多元半导体及其合金的第一性原理计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多元化和合金化是设计新材料的两种重要途径,由于化学成分和结构自由度的增多,多元材料和合金材料将表现出各种丰富、独特的性质,大大拓宽了应用材料的选择范围。最近的发展显示,功能器件选择的半导体朝着多元化、合金化和低维化的方向发展,因而研究这一多元化和合金化过程中性质变化的规律非常重要。然而,自由度增多也意味着性质的更加复杂,相空间维数的增加使得从理论和实验上研究这类材料的难度骤增。值得庆幸的是,基于闪锌矿结构的半导体在这一过程中结构和性质保持着一定的稳定性,同时,第一性原理计算方法对这一体系的描述相对而言最为成熟,这两方面使得我们可以通过第一性原理计算来研究基于闪锌矿结构的半导体在多元化和合金化过程中性质变化的规律,分析元素的演化、替换和结构的转变对性质产生影响的趋势,从微观上系统地去理解大量反映不同侧面的实验结果,为设计具备特定性能参量的半导体提供基础。
     本论文共分六章。第一章介绍了最近多元半导体和合金在应用方面的发展、相图及性质的一般规律、有序结构的出现和特点、以及常见半导体的能带偏移。第二章简要介绍了本论文涉及的计算方法,包括基于单电子近似的传统能带计算方法、基于密度泛函理论的第一性原理计算方法、以及用于半导体合金的价力场弹性能方法。本论文主要使用第一性原理计算方法,在第二章,也给出了我们用价力场弹性能方法与第一性原理计算方法对几类半导体合金计算结果的比较。
     第三章利用第一性原理计算系统研究了闪锌矿结构硫族半导体通过阳离子的替换从二元向三元、再向四元的演化。发现了三元和四元半导体中几个具有遗传特征的规律:对阳离子处于元素周期表中同行的硫族半导体,其基态结构总是有比较大的α晶格常数、比较小的四角晶系形变参数η=c/2α、负的价带顶晶体场劈裂、和较大的带隙;而对阳离子处于不同行的,这些规律只是部分的正确。基于能带成分和能带偏移计算结果的分析指出:从Ⅱ-Ⅵ向Ⅰ-Ⅲ-Ⅵ_2的演化中带隙的减小主要来自p—d杂化对价带的推高,导带的降低仅有约20%的贡献;而从Ⅰ-Ⅲ-Ⅵ_2到Ⅰ_2-Ⅱ-Ⅳ-Ⅵ_4的演化中,价带顶的移动几乎可以忽略,Ⅳ族原子较低的s轨道能级带来的导带降低决定了带隙的减小。与实验结果比较发现:Cu_2ZnGeSe_4和Cu_2ZnSnS_4类半导体的基态结构应为锌黄锡矿(kesterite)结构,实验上广泛观察到的黄锡矿(stannite)结构可能是由于X射线衍射图谱不能分辨原子序数接近的阳离子或Ⅰ-Ⅱ(001)层的部分无序化引起;Cu_2ZnSnSe_4的带隙应为1.0 eV左右,而非经常被引用的实验测量结果1.5eV,计算结果解释了光致发光谱的异常;根据计算,我们预测Cu_2ZnGeSe_4也有可能成为新的廉价太阳能电池材料。
     第四章以三元-三元的混合,二元-三元的混合为思路,研究了两类合金体系的结构、能带结构特征。在CuGa-Ⅵ_2/AgGa-Ⅵ_2合金研究方面,我们系统解释了:Ag_xCu_(1-x)Ga-Ⅵ_2合金带隙随晶格常数增大这一反常能带趋势,并根据能带偏移分析了不同影响因素的贡献;通过SQS模拟黄铜矿结构三元-三元无序合金,研究了合金的微观结构,分析了其大带隙下凹参数的来源。在Ⅱ-Ⅵ/Ⅰ-Ⅲ-Ⅵ_2,Ⅲ-Ⅴ/Ⅱ-Ⅳ-Ⅴ_2有序合金研究方面,我们以设计高量子效率、100%自旋极化的电子源材料为目的,搜索了在x=0.5时不同阳离子组成的两类合金的有序结构,基于晶体场、自旋轨道耦合劈裂和能量稳定性等结果,提出三种合金作为潜在的极化电子源阴极材料。
     第五章转向高硬度的BN/C_2合金的结构、弹性和强度等性质的研究。以澄清BC_2N硬度是否可能介于c-BN和金刚石之间为动机,系统研究了不同晶体结构性质上的规律,定量提出了BC_2N合金性质的键数规则,据此进行的无限制的结构搜索显示,BN/C_2(111)超晶格结构在众多相同原胞大小的结构中能量最低,结构最致密,体弹性模量最大。进一步的弹性常数、剪切模量、理想拉伸和剪切强度、以及垂直加压下的剪切强度计算显示,BC_2N和BC_4N(111)超晶格结构的剪切模量、理想强度和垂直加压下的剪切强度都高于其他BC_2N结构,也高于c-BN,这些超晶格结构表现出很强的反抗弹性形变和塑性形变的能力,因而可能具有较c-BN高的硬度。一个重要的发现是,对这类合金系统,计算的剪切模量和垂直加压下的剪切强度都与实验测量的硬度呈准线性关系,表明这两个量是预测这类合金硬度的合适的物理量。该章还讨论了BC_2N不同结构的结构转变、带隙和光学介电函数等性质。
     第六章回顾所有章节,并讨论现有研究的不足和未来进一步改进的方法。
As a result of the increased chemical and structural freedom,multiternary and alloy semiconductors exhibit novel and special properties which give rise to potential application as functional materials.The increased freedom also makes the study of these materials so complicated that the dimension of the phase space increases with the number of elements and atomic positions in the primitive cell. The rapidly-developing first-principles calculation methods make it possible to study the changes of properties in the mutation from simple to multiternay and alloy semiconductors theoretically,to show the trend in the element substitution and structural transformation,understand various experimental results and give the theoretical guidelines for knowledge-based design of new semiconductors.
     The thesis is composed of six chapters.The first chapter gives an introduction to the recent development in the application of semiconductors,the phase diagram and properties of alloys,the ordered structures,and the band offsets of popular semiconductors.The second chapter devotes to the simulation methods used in the study,including conventional band structure theory,density functional theory and valence force field method.
     The third chapter discusses the sequential cation cross-substitution in zincblende chalcogenide semiconductors,from binary to ternary to quaternary compounds. Several universal trends are found for the ternary and quaternary chalcogenides with common-row cations,the lowest-energy structure always has larger lattice constant a,smaller tetragonal distortion parameterη= c/2a,negative crystal field splitting at the top of the valence band,and larger band gap compared to the metastable structures.The band offsets and band character decomposition analysis show,the gap decreases fromⅡ-ⅥtoⅠ-Ⅲ-Ⅵ_2 are mostly due to the p-d repulsion in the valence band,while the decreases fromⅠ-Ⅲ-Ⅵ_2 toⅠ_2-Ⅱ-Ⅳ-Ⅵ_4 are due to the downshift in the conduction band caused by the wavefunction localization on the groupⅣcation site.We propose that common-row-cationⅠ_2-Ⅱ-Ⅳ-Ⅵ_4 compounds are more stable in the kesterite structure, and the band gap of Cu_2ZnSnSe_4 is on the order of 1.0 eV,which are both misunderstood by previous experimental study,and we also propose Cu_2ZnGeSe_4 has a ideal band gap as a single-junction solar cell absorber.
     The forth chapter deals with two ternary-ternary,binary-ternary alloys.We first explained the band structure anomaly of Ag_xCu_(1-x)Ga-Ⅵ_2 alloy that the gap increases with the lattice constant,and then using the SQS to describe the disordered alloys,we studied the local structure in the alloy and the reason of large band gap bowing parameter.In the second part,we studiedⅡ-Ⅵ/Ⅰ-Ⅲ-Ⅵ_2,Ⅲ-Ⅴ/Ⅱ-Ⅳ-Ⅴ_2 ordered alloys at x = 0.5,to design high efficiency,100% spin-polarized electron source materials.A series of ordered alloys with different cations are screened based on the crystal field splitting,spin-orbital splitting and energy stability,three of which are proposed as candidates.
     The fifth chapter concentrates on the superhard BN/C_2 alloys.To resolve the debate if BC_2N could be harder than c-BN,we systematically studied different crystal structures and gave a quantitative bond counting rule,based on which we performed an unconstrained structure search and identified BN/C_2(111) super-lattices as the lowest-energy,most-compact,most-volume-incompressible struc-tures with the same cell size.The further calculation of elastic constants,shear modulus,ideal strength,and shear strength with normal compression showed that the(111) superlattices possess stronger resistance to elastic and plastic deformation than other BC_2N structures as well as c-BN,thus could be harder than c-BN.The calculated shear modulus and shear strength under normal compression are linearly related with the measured Vickers hardness for BN/C_2 alloys, hence could be used as a predictor of hardness.The structural transformation, band gap and optical dielectric function are also studied for different BC_2N structures.
     The sixth chapter summarizes all the research and discusses the potential improvement.
引文
[1]何杰夏建白.半导体科学与技术.科学出版社,北京,2007.
    [2]冯端.金属物理学 第一卷 结构与相变.科学出版社,北京,1987.
    [3]J.E.Bernard,L.G.Ferreira,S.H.Wei,and A.Zunger.Ordering of isovalent intersemiconductor alloys.Phys.Rev.B,38:6338,1988.
    [4]K.Biswas,A.Franceschetti,and S.Lany.Gernerallized valence-force-field model of(Ga,In)(N,P) ternary alloys.Phys.Rev.B,78:085212,2008.
    [5]Frank Dimroth and Sarah Kurtz.High-efficiency multijunction solar cells.MRS BULLETIN,32:230,2007.
    [6]Jerome Faist,Federico Capasso,Deborah L.Sivco,Carlo Sirtori,Albert L.Hutchinson,and Alfred Y.Cho.Quantum Cascade Laser.Science,264(5158):553-556,1994.
    [7]M.A.Green and et al.Solar cell efficiency tables(version 31).Prog.Photovolt:Res.Appl.,16:61,2008.
    [8]W.A.Harrison.Electronic structure and properties of solids.Freeman,San Francisco,1980.
    [9]J.Ihm,A.Zunger,and M.L.Cohen.J.Phys.C,12:4409,1979.
    [10]H.R.Jen,M.J.Cherng,and G.B.Stringfellow.Ordered structures in GaAs_(0.5)Sb_(0.5) alloys grown by organometallic vapor phase epitaxy.Applied Physics Letters,48:1603-1605,1986.
    [11]H.R.Jen,M.J.Jou,M.J.Cheng,and G.B.Stringfellow.J.Cryst.Growth,85:175,1987.
    [12]K.H.Kim,Z.Y.Fan,M.Khizar,M.L.Nakarmi,J.Y.Lin,and H.X.Jiang.Algan-based ultraviolet light-emitting diodes grown on AlN epilayers.Applied Physics Letters,85(20):4777-4779,2004.
    [13]R.R.King,D.C.Law,K.M.Edmondson,C.M.Fetzer,G.S.Kinsey,H.Yoon,R.A.Sherif,and N.H.Karam.40%efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells.Applied Physics Letters,90:183516,2007.
    [14]R.Kohler,Alessandro Tredicucci,Fabio Beltram,Harvey E.Beere,Edmund H.Linfield,A.Giles Davies,David A.Pdtchie,Rita C.Iotti,and Fausto Rossi.Terahertz semiconductor-heterostructure laser.Nature,417:156,2002.
    [15]S.P.Kowalczyk,J.T.Cheung,E.A.Kraut,and R.W.Grant.Phys.Rev.Lett.,56:1065,1986.
    [16]T.S.Kuan,W.I.Wang,and E.L.Wilkie.Long-range order in In_xGa_(1-x)As.Applied Physics Letters,51:51-53,1987.
    [17]Y.H.Li,A.Walsh,S.Chen,W.J.Yin,J.H.Yang,X.G.Gong,J.L.F.Da Silva,J.Li,and S.-H.Wei.Revised ab initio natural band offsets of all group Ⅳ,Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors.Applied Physics Letters,94:212109,2009.
    [18]Y.H.Li,X.G.Gong,and S.-H.Wei.Phys.Rev.B,73:245206,2006.
    [19]Y.H.Li,X.G.Gong,and S.-H.Wei.Appl.Phys.Lett.,88:042104,2006.
    [20]O.M.Madelung.Semiconductors:Data Handbook.Springer,Berlin,3rd edition,2004.
    [21]Jos(?) Luis Martins and Alex Zunger.Stability of ordered bulk and epitaxial semiconductor alloys.Phys.Rev.Lett.,56(13):1400-1403,1986.
    [22]S.Nakamura.Present status and high performance of InGaN/InN LED.Jpn.J.Opt.,23:701,1994.
    [23]Shuji Nakamura,Masayuki Senoh,Shin ichi Nagahama,Naruhito Iwasa,Takao Yamada,Toshio Matsushita,Hiroyuki Kiyoku,and Yasunobu Sugimoto.Ingan-based multi-quantum-well-structure laser diodes.Japanese Journal of Applied Physics,35(Part 2,No.1B):L74-L76,1996.
    [24]Clas Persson,Yu-Jun Zhao,Stephan Lany,and Alex Zunger.n -type doping of CuInSe_2 and CuGaSe_2.Phys.Rev.B,72:035211,2005.
    [25]D.A.Porter and K.E.Easterling.Phase Transformations in Metals and Alloys.CRC,Boca Raton,FL,2nd edition,1991.
    [26]Yungryel Ryu,Tae-Seok Lee,Jorge A.Lubguban,Henry W.White,Bong-Jin Kim,Yoon-Soo Park,and Chang-Joo Youn.Next generation of oxide photonic devices:Zno-based ultraviolet light emitting diodes.Applied Physics Letters,88(24):241108,2006.
    [27]J.J.Scragg,P.J.Dale,L.M.Peter,G.Zoppi,and-I.Forbes.phys.stat.sol.(b),245:1772,2008.
    [28]G.P.Srivastava,Jos(?) Luis Martins,and Alex Zunger.Atomic structure and ordering in semiconductor alloys.Phys.Rev.B,31(4):2561-2564,1985.
    [29]L.Vegard.Z.Phys.,5:17,1921.
    [30]S.H.Wei,L.G.Ferreira,and A.Zunger.First-principles calculation of temperature-composition phase diagrams of semiconductor alloys.Phys.Rev.B,41:8240,1990.
    [31]S.-H.Wei and A.Zunger.Band gap and spin-orbitial splitting of ordered and disordered Al_xGa_(1-x)As and GaAs_xSb_(1-x).Phys.Rev.B,39:3279,1989.
    [32]S.-H.Wei and A.Zunger.Calculated natural band offsets of all Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors:chemical trends and the role of cation d orbitals.Appl.Phys.Lett.,72:2011,1998.
    [33]H.-J.Xiang,S.H.Wei,S.Chen,and X.G.Gong.Alloy stabilized wurtzite ground state structures.Unpublished,2009.
    [34]Peter.Y.Yu and Manuel Cardona.Fundamentals of Semiconductors.Springer,New York,3rd edition,2001.
    [35]S.B.Zhang,Su-Huai Wei,Alex Zunger,and H.Katayama-Yoshida.Defect physics of the CuInSe_2 chalcopyrite semiconductor.Phys.Rev.B,57(16):9642-9656,1998.
    [36]A.Zunger.Spontaneous atomic ordering in semiconductor alloys:causes,carriers and consequences.MRS BULLETIN,22:20,1997.
    [1]L.G.Ferreira,S.-H.Wei,A.Zunger,Phys.Rev.B 40,3197(1989).
    [2]L.G.Ferreira,S.-H.Wei,and A.Zunger,Inter.J.Supercomp.Appl.5,34(1991).
    [3]G.Trimarchi and P.Graf and A.Zunger,Phys.Rev.B 74,014204(2006).
    [4]李正中.固体理论.高等教育出版社,北京,第二版,2002.
    [5]O.L.Alerhand,David Vanderbilt,Robert D.Meade,and J.D.Joannopoulos.Spontaneous formation of stress domains on crystal surfaces.Phys.Rev.Lett.,61(17):1973-1976,Oct 1988.
    [6]A.D.Becke.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A,38(6):3098-3100,Sep 1988.
    [7]J.E.Bernard,L.G.Ferreira,S.H.Wei,and A.Zunger.Ordering of isovalent intersemiconductor alloys.Phys.Rev.B,38:6338,1988.
    [8]K.Biswas,A.Franceschetti,and S.Lany.Gernerallized valence-force-field model of(Ga,In)(N,P) ternary alloys.Phys.Rev.B,78:085212,2008.
    [9]P.E.Bl(o|¨)chl.Projector augmented-wave method.Phys.Rev.B,50(24):17953-17979,Dec 1994.
    [10]P.E.Bloechl.Phys.Rev.B,50:17953,1994.
    [11]D.M.Ceperley and B.J.Alder.Ground state of the electron gas by a stochastic method.Phys.Rev.Lett.,45(7):566-569,1980.
    [12]A.-B.Chen and A.Sher.Semiconductor Alloys:Physics and Materials Engineering.Plenum,New York,1995.
    [13]R.M.Dreizler and E.K.U.Gross.Density functional theory.Springer-Verlag,Berlin,1990.
    [14]S.Froyen.Phys.Rev.B,39:3168,1989.
    [15]L.Hedin and B.L.Lundqvist.J.Phys.C,4:2064,1971.
    [16]Jochen Heyd,Gustavo E.Scuseria,and Matthias Ernzerhof.Hybrid functionals based on a screened coulomb potential.J.Chem.Phys.,118(18):8207,2003.
    [17]P.Hohenberg and W.Kohn.Inhomogeneous electron gas.Phys.Rev.,136(3B):B864-B871,Nov 1964.
    [18]J.Ihm,A.Zunger,and M.L.Cohen.J.Phys.C,12:4409,1979.
    [19]H.R.Jen,M.J.Cherng,and G.B.Stringfellow.Ordered GaAs_(0.5)Sb_(0.5).Appl.Rev.Lett.,48:1603,1986.
    [20]R.O.Jones and O.Gunnarsson.The density functional formalism,its applications and prospects.Rev.Mod.Phys.,61(3):689-746,1989.
    [21]P.N.Keating.Phys.Rev.,145:637,1966.
    [22]K.Kim,W.R.L.Lambrecth,and B.Segall.Phys.Rev.B,53:16310,1996.
    [23]W.Koch and M.C.Holthausen.A chemists' guide to DFT.Wiley-VCH,Weinheim,2001.
    [24]W.Kohn.Nobel lecture:Electronic structure of matter wave functions and density functionals.Rev.Mod.Phys.,71(5):1253-1266,Oct 1999.
    [25]W.Kohn and L.J.Sham.Phys.Rev,140:A1133,1965.
    [26]G.Kresse and J.Furthmueller.Phys.Rev.B,54:11169,1996.
    [27]G.Kresse and J.Furthmueller.Comput.Mater.Sci.,6:15,1996.
    [28]G.Kresse and D.Joubert.Phys.Rev.B,59:1758,1999.
    [29] J. Z. Liu, G. Trimarchi, and A. Zunger. Strain minimizing tetrahedral networks. Phys. Rev. Lett, 99:145501, 2007.
    [30] Z. W. Lu, D. B. Laks, S. H. Wei, and A. Zunger. Phys. Rev. B, 50:6642,1994.
    [31] R. Magri, S. H. Wei, and A. Zunger. Phys. Rev. B, 42:11388, 1990.
    [32] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods.Cambridge, New York, 2004.
    [33] R.M. Martin. Phys. Rev. B, 1:4005, 1970.
    [34] J.L. Martins and A. Zunger. Phys. Rev. B, 30:6217, 1984.
    [35] H. J. Monkhorst and J. D. Pack. Phys. Rev. B, 13:5188, 1976.
    [36] R.G. Parr and W. Yang. Density functional theory of atoms and molecules.Oxford, 1989.
    [37] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D.J. Singh, and C. Fiolhais. Phys. Rev. B, 46:6671, 1992.
    [38] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Let.t, 77(18):3865-3868, Oct 1996.
    [39] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45(23):13244-13249,Jun 1992.
    [40] J. C. Slater, Timothy M. Wilson, and J. H. Wood. Comparison of several exchange potentials for electrons in the Cu+ ion. Phys. Rev., 179(1):28-38,1969.
    [41] L. K. Teles, L. G. Ferreira, L. M. R. Scolfaro, and J. R. Leite. Theoretical study of strain-induced ordering in cubic In~xGa~(1-x)N epitaxial layers. Phys.Rev. B, 69:245317, 2004.
    [42]L.H.Thomas.Proc.Cambridge Philos.Soc.,23:542,1927.
    [43]David Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B,41(11):7892-7895,Apr 1990.
    [44]S.H.Wei,L.G.Ferreira,and A.Zunger.First-principles calculation of temperature-composition phase diagrams of semiconductor alloys.Phys.Rev.B,41:8240,1990.
    [45]S.-H.Wei and A.Zunger.Phys.Rev.B,49:14337,1994.
    [46]S.-H.Wei and A.Zunger.Phys.Rev.B,57:8983,1998.
    [47]S.H.Wei and A.Zunger.Phys.Rev.B,60:5404,1999.
    [48]Su-Huai Wei and Henry Krakauer.Local-density-functional calculation of the pressure-induced metallization of base and bate.Phys.Rev.Lett.,55(11):1200-1203,Sep 1985.
    [49]Peter.Y.Yu and Manuel Cardona.Fundamentals of Semiconductors.Springer,New York,3rd edition,2001.
    [1]M.Altosaar,J.Raudoja,K.Timmo,M.Danilson,M.Grossberg,J.Krustok,and E.Mellikov.phys.star.sol.(a),205:167,2008.
    [2]G Suresh Babu,Y B Kishore Kumar,P Uday Bhaskar,and V Sundara Raja.Semicond.Sci.Technol.,23:085023,2008.
    [3]A.Bauknecht,U.Blieske,T.Kampschulte,J.Albert,and H.Sehnert.Band offsets at the ZnSe/CuGaSe_2(001) heterointerface.Appl.Phys.Lett.,74:1099,2001.
    [4]J.D.Beach and B.E.McCandless.MRS BULLETIN,32:225,2007.
    [5]J.E.Bernard,L.G.Ferreira,S.-H.Wei,and A,Zunger.Ordering of isovalent intersemiconductor alloys.Phys.Rev.B,38(9):6338,1988.
    [6]L.O.Brockway.The crystal structure of stannite Cu_2FeSns_4.Z.Kristallogr.Kristallgeom.Kristallphys.Kristallchem.,89:434,1939.
    [7]P.Carrier and S.-H.Wei.Phys.Rev.B,70:035212,2004.
    [8]A.Chalhed,O.Benhelal,S.Laksari,B.Abbar,B.Bouhafs,and N.Amrane.Physica B,367:142,2005.
    [9]Shiyou Chen,X.G.Gong,Aron Walsh,and S.-H.Wei.Crystal and electronic band structure of Cu_2ZnSnX_4(X=S and Se) photovoltaic absorbers:First-principles insights.Appl.Phys.Lett.,94:041903,2009.
    [10]Shiyou Chen,X.G.Gong,and S.-H.Wei.Phys.Rev.B,75:205209,2007.
    [11]S.Chichibu,T.Mizutani,K.Murakami,T.Shioda,T.Kurafuji,H.Nakanishi,S.Niki,P.J.Fons,and A.Yamada.CuInSe_2.J.Appl.Phys.,83:3678,1998.
    [12]G.E.Davidyuk,O.V.Parasyuk,S.A.Semenyuk,and Y.E.Romanyuk.Inorganic Materials,39:919,2003.
    [13]K.Doverspike,K.Dwight,and A.Wold.Chem.Mater.,2:194,1990.
    [14]T.M.Friedlmeier,N.Wieser,T.Walter,H.Dittrich,and H.W.Schock.
    [15]M.A.Green,K.Emery,Y.Hisikawa,and W.Warta.Prog.Photovoltaics:Res.Appl.,15:425,2007.
    [16]H.Hahn and H.Schulze.Naturwissenschaften,52:426,1965.
    [17]S.R.Hall,J.T.Szymanski,and J.M.Stewart.Kesterite and stannite,structurally similar but distinct minerals.Can.Mineral.,16(2):131,1978.
    [18]Jochen Heyd,Gustavo E.Scuseria,and Matthias Ernzerhof.Hybrid functionals based on a screened coulomb potential.J.Chem.Phys.,118(18):8207,2003.
    [19]J.J.Hopfield.Fine structure in the optical absorption edge of anisotropic crystals.J.Phys.Chem.Solids,15(1-2):97,1960.
    [20]J.E.Jaffe and Alex Zunger.Electronic structure,of the ternary chalcopyrite semiconductors CuAlS_2,CuGaS_2,CuInS_2,CuAlSe_2,CuGaSe_2,and CuInSe_2.Phys.Rev.B,28:5822,1983.
    [21]A.Janotti and S.-H Wei.Appl.Phys.Lett.,81:3957,2002.
    [22]N.Kamoun,H.Bouzouita,and B.Rezig.Fabrication and characterization of Cu_2ZnSnS_4 thin films deposited by spray pyrolysis technique.Thin Solid Films,515:5949,2007.
    [23]H.Katagiri.Cu_2ZnSnS_4 thin film solar cells.Thin Solid Films,480:426,2005.
    [24]H.Katagiri,K.Saitoh,T.Washio,H.Shinohara,T.Kurumadani,and S.Miyajima.Solar Energy Materials and Solar Cells,65:141,2001.
    [25]Hironori Katagiri,Kazuo Jimbo,Win Shwe Maw,Koichiro Oishi,Makoto Yamazaki,Hideaki Araki,and Akiko Takeuchi.Development of CZTS-based thin film solar cells.Thin Solid Films,517(7):2455-2460,2009.Thin Film Chalogenide Photovoltaic Materials(EMRS,Symposium L).
    [26]Goodman C.H.L.The prediction of semiconductor properties in inorganic compounds.J.Phys.Chem.Solids,6:305,1958.
    [27]S.Laksari,A.Chahed,N.Abbouni adn O.Benhelal,and B.Abbar.Computational Material Science,38:223,2006.
    [28]C.Lee and Chang-Dae Kim.J.Korean Phys.Soc.,37:364,2000.
    [29]O.Madelung,A.Scharmann,and E.G.Scharmer.Landolt-Bornstein,New Series,Group Ⅲ,Volume 17:Semiconductors,Subvolume h:Physics of Ternary Compounds.Springer,Berlin,1985.
    [30]O.M.Madelung.Semiconductors:Data Handbook.Springer,Berlin,3rd edition,2004.
    [31]R.Magri,S.-H.Wei,and A.Zunger.Madelung.Phys.Rev.B,42:11388,1990.
    [32]H.Matsushita and et.al.J.Cryst.Growth,208:416,2000.
    [33]H.Matsushita,T.Ochiai,and A.Katsui.J.Cryst.Growth,275:e995,2005.
    [34]H.J.Monkhorst and J.D.Pack.Monkhorst-pack.Phys.Rev.B.,13:5188,1976.
    [35]C.Y.Moon and S.-H.Wei.Phys.Rev.B,74:205203,2006.
    [36]K.Moriya,K.Tanaka,and H.Uchiki.Japanese Journal of Applied Physics,46:5780,2007.
    [37]K.Moriya,K.Tanaka,and H.Uchiki.Japanese Journal of Applied Physics,47:602,2008.
    [38]N.Nakayama and K.Ito.Appl.Surf.Sci.bf,92:171,1996.
    [39]R.Nitsche,D.F.Sargent,and P.Wild.J.Crys.Growth,1:52,1967.
    [40]R.Osorio,Z.W.Lu,S.-H.Wei,and A.Zunger.Phys.Rev.B,47:9985,1993.
    [41]O.V.Parasyuk,L.D.Gulay,Y.E.Romanyuk,and L.V.Piskach.J.Alloys Compd.,329:202,2001.
    [42]O.V.Parasyuk,L.V.Piskach,Y.E.Romanyuk,I.D.Olekseyuk,V.I.Zaremba,and V.I.Pekhnyo.Phase relations in the quasi-binary Cu_2GeS_3/ZnS and quasi-ternary Cu_2S/Zn(CdS/GeS_2 systems and crystal structure of Cu_2ZnGeS_4.J.Alloys Compd.,397:85,2005.
    [43]C.Persson and A.Zunger.s-d coupling in zinc-blende semiconductors.Phys.Rev.B,68:073205,2003.
    [44]Pamplin B.R.deriving new semi.compounds by structural analogy.J.Phys.Chem.Solids,25:675,1964.
    [45]J.M.Raulot,C.Domain,and J.F.Guillemoles.J.Phys.Chem.Solids,66:2019,2005.
    [46]J.E.Rowe and J.L.Shay.Extension of quasicubic model to ternary chalcopyrite crystals.Phys.Rev.B,4:451,1971.
    [47]D.M.Schleich and A.Wold.Mat.Res.Bull.,12:111,1977.
    [48]S.Schorr.kesterite and stannite Cu_2(Zn,Fe)SnS_4.Thin Solid Films,515:5985,2007.
    [49]S.Schorr,H.Joachim Hoebler,and M.Tovar.Eur.J.Mineral,19:65,2007.
    [50]S.Schorr,V.Riede,D.Spemann,and T.Doering.J.Alloys Compd.,414:26,2006.
    [51]S.Schorr,G.Wagner,M.Tovar,and D.Sheptyakov.Mater.Res.Soc.Symp.Proc.,1012:Y03,2007.
    [52]J.J.Scragg,P.J.Dale,L.M.Peter,G.Zoppi,and I.Forbes.phys.stat.sol.(b),245:1772,2008.
    [53]K.Sekiguchi,K.Tanaka,K.Moriya,and H.Uchiki.phys.star.sol.(c),8:2618,2006.
    [54]J.Seol,S.Lee,J.Lee,H.Nam,and K.Kim.Solar Energy Materials and Solar Cells,75:155,2003.
    [55]J.L.Shay,B.Tell,H.M.Kasper,and L.M.Schiavone.p-d hybridization of the valence bands of Ⅰ-Ⅲ-Ⅵ_2 compounds.Phys.Rev.B,5(12):5003-5O05,1972.
    [56]J.L.Shay,B.Tell,H.M.Kasper,and L.M.Schiavone.Phys.Rev.B,7:4485,1973.
    [57]D.S.Su and S.-H.Wei.Appl.Phys.Lett.,74:2483,1999.
    [58]T.Tanaka,T.Nagatomo,D.Kawasaki,M.Nishio,Q.Guo,A.Wakahara,A.Yoshida,and H.Ogawa.Journal of Physics and Chemistry of Solids,66:1978,2005.
    [59]I.Tsuji,H.Kato,H.Kobayashi,and A.Kudo.J.Am.Chem.Soc.,126:13406,2004.
    [60]S.-H.Wei,S.B.Zhang,and A.Zunger.Band structure and stability of zinc-blende-based semiconductor polytypes.Phys.Rev.B,59:R2478,1999.
    [61]S.-H.Wei and A.Zunger.Band gap and spin-orbitial splitting of ordered and disordered Al_xGa_(1-x)As and GaAs_xSb_(1-x).Phys.Rev.B,39:3279,1989.
    [62]S.-H.Wei and A.Zunger.Phys.Rev.B,49:14337,1994.
    [63]S.-H.Wei and A.Zunger.Calculated natural band offsets of all Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors.Appl.Phys.Lett.,72:2011,1998.
    [64]S.-H.Wei and Alex Zunger.Band offsets and optical bowings of chalcopyrites and Zn-based Ⅱ-Ⅵ alloys.J.Appl.Phys.,78:3846,1995.
    [65] S.-H. Wei, Alex Zunger, I.H. Choi, and P.Y. Yu. Band gap pressure coefficients in chalcopyrite semiconductors. Phys. Rev. B, 58:R1710, 1998.
    [66] R. A. Wibowo, E. S. Lee, B. Munir, and K. H. Kim. Phys. Stat. Sol. (a),204:3373, 2007.
    [67] J. Zhang, L. Shao, Y. Fu, and E. Xie. Rare Metals, 25:315, 2006.
    [1] A. Janotti and S.-H. Wei, Appl. Phys. Lett. 81, 3957 (2002).
    [2] T. J. Coutts, K. A. Emery, and J. S. Ward, Prog. Photovoltaics 10, 195(2002).
    [3] T. J. Coutts, J. S. Ward, D. L. Young, K. A. Emery, T. A. Gessert, and R.Noufi, Prog. Photovoltaics 11, 359 (2003).
    [4] D. J. Friedman and S. Kurtz, Prog. Photovoltaics 10, 331 (2002).
    [5] T. Tinoco, M. Quintero, and C. Rincon, Phys. Rev. B 44, 1613 (1991).
    [6] I.-H. Choi, S.-H. Eom, and P. Y. Yu, J. Appl. Phys. 87, 3815 (2000).
    [7] A. Bauknecht, U. Blieske, T. Kampschulte, J. Albert, and H. Sehnert. Band offsets at the ZnSe/CuGaSe_2 (001) heterointerface. Appl. Phys. Lett.,74:1099, 2001.
    [8] M. Bettini and W. B. Holzappel. Solid State Comrnun., 16:27, 1975.
    [9] Pierre Carrier and Su-Huai Wei. Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors:effects of p1/2 local orbitals and chemical trends. Phys. Rev. B, 70(3):035212, Jul 2004.
    [10] G.C. Catella and D. Burlage. AgGaSe_2 frequency conversion. Mater. Res.Bull, 23:28, 1998.
    [11] A. Chalhed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, and N. Amrane.Physica B, 367:142, 2005.
    [12] B. Fernandez and S. M. Wasim. Phys. Stat. Sol., (5)122:235, 1990.
    [13] M. H. Grimditch and G. D. Holah. Phys. Rev. B, 12:4377, 1975.
    [14]J.E.Jaffe and Alex Zunger.Phys.Rev.B,28:5822,1983.
    [15]F.Ledda L.Garbato and R.Rucci.Prog.Cryst.Growth Charact.,15:1,1987.
    [16]S.Laksari,A.Chahed,N.Abbouni adn O.Benhelal,and B.Abbar.Computational Material Science,38:223,2006.
    [17]O.M.Madelung.Semiconductors:Data Handbook.Springer,Berlin,3rd edition,2004.
    [18]Yu A.Mamaev,L.G.Gerchikov,and Yu P.Yashin.On the way to perfect spin-polarized electron source.SEMICONDUCTOR SCIENCE AND TECHNOLOGY,23(11):114014,2008.
    [19]T.Maruyama,E.L.Garwin,R.Prepost,G.H.Zapalac,J.S.Smith,and J.D.Walker.Observation of strain-enhanced electron-spin polarization in photoemission from ingaas.Phys.Rev.Lett.,66(18):2376-2379,May 1991.
    [20]T.Maruyama,D.-A.Luh,A.Brachmann,J.E.Clendenin,E.L.Garwin,S.Harvey,J.Jiang,R.E.Kirby,C.Y.Prescott,R.Prepost,and A.M.Moy.Systematic study of polarized electron emission from strained GaAs/GaAsP superlattice photocathodes.Appl.Phys.Lett.,85(13):2640-2642,2004.
    [21]H.Neumann.Crystal Res.Technol.,18:665,1983.
    [22]H.Neumann.Phys.Star.Sol.(a),96:K121,1986.
    [23]Sungil Park,Sun Koo Lee,Jae Young Lee,Jae-Eun Kim,Hae Yong Park,Hong-Lee Park,Han-Jo Lim,and Wha-Tek Kim.J.Phys.:Condens.Matter,4:579,1992.
    [24]D.T.Pierce and F.Meyer.Phys.Rev.B,13:5484,1976.
    [25]J.E.Rowe and J.L.Shay.Phys.Rev.B,3:451,1971.
    [26]J.L.Shay,B.Tell,H.M.Kasper,and L.M.Schiavone.Phys.Rev.B,5:5003,1972.
    [27]J.L.Shay and J.H.Wernick.Ternary Chalcopyrite Semiconductors:Growth,Electronic Properties and Applications.Pergamon,Oxford,1975.
    [28]S.Shirakata,A.Ogawa,S.Isomura,and T.Kariya.Jpn.J.Appl.Phys.Suppl.,32-3:94,1993.
    [29]S.-H.Wei,L.G.Ferreira,J.E.Bernard,and A.Zunger.Phys.Rev.B,42:9622,1990.
    [30]S.-H.Wei and A.Zunger.Calculated natural band offsets of all Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors:chemical trends and the role of cation d orbitals.Appl.Phys.Lett.,72:2011,1998.
    [31]S.-H.Wei and Alex Zunger.Band offsets and optical bowings of chalcopyrites and Zn-based Ⅱ-Ⅵ alloys.J.Appl.Phys.,78:3846,1995.
    [32]Su-Huai Wei and Alex Zunger.Phys.Rev.B,49:14337,1994.
    [33]P.Y.Yu and M.Cardona.Fundamental Semiconductor Physics.Pergamon,Oxford,1975.
    [34]A.Zunger,S.-H.Wei,L.G.Ferreira,and J.E.Bernard.Phys.Rev.Lett.,65:353,1990.
    [1] G. Serghiou M. Schwarz E. Kroke R. Riedel H. Fuess P. Kroll A. Zerr, G.Miehe and R. Boehler. Synthesis of cubic silicon nitride. Nature, 400:340,1999.
    [2] S. Barnett and A. Madan. Carbon Nitride/Tin super lattices. Phys. World,11:45, 1998.
    [3] V. Brazhkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V.Solozhenko, and Y. Zhao. What does harder than diamond mean? Nature, 3:576, 2004.
    [4] Robert W. Cahn. Harder than diamond? Nature, 380:104, 1996.
    [5] H. Chacham and Leonard Kleinman. Instabilities in diamond under high shear stress. Phys. Rev. Lett., 85:4904, 2000.
    [6] Marvin L. Cohen. Predicting useful materials. Science, 261:307, 1993.
    [7] R.W. Cumberland. Re, Os, Ir borides. J. Am. Chem. Soc, 127:7264, 2005.
    [8] R. G. Dandrea, S. Proyen, and A. Zunger. polar superlattice. Phys. Rev. B,42:3213, 1990.
    [9] Haini Dong, Duanwei He, Thomas S. Duffy, and Yusheng Zhao. Elastic moduli and strength of nanocrystalline cubic BC_2N from x-ray diffraction under nonhydrostatic compression. Phys. Rev. B, 79:014105, 2009.
    [10] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson. The hardest known oxide.Nature, 410:653, 2001.
    [11] M. Somayazulu J. Badro G. Fiquet H. K. Mao E. Gregoryanz, C. Sanloup and R. J. Hemley. Ptn. Nature, 3:294, 2004.
    [12]S.Fahy,S.G.Louie,and M.L.Cohen.diamond and graphite transformation.Phys.Rev.B,35:7623,1987.
    [13]L.G.Ferreira,S.-H.Wei,and A.Zunger.International Journal of Supercompuer Application,5:34,1991.
    [14]G.Galli,F.Gygi,and A.Catellani.Quantum mechanical simulation of microfracture in a complex material.Phys.Rev.Lett.,82:3476,1999.
    [15]Faming Gao,Julong He,Erdong Wu,Shimin Lu,Dongli Yu,Dongchun Li,Siyuan Zhang,and Yongjun Tian.Hardness of covalent crystals.Phys.Rev.Lett.,91:015502,2003.
    [16]Y.G.Gogotsi,A.Kailer,and K.G.Nickel.1999.Nature,401:663,1999.
    [17]M.Grimsditch,E.S.Zouboulis,and A.Polian.Elastic constants of boron nitride.J.Appl.Phys.,76:832,1994.
    [18]J.Haines and J.M.Leger.RuO_2.Phys.Rev.B,48:13344,1993.
    [19]Seungwu Han,Jisoon Ihm,Steven G.Louie,and Marvin L.Cohen.Phys.Rev.Lett.,80:995,1998.
    [20]Z.F.Hou.Ab initio calculation of elastic constants.cond-mat,page 0601216,2006.
    [21]H.Hubert,L.A.J.Garvie,P.R.Buseck,W.T.Petuskey,and P.F.McMillan.B_6O hardness.J.Solid State Chem.,133:356,1997.
    [22]A.Janotti,S.-H.Wei,and D.J.Singh.First-principls study of the stability of bn and c.Phys.Rev.B,64:174107,2001.
    [23]Richard B.Kaner,John J.Gilman,and Sarah H.Tolbert.Designing superhard materials.Science,308:1268,2005.
    [24]E.Kim,T.Pang,W.Utsumi,V.L.Solozhenko,and Y.Zhao.Cubic phases of BC_2N,a first-priciples study.Phys.Rev.B,75:184115,2007.
    [25] C. Kittel. Introduction to Solid State Physics. Number p.135. Wiley, New York, 4th edition, 1971.
    [26] C. Kittel. Introduction to Solid State Physics. Number p.92. Wiley, New York, 7th edition, 1996.
    [27] E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen. Phys. Rev. B,51:12149, 1995.
    [28] E. Knittle, R. M. Wentzcovitch, R. Jeanloz, and M. L. Cohen. Bulk modulus of BN. Nature, 337:349, 1989.
    [29] T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara. J. Mater. Chem.,6:1799, 1996.
    [30] Tamikuni Komatsu, Miho Samedima, Ternyuki Awano, Yozo Kakadate, and Syuzo Fujiwara. Creation of superhard B-C-N heterodiamond using an advanced shock wave compression technology. J. Mater. Process. Technol,85:69, 1999.
    [31] W. R. L. Lambrecht and B. Segall. Electronic structure of (diamond C)/(sphalerite BN) 110 interfaces and superlattices. Phys. Rev. B, 40:9909,1989.
    [32] W. R. L. Lambrecht and B. Segall. Anomalous band gap behavior and phase stability of c-BN/Diamond alloys. Phys. Rev. B, 47:9289, 1993.
    [33] J.M. Leger. Discovery of hardest known oxide. Nature, 383:401, 1996.
    [34] D. Li, X. Chu, S.C. Cheng, X.W. Li, and V.P. Dravid. Tin/AIN superlattices. Appl. Phys. Lett., 67:203, 1995.
    [35] K. Li, X. Wang, F. Zhang, and D. Xue. Electronegativity identification of novel superhar materials. Phys. Rev. Let.t, 100:235504, 2008.
    [36] A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen. Graphitic BC_2N. Phys.Rev. B, 39:1760, 1989.
    [37]Amy Y.Liu and Marvin L.Cohen.Predicting useful materials.Science,245:841,1989.
    [38]O.M.Madelung.Semiconductors:Data Handbook.Springer,Berlin,3rd edition,2004.
    [39]P.F.MaMillan.B_6O hardness.Nature Materials,1:19,2002.
    [40]R.M.Martin.Atomic reconstruction of ploar interfaces.J.Vac.Sci.Technol.,17:978,1980.
    [41]R.M.Martin.Relation between elastic tensors of wurtzite and zinc-blende structure materials.Phys.Rev.B,6:4546,1972.
    [42]M.Mattesini and S.F.Matar.First-principles characterisation of new ternary heterodiamond BC_2N phases.Comput.Mater.Sci.,20:107,2001.
    [43]M.Mattesini and S.F.Matar.Search for ultra-hard materials:theoretical characterisation of novel orthorhombic BC_2N crystals.International Journal of Inorganic Materials,3:943,2001.
    [44]U.Mueler.Inorganic Structural Chemistry.John Wiley and Sons,Chichester,New York,Brisbane,Torionto,Singapure,1993.
    [45]H.O' Neil.The hardness of metals and its measurement.Chapman Hall,London,3rd edition,1934.
    [46]C.Niu,Y.Z.Lu,and C.M.Lieber.Predicting useful materials.Science,261:334,1993.
    [47]Y.L.Orlov.The mineralogy of the diamond.Wiley,New York,1977.
    [48]Z.Pan,H.Sun,and C.Chen.Ab initio structural identification of high density cubic BC_2N.Phys.Rev.B,73:214111,2006.
    [49]Z.Pan,H.Sun,and C.Chen.Colossal shear-strength enhancement of low density cubic BC_2N by nanoindentaion.Phys.Rev.Lett.,98:135505,2007.
    [50] J.C. Phillips. Phillips ionicity of chemical bond. Rev. Mod. Phys., 42:317,190.
    [51] M. L. Cohen R. M. Wentzcovitch, S. Fahy and S. G. Louie. cubic and grah-pitic transformtin for BN. Phys. Rev. B, 38:6191, 1988.
    [52] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and 0. Eriksson. DFT calculation of elastic properties of orthothombic crystals. J. Appl.Phys., 84:4891, 1998.
    [53] A. Reuss. Z. Angew. Math. Mech., 9:49, 1929.
    [54] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris. Ideal shear stress strength of fcc aluminum and copper. Phys. Rev. Lett., 82:2713, 1999.
    [55] D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris. The ideal strength of tungsten. Philos. Mag. A, 81:1725, 2001.
    [56] David Roundy and Marvin L. Cohen. Ideal strength of diamond, Si and Ge.Phys. Rev. B, 64:212103, 2001.
    [57] V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie. Synthesis of the superhard cubic BC_2N. Appl. Phys. Lett., 78:1385, 2001.
    [58] V. L. Solozhenko, S. N. Dub, and N. V. Novikov. Mechanical properties of cubic BC_2N a new superhard phase. Diamond and Related Materials,10:2228, 2001.
    [59] Hong Sun, Seung Hoon Jhi, David Roundy, Marvin L. Cohen, and Steven G. Louie. Structural forms of cubic BC_2N. Phys. Rev. B, 64:094108, 2001.
    [60] J. Sun, X.-F. Zhou, G.-R. Qian, J. Chen, Y.-X. Fan, H.-T. Wang, X. Guo,J. He, Z. Liu, and Y. Tian. Chalcopyrite polymorph for superhard BC_2N.Appl. Phys. Lett, 89:151911, 2006.
    [61] CM. Sung and M. Sung. BC_4 hardness and bulk modulus. Mater. Chem.Phys., 43:1, 1996.
    [62]Y.Tateyama,T.Ogitsu,K.Kusakabe,S.Tsuneyuki,and S.Itoh.Proposed synthesis path for heterodiamond BC_2N.Phys.Rev.B,55:R10161,1997.
    [63]R.H.Telling,C.J.Pickard,M.C.Payne,and J.E.Field.Theoretical strength and cleavage of diamond.Phys.Rev.Left.,84:5160,2000.
    [64]David M.Teter.Computational alchemy:The search for new superhard materials.MRS Bulletin,23:22,1998.
    [65]David M.Teter and Russell J.Hemley.Low-compressibility carbon nitrides.Science,271:53,1996.
    [66]S.N.Tkachev,V.L.Solozhenko,P.V.Zinin,M.H.Manghnani,and L.C.Ming.Elastic mokuli of the superhard cubic BC_2N phase by brillouin scattering.Phys.Rev.B,68:052104,2003.
    [67]W.Utsumi,S.Nakano,K.Kimoto,T.Okada,M.Isshiki,T.Taniguchi,K.Funakoshi,M.Akaishi,and O.Oshimomura.Proceedings of AIRAPT-18,Beijing,China,page 186,2001.
    [68]K.J.Van Vliet,J.Li,T.Zhu,S.Yip,and S.Suresh.Optical phonons and elasticity of diamond at megabar stresses.Phys.Rev.B,67:104105,2003.
    [69]Antonin(?)imunek and Jiri Vack(?).Hardness of covalent and ionic crystals:First-principle calculation.Phys.Rev.Lett.,96:085501,2006.
    [70]S.Q.Wang and H.Q.Ye.Ab initio elastic constants for the lonsdaleite phases of C,Si and Ge.J.Phys.Condens.Matter.,15:5307,2003.
    [71]Su-Huai Wei,L.G.Ferreira,and Alex Zunger.First-principles calculation of the order-disorder transition in chalcopyrite semiconductors.Phys.Rev.B,45(5):2533-2536,Feb 1992.
    [72]Y.Zhao et al.Superhard B-C-N materials synthesized in nanostructured bulks.J.Mater.Res.,17:3139,2002.
    [73]S.Yip.Nanoceramics.Nature,391:532,1998.
    [74]Andreas Zerr,Ralf Riedel,Toshimori Sekine,J.Edward Lowther,Wai-Yim Ching,and Isao Tanaka.Recent advances in new hard high-pressure nitrides.ADVANCED MATERIALS,18(22):2933-2948,NOV 17 2006.
    [75]R.Q.Zhang,K.S.Chan,H.F.Cheung,and S.T.Lee.Energetics of segregation in beta-C_2BN.Appl.Phys.Lett.,75:2259,1999.
    [76]Yi Zhang,Hong Sun,and Changfeng Chen.Superhard cubic BC_2N compared to diamond.Phys.Rev.Lett.,93:195504,2004.
    [77]X.-F.Zhou,J.Sun,Y.-X.Fan,J.Chen,H.-T.Wang,X.Guo,J.He,and Y.Tian.Most likely phase of superhard BC_2N by ab initio calculations.Phys.Rev.B,76:100101,2007.
    [78]T.Zhu,J.Li,K.J.Van Vliet,S.Ogata,S.Yip,and S.Suresh.shear strength.J.Mech.Phys.Solids,52:691,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700