绒面掺铝氧化锌透明导电薄膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO薄膜材料因具有无毒、源材料丰富、相对生长温度低和在强H等离子体环境中性能稳定等特点获得了广泛研究和应用。其中ZnO:Al (AZO)薄膜由于电阻率低,在可见光区域透过率高而备受关注,被广泛地应用于硅基太阳电池前电极。然而,硅基太阳电池除了要求前电极具有优异的光电性能以外,还要求薄膜表面具有凹凸起伏的绒面结构,实现有效的光散射从而提高电池的光电转换效率。
     本文采用射频磁控溅射法在硅和石英衬底上成功制备了不同溅射功率下的AZO薄膜,研究了溅射功率对AZO薄膜结构及光电性能的影响,后又采用湿法刻蚀方法对AZO薄膜表面进行织构化处理,研究不同的刻蚀时间对薄膜表面形貌的变化及相同的刻蚀时间下不同溅射功率制备的AZO薄膜刻蚀行为的差异,得出的研究结果如下:
     一、XRD结果显示,所有AZO薄膜均显示了明显的(002)峰C轴择优取向,随着功率的增加,衍射峰的强度和半高宽减小,衍射峰向大角度方向移动,这是由于半径较小的Al3+(0.054nm)部分取代了ZnO晶格中半径较大的Zn2+(0.074nm),因此AZO薄膜的晶面间距d(002)减小,(002)面的衍射角向大角度方向移动。SEM表面形貌图显示,随着溅射功率的增加,薄膜表面由圆点状向瓦片状转变,颗粒逐渐变大,AFM结果显示,薄膜的均方根粗糙度(RMS)在3.33-9.54nm范围内。SEM截面图显示,薄膜垂直于基片生长,随着溅射功率的增加,薄膜由柱状生长方式变为片状生长方式。XPS结果显示,Zn以Zn2+形式出现在AZO基体中,Al2p峰的结合能在74.0eV附近,处于单质金属Al的电子结合能(72.3eV)和Al2O3的电子结合能(74.6eV)之间,说明Al离子进入到ZnO的晶格内形成了掺铝氧化锌化合物。
     二、采用霍尔系统测试了AZO薄膜的电学性质,发现随着溅射功率的增加,AZO薄膜的载流子浓度和霍尔迁移率均增加了,从而导致薄膜的电阻率降低,最小值为1.37×10-2?cm。采用紫外-可见光分光光度计测试了AZO薄膜在可见光区域的透过率,所有薄膜在可见光区域的透过率均在80%以上,溅射功率为200W的样品的平均透过率最高,达86%。此外,所有的AZO薄膜的透射曲线都有一个明显的特征吸收边,且随着功率的增加,样品的特征吸收边向短波方向移动,即产生了吸收边蓝移的现象。
     三、初沉积的AZO薄膜的表面比较平滑,首先采用体积分数为0.5%的稀盐酸对具有最优的光电性能的170W和200W的样品进行湿法刻蚀,刻蚀时间为10-30s。SEM图显示刻蚀后样品表面呈现坑状形貌,随着刻蚀时间的增加,坑越深越大,腐蚀时间30s的时候AZO薄膜刻蚀后坑状形貌最为明显。因此,对溅射功率在70-200W之间的所有AZO薄膜进行30s的刻蚀,发现不同溅射功率下的AZO薄膜刻蚀后显示出不同的坑状形貌,表现为坑的大小、深度、分布密度不同,其中溅射功率为170W的AZO薄膜腐蚀后表面分布的坑特征尺寸达500nm,分布均匀,在500nm处的绒度高达40.6%,具有优异的光散射性能。
ZnO thin films have attracted much attention because of its excellent characteristics such as non-toxicity, low cost, low growth temperature and high stability in the atmosphere of H plasma. ZnO:Al (AZO) transparent and conducting thin film is widely used as a front contact in solar cells because its low resistivity and high transmittance in the visible region. However, in order to improve the efficiency, the thin film solar cells require the AZO films have not only the excellent optical and electrical properties but also an adequate surface texture to provide an efficient light scattering.
     In this paper, we investigated the structure, optical and electrical properties of AZO films prepared by RF-magnetron sputtering with various RF power, then applied a post deposition wet etching technique to initially smooth AZO films and observed that the effect of the as-grown structure on etching behavior in diluted HCl. The following is the major results:
     1. The XRD spectra reveal that all the AZO films deposited at various RF sputtering power clearly exhibited the c-axis orientation with (002) diffraction peaks.
     With increasing the RF power, the peak intensities and the Full Width at Half Maximum of (002) peak decreased. The SEM images show that as the RF power was increased, the surface morphology gradually transferred from dot-like to tile-like and the grain got larger. From AFM images, the root mean square roughness values (RMS) of AZO films with the variety of RF sputtering power from 70W to 200W was found to be 3.33-9.54nm. In addition, the SEM cross-sectional images show that a transition from columnar to granular growth is observed. The AZO films deposited at 70W-120W exhibit a columnar crystal structure, however, at higher RF powers ranging from 150-200W the AZO films show a granular crystal structure. The XPS analysis shows that the Al 2p spectrum of the AZO thin film was successfully monitored. The binding energy of the AZO films is around 74.0eV, which is lower than the binding energy (74.6 eV) of Al2O3 films. The core line of Zn 2p exhibited high symmetry and the binding energy of Zn 2p3/2 remains at about 1021.9 eV, which confirms that the majority of Zn atoms remain in the same formal valence state of Zn2+ within the ZnO matrix.
     2. The electrical properties of the AZO films deposited on quartz glass substrates were measured by Hall measurements in the van der Pauw configuration at RT. As the RF power was increased, the carrier concentration increased, finally reached the maximum values of 1.27×1020 cm-3 at the RF of 200W. It can also be seen that as the RF power was increased the Hall mobility increased obviously, and reached the maximum values of 3.6 cm2/Vs at the RF of 200W. Finally, the increases in the carrier concentration and the Hall mobility caused the reducing of resistivity of AZO films. A minimum resistivity of 1.37×10-2?cm was detected for the AZO film deposited at the RF of 200W. The transmission spectra show that all the films exhibit a high transmittance in the visible range and a sharp fundamental absorption edge. The transmittance of AZO films on glass gradually increases with an increasing power and gets the maximum value of 86% at the power of 200W. In addition, the UV absorption edge shifted to a shorter wavelength with an increasing power. The Eg of the AZO films deposited at the RF power from 70W to 200W are varied among 3.34–3.43 eV, which is a little larger than that of pure ZnO due to Burstein-Moss shift.
     3. The films deposited at 170W and 200W had the optimum opto-electrical property and then were surface textured by a post-deposition chemical etching with 0.5% HCl for 10-30s. The SEM images show that all these films developed a craterlike surface morphology and the crater became larger and deeper as the etching time was increased. The light scattering property of AZO films was researched by calculated spectral haze. The AZO film etched 30s had the optimal light scattering property due to its suitable craterlike surface morphology. Then, all the AZO films deposited at the RF power of 70-200W were etched by 0.5% HCl for 30s. After a post-deposition chemical etching, these films developed different surface textures depending on their structural properties. The AZO film deposited at 170W and etched 30s had the optimal light scattering property due to its suitable craterlike surface morphology with feature size of ~500nm, the haze ratio at 500nm reached as high as 40.6%.
引文
[1] J. Hupkes, B. Rech, S. Calnan, et al. Material study on reactively sputtered zinc oxide f or thin film silicon solar cells [J] .Thin Solid Films, 2006, 502 (1/2): 286- 291.
    [2] J. Muller, B. Rech, J. Springer, et al. TCO and light trapping in silicon thin film solar cells [J]. Solar Energy, 2004, 77(6): 917- 930.
    [3]薛俊明,黄宇,熊强,等. ZnO:Al绒面透明导电薄膜性能研究[J].兵工学报, 2008, 29(4): 504- 508.
    [4] L.Zhao, H. Y. Zuo, L. C. Zhou, et al. A highly efficient light trapping structure for thin film silicon solar cells [J]. Solar Energy, 2010, 84 (1): 110-115.
    [5] S. Fernandez, B. F. Naranjo. Optimization of aluminum doped zinc oxide films deposited at low temperature by radio frequency sputtering on flexible substrates for solar cell applications [J]. Solar Energy Materials and Solar Cells, 2010, 94 (2):157- 163.
    [6] J. T. Coutts, L. D. Young,X. Li, et al. Search for improved trans parent conducting oxides: a fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 [J] . Journal of Vacuum Science & Technology: A, 2000, 18 (6): 2646 -2660.
    [7] L.K.Chopra, S. Major, K. D. Pandya. Transparent conductors & a status review [J]. Thin Solid Films, 1983,102 (8): 1- 46.
    [8] B. Z. Ayadi, E. L. Mir, S. Djessas, et al. The properties of aluminum doped zinc oxide thin films prepared by RF magnetron sputtering from nano powder targets [J]. Materials Science and Engineering, 2008, 28 (5/ 6): 613- 617.
    [9] M. Chen, L. Z. Pei, X. Wang, et al. Structural, electrical and optical properties of transparent conductive oxide ZnO:Al film s prepared by dc magnetron reactive sputtering [J] . Journal Vacuum Science & Technology: A, 2001, 19 (3): 963-970.
    [10] X. Jiang, L. F. Wong, K. M. Fung, et al. Aluminum doped zinc oxide films as transparent conductive electrode for organic light emitting devices [J]. AppliedPhysics Letters, 2003, 83 (9): 1875- 1877.
    [11] G. B. Choi, H. I. Kim, H. D. Kim, et al. Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by RF magnetron sputter [J] .Journal of the European Ceramic Society, 2005, 25:2161- 2165.
    [12] S. Mandal, K.R. Singha, A. Dhar, et al. Optical and structural characterristics of ZnO thin films grown by RF magnetron sputtering [J]. Materials Research Bullet in, 2008, 43 (2): 244- 250.
    [13] http://wenku.baidu.com/view/1bd3aa1252d380eb62946dbf.html.
    [14]宁兆元,江美福,辛煜,叶超.固体薄膜材料与制备技术,科技出版社, 2008.
    [15]ü. ?zgür, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices [J] J. Appl. Phys. 2005, 98: 041301.
    [16] J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO [J]. Phys.Rev.B. 2000, 62(3): 1660.
    [17] http://wenku.baidu.com/view/1affe5d4b14e852458fb572b.html.
    [18]吕承瑞,王小平,王丽军,雷通. ZnO半导体薄膜的研究进展,材料导报, 2008, 22:216.
    [19] T. Kanfmann, G. Fuchs, M. Webert. Cryst Res Technol, 1988, 23:635.
    [20] H. Funakubo, N. Mizuan. J Electroceramics, 1999, 4(s1):25.
    [21] W.W. Wenas, A. Yamada, M. Konagai, et al. Jpn J Appl Phys, 1994, 33:L283.
    [22] X. L. Yi, Z. Xu, B. Y. Hou, et al.China Sci Bul, 2001, 6 (14):1223.
    [23]刘坤,季振国,氧化锌薄膜制备技术的评价,真空科学与技术, 2002, 22:282.
    [24]居健, Cr掺杂ZnO薄膜的结构和性质研究: [学位论文],苏州:苏州大学, 2008.
    [25] http://baike.baidu.com/view/819914.htm.
    [26] Y. Ohya, H. Saiki, Y. Takahashi. Preparation of transparent, electrically conducting ZnO film from zinc acetate and akloxide. Journal of material science. 1994, 29: 4099.
    [27]葛春桥,溶胶-凝胶法制备ZnO透明导电薄膜的研究: [学位论文],武汉理工大学, 2005.
    [28]王银玲,徐学青,徐刚,何新华.掺铝氧化锌(ZAO)透明导电薄膜的研究进展,材料导报, 2008, 22:297.
    [29] http://baike.baidu.com/view/656914.htm.
    [30]欧阳桂仓,叶志清,吴木生. ZnO薄膜的物理性质与制备方法研究,江西科学, 2008, 26:161.
    [31] S. Fernandez, A. Martinez-steele, J. J. Gandia, et al. Thin Solid Films, 2009, 517 (10): 3152- 3156.
    [32] M. C. Bhaskar, J. H. Yeon, Y. H. Deuk, et al. Applied Physics Letters, 2009, 95 (6): 062103 -062105.
    [33] W. W. Wenas, A. Yamada, K. Takahashi, et al. Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition [J]. J Appl Phys, 1991, 70:7119.
    [34] M. Yoshino, W. W. Wenas, A. Yamada,et a1.Large-area ZnO thin films for solar cells prepared by photo-induced metalorganic chemical vapor deposition [J].Jpn J Appl Phys, 1993, 32:726.
    [35] S.S. Bao, A. Yamada, M. Konagai, Growth of Boron doped ZnO thin films by atomic layer deposition [J]. Solar Energy Mater Solar Cells, 1997, 46: 19.
    [36] Y. Yamamoto, K. Saito, K. Takahashi, et al. Preparation of boron-doped ZnO thin films by photo-atomotic layer deposition [J]. Solar Energy Mater Solar Cells, 2001, 65:125.
    [37]陈新亮,薛俊明,孙建,等.绒面ZnO薄膜的生长及其在太阳电池前电极的应用,半导体学报, 2007, 28:1073.
    [38] E. Burstein. Anomalous optical absorption limit in InSb [J] Phys Rev, 1954, 93:632.
    [39] C. J. Lee, H. K. Kang, K. S. Kim, et al. Direct deposit ion of textured ZnO:Al TCO films by RF sputtering method for thin film solar cells [ C] / / Proc of Photovoltaic Specialists Conference. NEw Orleans, Louisian a, 2002: 1286- 1289.
    [40] T. Nakada, Y. Ohkubo, A. Kunioka. Effect of water vapor on the growth of texturedZnO-based films for solar cell s by DC-magnetron sputtering [J]. Japanese Journal of Applied Physics, 1991, 30 (12): 3344- 3348.
    [41] A.Z. Wang, B.J. Chu, B.H. Zhu, et al. Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications [J] . Solid State Electronics, 2009, 53 (11):1149- 1153.
    [42] B. Rech, H. Wagner. Potential of amorphous silicon f or solar cells [J] Applied Physics: A, 1999, 69 (2): 155- 167.
    [43] H. Zhu, E. Buntee, J. Hupkes, et al. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells [J] . Thin Solid Film s, 2009, 517(10): 3161- 3166.
    [44] M.Berginski, J.Hupkes, M. Schulte, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin film solar cells[J] . Journal of Applied Physics, 2007, 101 (7): 074903-074913.
    [45] J.Krc, M. Zeman, O. Kluth, et al. Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells [J] . Thin Solid Films, 2003, 426 (1/ 2): 296- 304.
    [46] O.Kluth, B.Rech, L.N. Hoube, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells [J] . Thin Solid Films, 1999, 351 (1/ 2): 247-253.
    [47] J.Yoo, J.Lee, S.Kim, et al. High transmittance and low resistive ZnO:Al films for thin film solar cells [J] . Thin Solid Films, 2005, 480- 481 (1): 213- 217.
    [48] J.Muller, O.Kluth, S.Wieder. Development of highly efficient thin film silicon solar cells on texture etched zinc oxide coated glass substrates [J]. Solar Energy Materials and Solar C ell s, 2001, 66 (1/2/3/4): 275- 281.
    [49] F.Ruske, C. Jacobs, V. Sittinger, et al. Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications [J] . Thin Solid Films, 2007, 515(24): 8695- 8698.
    [50] L.M. Addonizio, A. Antonaia, G. Cantele, et al .Transport mechanisms of RFsputtered Al-doped ZnO films by H2 process gas dilution [J]. Thin Solid Films, 1999,349 (1/ 2): 93- 99.
    [51] H.S. Lee, S.T. Lee, S.K. Lee, et al. Characteristics of hydrogen co-doped ZnO:Al thin films [J] . Journal of Physics: D, 2008, 41 (9): 095303- 095309.
    [52] S.J. Tark, G.M. Kang, S. Park, et al. Development of surface textured hydrogenated ZnO:Al thin films forμc-Si solar cells [J] . Current Applied Physics, 2009, 9 (6):1318- 1322.
    [53] R. Groenen, J. Loffler, L.J. Linden, et al. Property control of expanding thermal plasma deposit ed textured zinc oxide with focus on thin film solar cell applications [J].Thin Solid Films, 2005, 492 (1/ 2): 298- 306.
    [54] Y. A. Sobajim, S.O. Kat, T. Matsuura, et al. Study of the light trapping effects of textu red ZnO:Al/ glass structure TCO for improving photocurrent of a-Si:H solar cells [J]. Journal of Materials Science: Materials in Electronics, 2007, 18 (1): 159- 162.
    [55]杨德仁.太阳电池材料,化学工业出版社, 2006.
    [56] S. Hegedus. Thin film solar modules: the low cost, high throughput and versatile alternative to si wafers [J]. Progress in Photovoltaics, 2006, 14 (5): 393- 411.
    [57] G. Martina. Consolidation of thin film photovoltaic technology: the coming decade of opportunity [J]. Progress in Photovoltaics, 2006, 14 (5): 383- 392.
    [58] M Python, E.Vallats, J. Bailat, et al. Relation between substrate surface morphology and microcrystalline silicon solar cell performance [J]. Journal of Non-crystalline Solids, 2008, 354 (19/ 25): 2258- 2262.
    [59] T.Tohsophon, J.Hupkes, H. Siekmann, et al. High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells [J]. Thin Solid Films, 2008, 516(14): 4628–4632.
    [60]何晶晶,吴雪梅,诸葛兰剑,葛水兵.绒面掺铝氧化锌透明导电薄膜研究进展[J], 2010, 47(5): 290-296.
    [1]陈学梅.Cu掺杂ZnO薄膜的结构及性质的研究:[学位论文],苏州:苏州大学,2009.
    [2]吴兆丰.Co、Cr、Cu、Mn等过渡金属掺杂ZnO薄膜的合成与性能研究:[学位论文],苏州:苏州大学,2010.
    [3]周玉.材料分析方法,机械工业出版社, 2007.
    [4] http://www.hudong.com/wiki/XRD.
    [5]宋菲.扫描电子显微镜及能谱分析技术在黄土微结构研究上的应用,沈阳农业大学学报,2004, 35(3):216- 219.
    [6]谷亦杰.材料分析检测技术,中南大学出版社,2009.
    [7]许振嘉.半导体的检测与分析,科学出版社,2007.
    [8]杨德仁.半导体材料测试与分析,科学出版社, 2010.
    [9]居健.Cr掺杂ZnO薄膜的结构和性质研究:[学位论文],苏州:苏州大学,2008.
    [10]曹则贤.材料化学分析的物理方法,实验技术,2004, 33: 282.
    [11]俞宏坤.X射线光电子能谱(XPS),上海计量测试, 2003, 30: 45.
    [12] van der Pauw.A method of measuring specific resistivity and hall effect of discs of arbitary shape, Philips Research Reports, 1958, 13:1-9.
    [1] B. Ayadiz, E. L. Mir, S.Djessas, S. Alaya. The properties of aluminum-doped zinc oxide thin films prepared by rf-magnetron sputtering from nanopowder targets [J].Materials Science and Engineering,2008, 28(5-6):613-617.
    [2] M. Chen, L.Z. Pei, X. Wang, et al. Structural, electrical and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering[J]. Journal Vacuum Science & Technology A, 2001, 19(3): 963-970.
    [3] X. Jiang, L.F. Wong, K.M. Fung, T.S. Lee. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices [J]. Applied Physics Letters, 2003, 83 (9): 1875-1877.
    [4] G.B. Choi, H.I. Kim, H.D. Kim, et al. [J]. Journal of the European Ceramic Society, 2005, 25(12): 2161-2165.
    [5] S. Mandal, K.R. Singha, A. Dhar, et al. Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering [J]. Materials Research Bulletin, 2008, 43(2): 244-250.
    [6] S.Y. Kuo, K.C. Liu, F.I. Lai, J.F. Yang, W.C. Chen, M.Y. Hsieh, H.I. Lin, W.T. Lin. Microelectronics Reliability. 2010, 50: 730.
    [7] W.F. Yang, Z.G. Liu, D.L. Peng, F. Zhuang, H.L. Huang, Y.N. Xie, Z.Y. Wu. Applied Surface Science. 2009, 255: 5669.
    [8] L. Gong, Z. Z. Ye, J.G. Lu, L.P. Zhu, J.Y. Huang, X.Q.Gu, B.H. Zhao. Vacuum. 2010, 84: 947.
    [9] W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T.M. Wang, Z. Wu. Thin Solid Films. 2005, 491: 54.
    [10] Z.Q. Xu, H. Deng, Y. Li, H. Cheng. Materials Science in Semiconductor Processing. 2006, 9: 132.
    [11] Fang Z B, Yan Z J, Yan Y S. Applied Surface Science, 2005, 241:303-308.
    [12] R. Groenen, J. L?ffler, J.L. Linden, R.E.I. Schropp, M.C.M. van de Sanden. Thin Solid Films. 2005, 492: 298.
    [13] O. Kluth, G. Schope, J. Hüpkes, C. Agashe, J. Müller, B. Rech. Thin Solid Films.2003, 442: 80.
    [14] S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra. Appl. Phys.Lett. 1986, 40:394.
    [15]李丽,方亮,李秋俊,陈希明,董建新,冯世娟. Al掺杂ZnO薄膜的XPS谱及电学性质研究[J].微细加工技术, 2008, 01:26- 30.
    [16] M. Chen, X. Wang, Y.H. Yu et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films [J].Applied Surface Science, 2000, 158:134–140.
    [17] R. Cebulla, R. Weridt, K. Ellmer. [J]. J. Appl. Phys. 1998, 83:1087.
    [18] T. Szore′nyi, L.D. Laude, I. Bertoti, Z. Ka′ntor, Z. Ge′retovszky. [J]. J. Appl. Phys. 1995, 78: 6211.
    [19] L.K. Rao, V. Vinni [J].Appl. Phys. Lett. 1993, 63:608.
    [20] M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya. [J].Thin Solid Films. 1996, 280:20.
    [21] Y. Igaski, H. Kanma. Appl. Surf. Sci. Vol. 2001, 169: 508.
    [22] K.H. Kim, K.C. Park and D.Y. Ma.Thin Solid Films Vol. 1997, 305: 201.
    [23] S.J. Tark, M.G. Kang, S. Park, J.H. Jang, J.C. Lee, W.M. Kim, J.S. Lee and D. Kim. Current Applied Physics Vol. 2009, 9: 1318.
    [24] T. Minami, S. Ida and T. Miyata. Thin Solid Films Vol. 2002, 416: 96.
    [25] Meng X D, Lin B, Fu Z X. Journal of Luminescence, 2007, 126:203.
    [26]居健,吴雪梅,诸葛兰剑. Cr掺杂ZnO薄膜的结构和性质研究,硕士学位论文, 2008年.
    [27] K. C. Park, D. Y. Ma, and K. H. Kim.[J].Thin Solid Film,1997, 395:201.
    [28] H.X. Chen, J.J. Ding, X.G. Zhao and S.Y. Ma. Physica B, Vol. 2010, 405:1341.
    [29] Z.F. Liu, F.K. Shan, Y.X. Li, B.C. Shin and Y.S. Yu. J. Cryst. Growth Vol. 2003, 259:130.
    [30] S.M. Park, T. Ikegami, K. Ebihara and P.K. Shin.Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition [J]. Appl. Surf. Sci. 2006, 253:1522.
    [1] J. Muller, B. Rech, J. Springer, et al. TCO and light trapping in silicon thin film solar cells [J]. Solar Energy, 2004, 77(6): 917- 930.
    [2]段苓伟,薛俊明,杨瑞霞,赵颖,耿新华.氧流量对绒面氧化锌透明导电薄膜性能的影响[J].光电子激光,2008, 19:1206-1209.
    [3] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schoèpe, C. Beneking, H. Wagner, A. Loffl, H.W. Schock.[J]. Thin Solid Films. 1999, 351: 247.
    [4] S.J. Tark, G.M. Kang, S. Park, et al. Development of surface textured hydrogenated ZnO:Al thin films forμc-Si solar cells [J]. Current Applied Physics, 2009, 9 (6):1318- 1322.
    [5] O. Kluth, G. Schope, J. Hüpkes, C. Agashe, J. Müller, B. Rech. Thin Solid Films. 2003, 442: 80.
    [6] J. Hüpkes, J. Müller, B. Rech. [J]. Springer Series in Materials Science. 2008, 104: 359.
    [7] H. Zhu, E. Buntee, J. Hupkes, et al. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells [J]. Thin Solid Films, 2009, 517(10): 3161- 3166.
    [8] T. Tsuji, M. Hirohashi. [J]. Appl. Surf. Sci. 2000, 157: 47.
    [9] G. J. Fang, D. Li, B.-L. Yao. [J].Thin Solid Films, 2002, 418:156.
    [10] F.J. Haug, Zs. Geller, H. Zoog, A.N. Tiwari, C. Vignali. [J]. J. Vac. Sci. Technol., A, Vac. Surf. Films, 2001, 19:171.
    [11]陈艳伟,于文华,刘益春.热处理对ZnO:Al薄膜的结构、光学和电学性质的影响[J].中国科学, 2004, 34(3):345-353.
    [12] Z. Ben Ayadi , L. El Mir, K. Djessas, S.Alay.[J]. Effect of the annealing temperature on transparency and conductivity of ZnO:Al thin filmsThin Solid Films, 2009, 517: 6305-6309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700