3):40-42.
    [23]周蓬莲,秦文敏,余龙江,李家麟.表面活性剂对被抱霉产花生四烯酸的影响[J].华中科技大学学报(自然科学版),2003,31(5):98-100.
    [24]张羽航,林炜铁,姚汝华,鲍时翔,郑学勤.被孢霉cDNA文库的构建及△~6脂肪酸脱饱和酶cDNA序列的筛选[J].微生物学报,2000,40(6):610-613.
    [25]周莲蓬,秦文敏,余龙江,朱敏.调节已糖磷酸途径提高被孢霉花生四烯酸单产水平[J].华中科技大学学报,2002,30(9):108-110.
    [26]Wynn J.P.,Ratledge C.Evidence that the rate-limiting step for the biosynthesis of Arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3elongase[J].Microbiology,2000,146:2325-2331.
    [27]Park E.Y.,Hamanaka T.,Higashiyama K,Fujikawa S.,Monitoring of morphological development of the arachidonic-acid-producing filamentous microorganism Mortierella alpina[J],Applied Microbiology and Biotechnology,2002,59:706-712.
    [28]Sakuradani E.,Hirano Y.,Kamada N.,Nojiri M.,Ogawa J.,Shimizu S..Improvement of arachidonic acid production by mutants with lower n-3desaturation activity derived from Mortierella alpina 1S-4[J],Applied Microbiology and Biotechnology,2004,66:243-248.
    [29] Kajikawa M, Yamato K.T, Kohzu.Y, et.al.Isolation and Characterization of △6-Desaturase, an ELO-Like Enzyme and △5-Desaturase from the Liverwort Marchantia Polymorpha and Production of Arachidonic and Eicosapentaenoic Acids in the Methylotrophic Yeast Pichia Pastoris[J], Plant Molecular Biology. 2004, 54(3): 335-352.
    [30] Hwang BH, Kim JW, Park CY, Park CS, Kim YS, Ryul YW. High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH_4OH as a nitrogen source and pH control[J]. Biotech Lett, 2005, 27:731-735.
    [31] Higashiyama,K, T.Yaguchi, K.Akimoto, et al. Enhancement of arachidonic acid production by Mortierella alpina[A] .Abstracts of 88th AOCS Annual Meeting, May 10-13.Chicago,IL,USA.[C],1998:14-14.
    [32] D.J.Kyle, Ratledge. Industrial Applications of Single Cell Oils[M]. IL,USA: AOCS Press, 1992:52-60.
    [33] Li Z.Y, Lu Y, Yadward V B, et al. Process for production of arachidonic acid concentrate by a strain of Mortierella alpina.Can[J]. J.Chem.Eng, 1995, 73: 135-139.
    [34] Eroshin V K, Satroutdinov A D, Dedyukhina E G, etal. Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis [J]. Process Biochemstry, 2000, 35:1171-1175.
    [35] Kyle D J. Arachidonic acid and methods for the production and use there of [P]. WO96/21037.
    [36] Chen H C, Chang C C, Chen C X. Optimization of arachidonic acid production by Mortierella alpina Wuji-H14[J]. J.Am.Oil Chem.Soc.,1997, 74: 569-578.
    [37] Park C Y, Ha S J, Kim C, et al. Production of arachidonic acid by Mortierella alpina DSA-12[A]. Abstracts of 5th Asia Pacific Biochemical Engineering Conference[C], 1999.
    [38] Lindberg A M, Molin G. Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by fungus Mortierella alpina CBS343.66 in fermentor cultures[J]. Appl.Microbiol.Biotechnol,l993,39:450-455.
    [39] Aki T, Nagahata Y, Ishihara K, et al. Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15[J]. J.Am.Oil Chem.Soc., 2001,78:599-604.
    [40]Berkeley W.Method for arachidonic acid production[P].Janpanese Patent H8-214893,1996.
    [41]Sajbidor J,Dobronova S,Certik M.Arachidonic Acid Production by Mortierella SP.S-17[J].Biotechnol.Lett,1990,12:455-456.
    [42]Chaudhuri S,Ghosh S,Bhattacharya D K,et al.Effect of mustard meal on the production of arachidonic acid by Mortierella elongate SC-208[J].J.Am.Oil Chem.Soc.,1998,75:1053-1055.
    [43]Cheng M H,Walker T H,Hulbert G J,et al.Fungal production of eicosapentaenoic acid and arachidonic acid from industrial waste streams and crude soybean oil[J].Bioresource Technol.,1999,67:101-110.
    [44]周蓬蓬,余龙江,汪建华等.微波等离子体溅射诱变选育花生四烯高产菌及补料工艺研究[J].激光生物学报,2003,12:59-62.
    [45]袁成凌,姚建铭,王纪等.低能离子注入花生四烯酸产生菌诱变选育及其产业化研究[J].辐射研究与辐射工艺学报,2003,21(4):237-242.
    [46]Totani N,Watanabe A,Oba K.An improved method of arachidonic acid production by Mortierella alpina[J].Jpn.Oil Chem.Soc.,1987,36:328-331.
    [47]Stredanska S,Slugen D,Stredansky M,etal.Arachidonic acid production by Mortierella alpina grown on solid states[J].Micobiol.Biotechnol.,1993,9:511-513.
    [48]Bailey J E.Towards a science of metabolic engineering[J].Science,1991,252:1668-1674.
    [49]Cameron D C,Tong I-T.Cellular and metabolic engineering[J].Applied Biochemistry and Biotechnology,1993,38:105-140.
    [50]Stephanopoulos G N,Aristidou A A,Nielsen J.Metabolic Engineering:Principles and Methodologies[M].San Diego:Academic Press,1998.
    [51]赵学明,王靖宇,陈 涛等.后基因组时代的代谢工程:机遇与挑战[J].生物加工过程,2004,2(2):1-7.
    [1] Bailey J E. Toward a science of metabolic engineering [J]. Science, 1991, 252(5013):1668-1675.
    [2] D'Amore T, Stewart GG. Ethanol tolerance of yeast[J]. Enzyme Microb Tech, 1987,9:322-330.
    [3] Koike Y, Cai HJ, Higashiyama K, Fujikawa S, Park EY. Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina[J]. J Biosci Bioeng 2001;91:382-389.
    
    [4] Park EY, Koike Y, Higashiyama K, Fujikawa S, Okabe M. Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina[J]. J Biosci Bioeng 1999;88:61-67.
    [5] Higashiyama K, Yaguchi T, Akimoto K, Fujikawa S, Shimizu S. Effects of mineral addition on the growth morphology of and arachidonic acid production by Mortierella alpina 1S-4[J]. J Am Oil Chem Soc 1998;75:1815-1819.
    [6] Higashiyama K, Fujikawa S, Park EY, Shimizu S. Production of Arachidonic acid by Mortierella fungi[J]. Biotechnol Bioprocess Eng 2002;7:252-262.
    [7] Zhu M, Yu LJ, Li W, Zhou PP, Li CY. Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis[J]. Enzyme Microb Technol 2006, 38: 735-740.
    [8] Zeng XB, Wang HY, He LY, Lin YC, Li ZT. Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology[J]. Process Biochem 2006, 41:293-298.
    [9] Gupta N, Sahai V, Gupta R. Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor[J]. Process Biochem 2007, 42: 518-526.
    [10] Singh A, Ward O P. Production of High Yields of Arachidonic Acid in a Fed-Batch System by Mortierella Alpina ATCC 32222[J]. Appl. Microbiol Biotechnol, 1997,48: 1-5.
    
    [11] Higashiyama.K, T.Yaguchi, K.Akimoto, et al. Enhancement of arachidonic acid production by Mortierella alpina[A].Abstracts of 88th AOCS Annual Meeting, May 10-13.Chicago,IL,USA.[C],1998:14-14.
    
    [12] Hwang BH, Kim JW, Park CY. Park CS, Kim YS, Ryu1 YW. High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH_4OH as a nitrogen source and pH control[J]. Biotech Lett, 2005, 27:731-735.
    [1] Papoutsakis ET. Equations and calculations for fermentations of butyric acid bacteria[J] .Biotechnol Bioeng,1984, 26:174-187.
    [2] Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T. Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur. J. Biochem. 2001, 268: 2464-2479.
    [3] Wynn J P, Hamid A A, Ratledge C, et al. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina [J]. Microbiology, 2001, 147(10):2857-2864.
    [4] Bailey J E. Toward a science of metabolic engineering [J]. Science, 1991, 252(5013):1668-1675.
    [5] Wynn J P, Hamid A A, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi [J]. Microbiology, 1999, 145(8):1911-1917.
    [6] Kendrick A, Ratledge C. Desaturation of polyunsaturated fattyty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme [J]. Eur.J.Biochem, 1992, 209(2):667-673.
    [1]Monod J.Recherches surla croissance des cultures bacteriennes[M].Paris:Hermann,1942.
    [2]Robinson J A.Determining microbial kinetic parameters using nonlinear regression analysis[A].Marshall K C.Advances inmicrobial ecology[C].New York:Plenum Press.1985.61-114
    [3]Schmidt S K.Models for studying the population ecology of microorganisms in natural systems[A].Huts T C J.Modeling the metabolic and physiologic activities of microorganisms[C].New York:John Wiley&Sons Inc,1992.31-59.
    [4]Urs L,Mario S,Thomas E.Growth kinetics of escherichia coli with galactose and several other sugars in carbon-limited chemostat culture[J].Can J Microbiol,2000,46(1):72-80.
    [5]Powell E O.The growth rate of microorganisms as a function of substrate concentration[A].Powell E O,Vans C G T,Strange R E,et al.Microbial physiology and continuous culture[c].London:Her Majesty's Stationery Office,1967.34-56.
    [6]汤琳,曾光明等.Logistic方程在微生物分批培养动力学中的应用[J].湖南大学学报(自然科学版),2004,31(3):23-28.
    [7]Lequerica J L,Vallés S,Flors A.Kinetics of rice straw methane fermentation.Springer-Verlag GmbH,19(1):70-74.
    [8]Gorin P A and Bergter J B.The polysacchrides,Ed.by Aspinall G O,Academic Press,New York,1983,2:412-490.
    [9]竹林.生化工程专家-Elmer L.Gaden,Jr.生物工程进展,1994,14(2):59-61.
    [10]Luedeking R,Piret E L.A kinetic study of lactic acid production coupling for Lactobacillus helveticus cultivated on supplemented whey:influence of peptidic nitrogen deficiency[J].J.Biochem.Microbiol,Technol.Eng,1959,1(4):393-413.
    [11]马雷.应用MATLAB软件构建谷氨酸温度敏感突变株补料分批发酵动力学模型[J].天津科技大学学报,2004,19(1):36-38.
    [12]卢晓燕等.单纯形搜索法在求解水文地质参数中的应用[J].水文,2000,20(4):41-65.
    [13]马正飞,殷翔.数学计算方法与软件工程应用[M].北京:化学工业出版社,2002.
    [14]张红莲,郭辉.一种集成化的高级语言MATLAB[J].长沙电力学院学报(自然科学版),1999,14(1):74-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700