随机变量序列的极限理论的若干结果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概率极限理论是概率论的主要分支之一,也是概率论的其它分支和数理统计的重要基础.前苏联著名概率论学家Gnedenko和Kolmogrov曾说过“:概率论的认识论的价值只有通过极限定理才能被揭示,没有极限定理就不可能去理解概率论的基本概念的真正含义.”本文也就此对概率极限理论的若干问题进行了初步的研究.
     本文利用概率极限理论的相关工具,首先,依次讨论了均匀经验过程完全收敛性及重对数律的精确渐近性、由相依序列生成的线性过程的精确渐近性、独立同分布随机变量序列矩完全收敛性的精确渐近性的一般形式以及相依序列部分和乘积的精确渐近性的一般形式.其次,讨论了非平稳相依序列加权和的几乎处处中心极限定理、独立随机变量序列自正则加权和的几乎处处中心极限定理以及相依序列部分和之和的乘积的几乎处处中心极限定理.再次,利用弱收敛定理讨论了误差项为相依情形下的一阶自回归模型的单位根检验,还研究了误差项为NA情形下的一阶自回归模型中最小二乘估计的强相合性.最后,给出了混合序列的大偏差上界以及由混合序列产生的经验测度序列的大偏差上界.
Theory of Probability is a science of quantitatively studying regularity of random phe-nomena, which is extensively applied in natural science, technological science, and managerialscience etc. Hence, it has been developing rapidly since 1930 s and many new branches haveemerged from time to time. Limit Theory is one of the important branches and also anessential theoretical basis of science of Probability and Statistics. As stated in the classicalbook“Limit Distributions for Sums of Independent Random Variables”(1954) by Gendenkoand Kolmogrov,“The epistemological value of the theory of probability is revealed only bylimit theorems. Without limit theorems it is impossible to understand the real content of theprimary concept of all our sciences-the concept of probability.”The classical limit theoremsof probability theory for independent random variables had been developed successfully in1930 s and 1940 s, and they are the significant achievements in the progress of Probability.The basic results were summed up in Gendenko and Kolmogrov s monograph《Limit Distri-butions for Sums of Independent Random Variables》(1954) and Petrov s monograph《Sumsof Independent Random Variables》(1975). The strong limit theorems of probability theoryfor mixing random variables, dependent random variables and martingale had been developedin 1950 s and 1960 s. The basic results were summed up in Lu Chuanrong and Lin Zhengyanmonograph《Limit theory for mixing dependent random variables》(1997) and Hall andHeyde《Martingale limit theory and its applications》(1980). Limit theory has become themost important and popular orientations of the current study of Probability Theory. Somesignificant results have been reached through deep research in this dissertation.
     In Chapter one, the author deals with precise asymptotics of random variables. Firstof all, in Section 2 the author discuss the precise asymptotics in the law of the iteratedlogarithm and the complete convergence for uniform empirical process. Let {ξ1,ξ2,···,ξn}be a sequence of independent and identically distributed U[0,1]-distributed random variables. Define the uniform empirical process
     In Section 3, the author deals with the precise asymptotics of linear process generatedby dependent random variables and obtains the same results as the Theorems 1.2.1-1.2.4.In Section 4, the author obtains a general law of precise asymptotics for a new kind ofcomplete moment convergence of i.i.d. random variables.
     Theorem 1.4.1 Let g(x) be a positive and differentiable function defined on [n0,∞),and the following conditions are satisfied: In Section 5, the author obtains a general law of precise asymptotics for products ofsums under dependence.We need the following assumptions:(A1) Let g(x) be a positive and di?erentiable function defined on [n0,∞), which isstrictly increasing to∞;(A2)ρ(x) = ggt ((xx)) is monotone for t < 1, and ifρ(x) is monotone nondecreasing, weassume limx(A3) ?(x) = gg ((xx)) is monotone, and if ?(x) is monotone nondecreasing, we assume
     In Chapter 2, the author deals with the almost sure central limit theorem of randomvariables. At first, in Section 2, we prove an almost sure central limit theorem for weightedsums under association. Theorem 2.3.3 Assume that (2.3.1) and (2.3.2) are satisfied and X is in the domainof attraction of the normal law, thenIn Section 4, the author deals with an almost sure central limit theorem for products ofsums of partial sums under association.Theorem 2.4.1 Let {Xn;n≥1} be a strictly stationary NA (PA,LNQD,LPQD)sequence of positive random variables with EX1 =μ> 0, and VarX1 =σ2 <∞. DenoteSn = nXi, Tn = nSi andγ=σ/μthe coe?cient of variation. Assume thatWhere F(·) is the distribution function of the random variables e10/3N .In Chapter 3, the author deals with the important model of time series analysis-autoregressionmodels of order one. We discuss the tests for unit root and strong consistency of the ordinaryleast squares estimator under dependence. The main results are as follows:
     In Chapter 4, the author deals with upper large deviations for mixing random sequence.
     In Section 2, we discuss upper large deviations for empirical measure generated by mixingrandom sequence.
引文
[1] ALAM K, SAXENA K M. L. Positive dependence in multivariate distributions [J]. Comm.Statist. Theory Math., 1981, A10 (12): 1183-1196.
    [2] ARNOLD B C, VILLASEN ?OR J A. The asymptotic distribution of sums of records [J]. Ex-trenmes, 1998, 1: 351-363.
    [3]白志东,苏淳.关于独立和的完全收敛性[J].中国科学A辑, 1985, 5: 399-412.
    [4] BAUM L E, KATZ M. Convergence rates in the law of large numbers [J]. Trans. Amer. Math.Soc., 1965, 120: 108–123.
    [5] BENTKUS V, GO¨TZE F. The Berry-Esseen bound for student’s statistic [J]. Ann. Probab.,1996, 24: 466-490.
    [6] BERCU B, GASSIAT E, RIO E. Concentration inequalities, large and moderate deviations forself-normalized empirical processes [J]. Ann. Probab., 2002, 30: 1576-1604.
    [7] BILLINGSLEY P. Convergence of Probability Measures [M]. New York: Wiley, 1968.
    [8] BIRKEL P. A functional central limit theorem for positively dependent random variables [J].J. Multi. Anal., 1993, 44: 314-320.
    [9] BROSAMLER G A. An almost everywhere central limit theorem [J]. Math. Proc. CambridgePhilos. Soc. 1988, 104: 561-574.
    [10] BRYC W. On large deviations for uniformly strong mixing sequences [J]. Stochastic Processes.Appl., 1992, 41: 191-202.
    [11] BRYC W. Large deviations of empirical measures under symmetric interaction [J]. J. Theoret.Probab., 2003, 16(4): 935-955.
    [12] BRYC W, DEMBO A. Large deviations and strong mixing [J]. Ann. Inst. H. Poincae′Probab.Statist., 1996, 32(4): 549-569.
    [13] BURTON R M, DEHLING H. Large deviations for some weakly dependent random process [J].Statist. Probab. Lett., 1990, 9: 397-401.
    [14] CAI G H. Almost sure convergence for linear process generated by asymptotically linear negativequadrant dependence processes [J]. Commun. Korean Math. Soc., 2005, 20(1): 161-168.
    [15]陈平炎.和的乘积的重对数律[J].数学物理学报, 2008, 28(1): 66-72.
    [16] CHEN R. A remark on the tail probability of a distribution [J]. J. Multi. Anal., 1978, 8:328-333.
    [17] CHEN S Q, LIN Z Y. Almost sure central limit theorems for functionals of absolutely regularprocesses with application to U-statistics [J]. J. Math. Anal. Appl., 2008, 340(2): 1120-1126.
    [18]成凤旸,王岳宝.独立与NA列部分和的精致渐近性[J].数学学报, 2004,47(5): 965-972.
    [19] CHOW Y S, TEICHER H. Probability theory: independence, interchangeability, martingales[M]. 2nd Section. New York: Springer, 1988.
    [20] CSO¨RGO? M, SZYSZKOWICZ B, WANG Q Y. Darling-Erdo¨s theorem for self-normalized par-tial sums [J]. Ann. Probab., 2003a, 31: 676-692.
    [21] CSO¨RGO? M, SZYSZKOWICZ B, WANG Q Y. Donsker’s theorem for self-normalized partialsums processes [J]. Ann. Probab., 2003b, 31: 1228-1240.
    [22] CSO¨RGO? M, SZYSZKOWICZ B, WANG Q Y. On weighted approximations in D[0,1] withapplications to self-normalized partial sum processes [J]. Acta Math. Hungar., 2008, 121(4):307-332.
    [23] DAVIS J A. Convergence rates for the law of the iterated logarithm [J]. Ann. Math. Statist.,1968, 39: 1479–1485.
    [24] DE LA PEN ?A V H, KLASS M, LAI T Z. Self-normalized processes exponential inequalitiesmoment bounds and iterated logarithm laws [J]. Ann. Probab., 2004, 32: 1902-1933.
    [25] DE LA PEN ?A V H, KLASS M, LAI T Z. Pseudo-maximization and self-normalized processes[J]. Probab. Surv., 2007, 4: 172-192.
    [26] DEMBO A, ZEITOUNI O. Large deviations techniques and applications [M]. Boston: Jonesand Barlett, MA, 1998.
    [27] DEUSCHEL J D, STROOCK D W. Large deviations [M]. Boston: Academic Press Inc, 1989.
    [28] DICKEY D A. Estimate and hypothesis testing for nonstationary time series [D]. Ames, Iowa:Iowa State University, 1976.
    [29] DICKEY D A, FULLER W A. Distribution of estimators for autoregressive time series with aunit root [J]. J. Am. Stat. Assoc., 1979, 74(366): 427-431.
    [30] DICKEY D A, FULLER W A. Likelihood ratio statistics for autoregressive time series with aunit root [J]. Econometrica, 1981, 49(4): 1057-1072.
    [31] DISTASO W. Testing for unit root processes in random coe?cient autoregressive models [J].J. Econometrics, 2008, 142(1): 581-609.
    [32]董志山,杨小云. NA及LNQD随机变量列的几乎处处中心极限定理[J].数学学报, 2004,47(3): 593-600.
    [33] DONSKER M D, VARAHAN S R S. Large deviations for stationary Gaussian processes [J].Comm. Math. Phys., 1985, 97: 187-210.
    [34] ERDO¨S P. On a theorem of Hsu and Robbins [J]. Ann. Math. Statist., 1949, 20: 286-291.
    [35] ERDO¨S P. Remark on my paper On a theorem of Hsu and Robbins [J]. Ann. Math. Statist.,1950, 21: 138.
    [36] ESARY J D, PROSCHAN F, WALKUP D W. Association of random variables with applications[J]. Ann. Math. Statist., 1967, 38: 1466-1474.
    [37] FAKHRE-ZAKERI I, LEE S. A random functional central limit theorem for stationary linearprocesses generated by matingales [J]. Statist. Probab. Lett., 1997, 35: 417-422.
    [38] FISHER A. Convex-invariant means and a pathwise central limt theorem [J]. Adv. Math.,1987, 63: 213-246.
    [39] FU K A, HUANG W. A weak invariance principle for self-normalized products of sums of mixingsequences [J]. Appl. Math. J. Chinese Univ. Ser. B, 2008, 23(2): 183-189.
    [40] FU K A, ZHANG L X. Precise rates in the law of the logarithm for negatively associatedrandom variables [J]. Comput. Math. Appl., 2007, 54: 687-698.
    [41] FU K A, ZHANG L X. Pecise rates in the law of the logarithm for the moment convergence inHilbert spaces [J]. Acta Math. Sin. Engl. Ser., 2009, 25(2): 191-208.
    [42] GINE′E, GO¨TZE F, MASON D M. When is the student t-statistic asymptotically standardnormal [J]? Ann. Probab., 1997, 25: 1514-1531.
    [43] GIRAITIS L, PHILLIPS P C B. Uniform limit theory for stationary autoregression [J]. J. TimeSer. Anal., 2006, 27(1): 51-60.
    [44] GNEDENKO B V, KOLMOGOROV A M. Limit Distributions for Sums of Independent Ran-dom Variables [M]. Addison-wesley,1954.
    [45] GRIFFIN P S, KUELBS J D. Self-normalized laws of the iterated logarithm [J]. Ann. Probab.,1989, 17: 1571-1601.
    [46] GUT A, SPA ?TARU A. Precise asymptotics in the Baum-Katz and Davis law of large numbers[J]. J. Math. Anal. Appl., 2000a, 248: 233-246.
    [47] GUT A, SPA ?TARU A. Precise asymptotics in the law of the iterated logarithm [J]. Ann.Probab., 2000b, 28: 1870-1883.
    [48] HALL P, HEYDE C C. Martingale limit theory and its application [M]. Academic press, 1980.
    [49] HEYDE C C. A supplement to the strong law of large numbers [J]. J. Appl. Probab., 1975,12: 173-175.
    [50] HSU P L, ROBBINS H. Complete convergence and the strong law of large numbers [J]. Proc.Nat. Acad. sci. USA, 1947, 33: 25-31.
    [51]胡亦钧.一类相依随机变量序列和的轨道的大偏差[J].数学年刊A辑, 1998a, 19(2): 197-210.
    [52]胡亦钧.平稳NA序列的大偏差原理[J].科学通报, 1998b, 43(4): 375-379.
    [53] HU Z S, SU C. Precise asymptotics for Le′vy processes [J]. Acta Math. Sin. Engl. Ser., 2007,23(7): 1265-1270.
    [54] HUANG W, ZHANG L X, JIANG Y. Precise rate in the law of iterated logarithm forρ-mixingsequence [J]. Appl. Math. J. Chinese Univ. Ser. B, 2003, 18(4): 482-488.
    [55] HUANG W, JIANG Y, ZHANG L X. Precise asymptotics in the Baum-Katz and Davis laws oflarge numbers ofρ-mixing sequences [J]. Acta Math. Sin. Engl. Ser., 2005, 21(5): 1057-1070.
    [56] JIANG T F, O’BRIEN G L. The metric of large deviation convergence [J]. J. Theor. Probab.,2000, 13(3): 805–824.
    [57] JIANG Y W, WU L M. Large deviations for empirical measures of not necessarily irreduciblecountable Markov chains with arbitrary initial measures [J]. Acta Math. Sin. Engl. Ser., 2005,21(6): 1377-1390.
    [58] JIANG C, YANG X. Precise asymptotics in self-normalized sums iterated logarithm for mul-tidimensionally indexed random variables [J]. Appl. Math. J. Chinese Univ. Ser. B, 2007, 22:87-94.
    [59]蒋烨,张立新. I.I.D.随机变量序列矩完全收敛的精确渐近性[J].数学物理学报, 2006, 26A(6): 917-925.
    [60] JIANG Y, ZHANG L X, PANG T. X. Precise rates in the law of logarithm for the momentconvergence of i.i.d. random variables [J]. J. Math. Anal. Appl., 2007, 327: 695-714.
    [61]金敬森,王建峰,张立新.ρ?混合序列部分和乘积的几乎处处中心极限定理[J].数学学报,2007, 50(4): 729-736.
    [62] JING B Y, WANG Q Y, SHAO Q M. Self-normalized Crame′r-type large deviations for inde-pendent random variables [J]. Ann. Probab., 2003, 31: 2167-2215.
    [63] JING B Y, SHAO Q M, ZHOU W. Towards a universal self-normalized moderate deviation [J].Trans. Amer. Math. Soc., 2008, 360(8): 4263-4285.
    [64] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications [J].Ann. Statist., 1983, 11(1): 286-295.
    [65] KATZ M. The probability in the tail of a distribution [J]. Ann. Math. Statist., 1963, 34:312-318.
    [66] KHURELBAATAR G, REMPALA G. A note on the almost sure limit theorem for the productof partial sums [J]. Appl. Math. Lett., 2006, 19: 191-196.
    [67] KIEFER J, WOLFOWITZ J. On the deviations of the empiric distribution function of vectorchance variables [J]. Trans. Amer. Math. Soc., 1958, 87: 173-186.
    [68] KIM T S, BAEK J I. A central limit theorem for stationary linear processes generated bylinearly positively quadrant-dependent process [J]. Statist. Probab. Lett., 2001, 51: 299-305.
    [69] KWIATKOWSKI D, PHILLIPS P C B, SCHMIDT P, SHIN Y. Testing the null hypothesis ofstationarity against of the alternatives of a unit root: how sure are we that economic time serieshave a unit roots [J]? Journal of Ecnometrics, 1992, 54: 169-178.
    [70] LACEY M T, PHILLIP W. A note on the almost sure central limit theorem [J]. Statist. Probab.Lett., 1990, 9: 201-205.
    [71] LEHMANN E L. Some concepts of fependence [J]. Ann. Math. Statist., 1966, 37: 1137-1153.
    [72] LI D L, RAO M B, WANG X C. Complete convergence of moving average process [J]. Statist.Probab. Lett., 1992, 14: 111-114.
    [73] LI D L, WANG X C, RAO M B. Some results on convergence rates for probabilities of moderatedeviations for sums of random variables [J]. Internet. J. Math and Math. Sci., 1992, 15(3):481–498.
    [74]李云霞.关于由ALNQD产生的平稳线性过程的泛函中心极限定理[J].浙江大学学报(理学版), 2003, 30(5): 495-498.
    [75]李云霞.线性过程的若干极限理论及其应用[D].杭州:浙江大学理学院, 2005.
    [76] LI Y X. Precise asymptotics in the law of the iterated logarithm of moving-average process [J].Acta Math. Sin. Engl. Ser., 2006a, 22(1): 143-156.
    [77] LI Y X. Change-point estimation of a mean shift in moving-average processes under dependenceassumptions [J]. Acta Math. Appl. Sin. Engl. Ser., 2006b, 22(4): 615-626.
    [78] LI Y X, WANG J F. Asymptotic distribution for products of sums under dependence [J].Metrika, 2007, 66: 75-87.
    [79] LI Y X, WANG J F. An almost sure limit theorem for products of sums under association [J].Statist. Probab. Lett., 2008, 78(4): 367-375.
    [80] LIANG H Y, ZHANG D X, BAEK J. Convergence of weighted sums for dependent randomvariables [J]. J. Korean Math. Soc., 2004, 41: 883-894.
    [81] LIN Z Y. A self-normalized Chung-type law of iterated logarithm [J]. Theory. Prob. Appl.,1996, 41: 791-798.
    [82] LIU J J, GAN S X, CHEN P Y. The H′ajeck-R`enyi inequality for the NA random variables andits application [J]. Statist. Probab. Lett., 1999, 43(1): 99-105.
    [83] LIU W D, LIN Z Y. Precise asymptotics for a new kind of complete moment convergence [J].Statist. Probab. Lett., 2006, 76: 1787-1799.
    [84] LIU W D, LIN Z Y. Asymptotics for self-normalized random products of sums for mixingsequences [J]. Stochastic Analysis and Applications, 2007, 25: 293-315.
    [85] LIU W D, LIN Z Y. Precise rates in the law of the iterated logarithm under dependenceassumptions [J]. Acta Math. Sin. Engl. Ser., 2008, 24(1): 59-74.
    [86] LU C. R. The invariance principle for linear processes generated by negatively associated se-quences and its applications [J]. Acta Math. Appl. Sin. Engl. Ser.,2003, 19(4): 641-646.
    [87]陆传荣,林正炎.混合相依变量的极限理论[M].北京:科学出版社, 1997.
    [88] LU C R, QIU J, XU J J. Almost sure central limit theorems for random functions [J]. Sci.China Ser. A, 2006, 49(12): 1788-1799.
    [89] LU X, QI Y. A note on asymptotic distribution for products of sums [J]. Statist. Probab. Lett.,2004, 68: 407-413.
    [90] MANN H B, WALD A. On the statistical treatment of linear stochastic di?erence equations[J]. Econometrica, 1943, 11(3): 173-220.
    [91] MARC YOR. Some remarks on the joint law of Brownian Motion and its supremum [J].S′eminaire de Probabilit′es(strasbourg), tome 1997, 31: 306 -314.
    [92] MATTHIAS K H. The principle of large deviations for the almost everywhere central limittheorem [J]. Stochastic Process. Appl., 1998 76: 61-75.
    [93] MIGUEL A A. Large and moderate deviations of empirical processes with nonstandard rates[J]. Statist. Probab. Lett., 2002, 57: 315-326.
    [94] NAGAEV S V. Large deviations of sums of independent random variables [J]. Ann. Probab.,1979, 7(5): 745-789.
    [95] NEWMAN C M. Asymptotic independence and limit theorems for positively and negativelydependent random variables [C]// Inequalities in statistics and probability (Tong, Y.L., ed.,Institute of Mathematical Statistics, Hayward, CA), 1984: 127-140.
    [96] PANG T X, LIN Z Y. Precise rates in the law of the logarithm for i.i.d. random variables [J].Comput. Math. Appl., 2005, 49: 997-1010.
    [97] PANG T X, LIN Z Y, HWANG K S. Asymptotics for self-normalized random products of sumsof i.i.d. random variables [J]. J. Math. Anal. Appl., 2007, 334: 1246-1259.
    [98]庞天晓,王建锋.自正则Chung型重对数律的精确渐近性[J].数学年刊A辑, 2007, 28(4):507-518.
    [99] PANG T X, ZHANG L X, WANG J F. Precise asymptotics in the self-normalized law of theiterated logarithm [J]. J. Math. Anal. Appl., 2008, 340: 1249-1262.
    [100] PELIGRAD M, SHAO Q M. A note on the almost sure central limit theorem [J]. Statist.Probab. Lett., 1995, 22: 131-136.
    [101] PELIGRAD M, UTEV S. Central limit theorem for linear process [J]. Ann. Probab., 1997, 25:443-456.
    [102] PETROV V V. Sums of Independent Random Variables [M]. New York: Springer-Verlag, 1975.
    [103] PHILLIPS P C B. Time series regression with a unit root [J]. Econometrica, 1987, 55(2):277-301.
    [104] PHILLIPS P C B, PERRON P. Testing for a unit root in time series regression [J]. Biometrika,1988, 75(2): 335-346.
    [105] POLLARD D. Convergence of Stoastic Process [M]. Spring-Verlag, 1984.
    [106] PRUSS A R. A two-sided estimate in the Hsu-Robbins-Erdos law of large numbers [J]. Stochas-tic Process. Appl., 1997, 70: 173-180.
    [107] QI Y. Limit distributions for products of sums [J]. Statist. Probab. Lett., 2003, 62: 93-100.
    [108] REMPALA G, WESOLOWSKI J. Asymptotic for products of sums and U-statistics [J]. Elec-tronic Communications in Probability, 2002, 7: 47-54.
    [109] ROBERT M B, HEROLD D. Large deviations for some weakly dependent random processes[J]. Statist. Probab. Lett., 1990, 9: 397-401.
    [110] ROBINSON J, WANG Q Y. On the Self-Normalized Crame′r-type Large Deviation [J]. J.Theoret. Probab., 2005, 18: 891-909.
    [111] ROUSSAS G G. Positive and negative dependence with some statistical application [C]. //Ghosh, S. (Ed.), Asymptotics, Nonparametrices and Time Series. Marcel Dekker, New York,1999: 757-788.
    [112] SANGYEOL lEE. Random central limit theorem for the linear process generated by a strongmixing process [J]. Statist. Probab. Lett., 1997, 35: 189-196.
    [113] SCHATTE P. On strong versions of the central limit theorem [J]. Math. Nachr., 1988, 137:249-256.
    [114] SCHUETTE P H. Large deviations for trajectories of sums of independent random variables[J]. J. Theoret. Probab., 1994, 7: 3-45.
    [115] SHAO Q M. Self-normalized large deviations [J]. Ann. Probab., 1997, 25: 285-328.
    [116] SHAO Q M. Self-normalized large deviations [C]. // Asymptotic Methods in Probability andstatistics. Elsevier Science, 1998: 467-480.
    [117] SHAO Q M. A Crame′r type large deviation result for Student’s t-statistics [J]. J. Theoret.Probab., 1999, 12: 385-398.
    [118] SHAO Q M. A comparison theorem on moment inequalities between negatively associated andindependent random variables [J]. J. Theoret. Probab., 2000, 13(2): 343-356.
    [119] SPA ?TARU A. Precise asymptotics in Spitzer’s law of large numbers [J]. J. Theoret. Probab.,1999, 12: 811-819.
    [120] SPITZER F. A combinatorial lemma and its applications to probability theory [J]. Trans.Amer. Math. Soc., 1956, 82: 323-339.
    [121] SU Z G. Precise asymptotics for random matrices and random growth models [J]. Acta Math.Sin. Engl. Ser., 2008, 24(6): 971-982.
    [122]谭希丽.线性过程的若干极限定理及经验测度的大偏差原理[D].长春:吉林大学数学学院,2008.
    [123]谭希丽,杨晓云.经验测度序列的大偏差原理[J].数学年刊A辑, 2007, 28(1): 91-102.
    [124] TAN X L, YANG X Y. A general result on precise asymptotics for linear processes of positivelyassociated sequences [J]. Appl. Math. J. Chinese Univ. Ser. B, 2008, 23(2): 190-196.
    [125]谭希丽,赵世舜,杨晓云.线性过程的强逼近和重对数律[J].应用概率统计, 2008, 24(3):225-239.
    [126] TRASHORRAS J. Large deviations for symmetrised empirical measures [J]. J. Theoret.Probab., 2008, 21(2): 397-412.
    [127] VLADIMIR RATAR. Probability Theory [M]. Singapore-New Jersey-london-HongKong: WorldScientific, 1997.
    [128] WANG Q Y. Limit theorems for self-normalized large deviation [J]. Electron J. Probab., 2005,10: 1260-1285.
    [129]王芳,程士宏. U-统计量的几乎处处中心极限定理[J].数学年刊A辑, 2003, 24 (06): 735-742.
    [130] WANG F, CHENG S H. Almost sure central limit theorems for heavily trimmed sums [J]. ActaMath. Sin. Engl. Ser., 2004, 20(5): 869-878.
    [131] WANG Q Y, JING B Y. An exponential nonuniform Berry-Esseen bound self-normalized sums[J]. Ann. Probab., 1999, 27: 2068-2088.
    [132] WANG Q Y, LIN Y X, GULATI C M. The invariance principle for linear processes withapplications [J]. Econometric Theory, 2002, 18(1): 119-139.
    [133] WANG Y B, YANG Y. A general law of precise asymptotics for the counting process of recordtimes [J]. J. Math. Anal. Appl., 2003, 286: 753-764.
    [134] WU H M, WEN J W. Precise rates in the law of iterated logarithm for R/S statistics [J]. Appl.Math. J. Chinese Univ. Ser. B, 2006, 21(4): 461-466.
    [135] WU L M. Perturbations of Dirichlet forms, ground state di?usions and large deviations [J]. J.Funct. Anal., 1994, 123(1): 202–231.
    [136]严加安,彭实戈,方诗赞,吴黎明.随机分析选讲[M].第一版,北京:科学出版社, 1997.
    [137]严继高,苏淳. U-统计量的精致渐近性[J].数学学报, 2007, 50(3): 517-526.
    [138] YANG X R, LIU W D, ZHANG L X. Precise asymptotics in the law of logarithm underdependence assumptions [J]. Comput. Math. Appl., 2008, 56: 1634-1642.
    [125]谭希丽,赵世舜,杨晓云.线性过程的强逼近和重对数律[J].应用概率统计, 2008, 24(3):225-239.
    [126] TRASHORRAS J. Large deviations for symmetrised empirical measures [J]. J. Theoret.Probab., 2008, 21(2): 397-412.
    [127] VLADIMIR RATAR. Probability Theory [M]. Singapore-New Jersey-london-HongKong: WorldScientific, 1997.
    [128] WANG Q Y. Limit theorems for self-normalized large deviation [J]. Electron J. Probab., 2005,10: 1260-1285.
    [129]王芳,程士宏. U-统计量的几乎处处中心极限定理[J].数学年刊A辑, 2003, 24 (06): 735-742.
    [130] WANG F, CHENG S H. Almost sure central limit theorems for heavily trimmed sums [J]. ActaMath. Sin. Engl. Ser., 2004, 20(5): 869-878.
    [131] WANG Q Y, JING B Y. An exponential nonuniform Berry-Esseen bound self-normalized sums[J]. Ann. Probab., 1999, 27: 2068-2088.
    [132] WANG Q Y, LIN Y X, GULATI C M. The invariance principle for linear processes withapplications [J]. Econometric Theory, 2002, 18(1): 119-139.
    [133] WANG Y B, YANG Y. A general law of precise asymptotics for the counting process of recordtimes [J]. J. Math. Anal. Appl., 2003, 286: 753-764.
    [134] WU H M, WEN J W. Precise rates in the law of iterated logarithm for R/S statistics [J]. Appl.Math. J. Chinese Univ. Ser. B, 2006, 21(4): 461-466.
    [135] WU L M. Perturbations of Dirichlet forms, ground state di?usions and large deviations [J]. J.Funct. Anal., 1994, 123(1): 202–231.
    [136]严加安,彭实戈,方诗赞,吴黎明.随机分析选讲[M].第一版,北京:科学出版社, 1997.
    [137]严继高,苏淳. U-统计量的精致渐近性[J].数学学报, 2007, 50(3): 517-526.
    [138] YANG X R, LIU W D, ZHANG L X. Precise asymptotics in the law of logarithm underdependence assumptions [J]. Comput. Math. Appl., 2008, 56: 1634-1642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700