MHC I类分子递呈修饰后抗原的结构与免疫学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主要组织相容性抗原复合体(MHC)是一种存在于脊椎动物中的由一个庞大的基因家族编码的细胞表面分子,介导白细胞,也就是常说的免疫细胞与其它白细胞或体细胞间的相互作用,在机体细胞间识别和区分自已与异己中扮演重要角色。MHC分子作为表达于个体细胞表面的抗原递呈结构,影响着不同来源抗原的T细胞反应。因而,MHC在一定程度上决定了个体对于感染物抗原的免疫应答,这其中也涉及到对疾病的易感性和自身免疫反应的发生。在人类中,MHC又叫做人类白细胞抗原(HLA)。
     在细胞内,经过抗原加工和蛋白酶体降解途径产生的多肽作为T细胞表位,由MHCI类分子递呈给细胞毒性T细胞(CTLs)。该过程在效应细胞免疫中发挥着重要的作用。另一方面发生了各种翻译后修饰(PTMs)的真核蛋白能够产生一系列修饰的抗原,丰富了MHC相关多肽的类型,递呈于细胞表面成为T细胞受体(TCR)识别的潜在目标。已有研究表明,一些包含翻译后修饰(如甲酰化、脱酰胺化、糖基化、乙酰化、磷酸化和半胱氨酸化)的多肽可以与各自的非修饰类似物被T细胞特异性地区分开。在某种情况下,发生于感染、炎症、细胞转化、凋亡和衰老中的翻译后修饰往往带来新的MHC相关新抗原的产生。因此,表位中的翻译后修饰以及它们在作为肿瘤和自身免疫疾病的免疫治疗疫苗候选中的应用价值受到越来越多的关注。
     N端乙酰化作为真核蛋白最普遍的翻译后修饰之一,能够产生一系列N端乙酰肽,并由MHC I类分子递呈于细胞表面。虽然这一修饰类型在调节蛋白质降解中扮演重要角色,然而N端乙酰肽的递呈及T细胞识别的分子基础仍然很不清楚。因此,我们解析了HLA-B39与一段天然N端乙酰化多肽的复合物高分辨率晶体结构,以及B39与非修饰多肽的复合物结构。区别于传统非修饰多肽中暴露于A口袋外部的P1残基侧链,乙酰化P1-Ser的羟基侧链则是插入抗原结合槽的A口袋中,而NH2端乙酰基团突出结合槽外参与T细胞识别。此外,N端乙酰化不仅改变了多肽的构象,还显著地造成了B39的α1-螺旋残基的构象摆动,而这可能将影响到TCR结合与免疫识别。N端乙酰肽和一系列人源和鼠源的MHC I类分子的热稳定性检测显示了其普遍降低的稳定性。以人工合成的N端乙酰化HLA-A2限制性表位免疫HLA-A2.1/Kb转基因小鼠激发的CTL应答也表明表位在N端乙酰化以后免疫原性会显著提高。这些发现首次洞察了经典的MHC I类分子对N端乙酰肽的特异性递呈模式,为基于乙酰化表位的免疫治疗和疫苗研发奠定了基础。
     在以上工作基础上,我们又以A型流感病毒表位为研究对象,从预测和鉴定N端乙酰化的流感病毒CTL表位出发,调查了流感病毒N端乙酰化抗原在健康人群中的T细胞免疫反应水平,进而评价流感病毒潜在N端乙酰化抗原的细胞免疫原性。研究中首次鉴定了病毒来源的N端乙酰化T细胞表位及其在健康个体中激发的特异性T细胞响应,为研究N端乙酰化表位特异性CTL免疫反应提供了试验依据,丰富了翻译后修饰的T细胞免疫表位的范畴,为理解翻译后修饰依赖性的T细胞免疫反应提供了帮助。
     除了N端乙酰化修饰外,磷酸化作为癌变、恶性转化和凋亡等生理活动的重要标识在肿瘤免疫治疗策略中的应用也越来越引人关注。在邻近两个位点的协同磷酸化又是磷酸化修饰组中最为常见的形式。因此,我们通过X-射线晶体学方法分别解析了一对(10肽和9肽)双磷酸化多肽与HLA-B27的pMHC复合物结构。其结果不但展示出双磷酸多肽不同于单个位点磷酸化多肽的独特递呈特征,而且在将双磷酸化多肽结构与单磷酸化多肽及未修饰多肽结构的比较中,还进一步阐明了自身抗原在经过修饰或蛋白质剪切等多重改变后作为新表位被递呈的分子基础。另外,通过圆二色谱检测,我们揭示了磷酸基团对于多肽结合力和pMHC稳定性具有磷酸化位点依赖性的影响。这些结果也为双磷酸肽这种新型翻译后修饰下的抗原加工递呈研究提供了首次结构学及热动力学依据,进一步预示了多位点磷酸化对于多肽免疫原性和T细胞识别中的潜在影响,揭示了多位点磷酸化形式的潜在T细胞表位亟待作为抗原鉴定中首要考虑和挖掘的目标。多位点磷酸肽有望成为治疗自身免疫病和癌症等的疫苗或药剂成分。
     除此之外,基于前人的研究结果,我们通过多肽免疫转基因小鼠的方法分别评价了7条A2限制性磷酸化表位的细胞免疫原性,客观评估了磷酸化多肽作为肿瘤疫苗的潜在应用价值。此外,研究还采用5'-RACE技术为免疫优势磷酸化特异性T细胞受体序列的获得提供了方法学依据。
     总之,通过免疫信息学、小鼠模型、细胞生物学和结构晶体学等方法,我们分别对MHCⅠ类分子递呈N端乙酰化和磷酸化多肽提供了免疫学及结构学调查和评价,展示了同一来源的抗原经添加基团及蛋白质剪切等修饰成为多重改变的自身抗原的面貌和机制,揭示了这些翻译后修饰多肽作为MHCⅠ类抗原的递呈机制及其在T细胞识别中的潜在影响,进而探讨了其在免疫治疗和疫苗设计中的应用价值。
Major histocomaptibility complex (MHC) is a tightly linked cluster of genes in vertebrate, whose products are the cell surface molecules that plays roles in intercellular recognition and in discrimination between self and nonself. The particular set of MHC molecules as antigen-presenting structures expressed by an individual influences the repertoire of antigens to which that T cells can repond. Therefore, the MHC partly determines the immune response of an individual to antigens of infectious organisms, and it has been implicated in the susceptibility to disease and in the development of autoimmunity. In humans, the MHC is referred to as the human leukocyte antigen (HLA) complex.
     Polypeptides produced by antigen processing and proteasomal degradation of intracellular proteins serve as cytotoxic T lymphocyte (CTL) epitopes presented by MHC class I molecules, which play a critical role in effective cellular immunity. Eukaryotic proteins bearing various post-translational modifications (PTMs) can generate a class of modified antigens, which contribute to a special repertoire of MHC-associated peptides presented at the cell surface as potential targets for T-cell receptor (TCR)-mediated recognition. Evidence suggests that peptides containing PTMs, including formylation, deimination, glycosylation, acetylation, phosphrylation, cysteinylation, contribute to the pool of MHC-bound peptides presented at the cell surface and represent potential targets for T cell recognition. Indeed, most naturally occurring peptides bearing PTMs can be discriminated from their unmodified homologs specifically by T cells. In some cases, quantitative and qualitative changes in PTM that occur during infection, inflammation, cellular transformation, death and aging result in the display of new MHC-associated neoantigens. The significance of PTMs upon epitopes and their use as vaccine candidates for the immunotherapy of cancer and autoimmune diseases have been increasingly appreciated.
     As one of the most common PTMs of eukaryotic proteins, Nα-terminal acetylation generates a class of Nα-acetylpeptides that are presented by MHC class I at the cell surface. Although such PTMs play a pivotal role in adjust the proteolysis, the molecular basis for the presentation and T-cell recognition of Na-acetylpeptides retains largely unknown. Herein, we determined a high-resolution crystallographic structure of HLA-B39complexed with an Nα-acetylpeptide derived from natural cellular processing, and also the complexes of B39with unmodified peptides. Unlike the NH2-free PI residues of unmodified peptides, the hydroxyl side chain of the acetylated Pl-Ser inserts into pocket A of the antigen-binding groove, and the Na-linked acetyl protrudes out of the groove for the T-cell recognition. Moreover, the Nt-acetylation not only alters the conformation of the peptide, but also notably switches the residues in the α1-helix of B39, which may impact the T-cell engagement. The thermostability measurements of complexes between Nα-acetylpeptides and a series of MHC class I molecules derived from human and murine revealed universal diminished stabilities. The CTL responses stimulated by synthetic Nt-acetylated HLA-A2restricted epitopes in HLA-A2.1/Kb transgenic mice suggested immunogenic enhancement after the Nt-acetylation of epitope. These findings provided the first insight into the mode of Nα-acetylpeptide-specific presentation by classical MHC class I molecules and shed light on the potential of acetylepitope-based immune intervene and vaccine development.
     With above understanding, to investigate the CTL-based cellular immunity against Nt-acetylated antigen of influenza virus, we used influenza A virus as the object of study, started with the prediction and identification of Nt-acetylated CTL epitopes derived from influenza virus, thereby evaluated their immunogenicities. In this study, we firstly identified an Nt-acetylated viral CTL epitope which stimulates specific T-cell responses in HLA-A24+healthy donors. This result contributed to the category of MHC-bound CTL epitopes, and provided support to understand the PTM-dependent T celluar immunity.
     Besides Nt-acetylation, phosphorylation as a signature of cancer, malignant transformation, and apoptosis has been regarded increasingly. And phosphorylation at two proximal sites is a common format in phosphoproteome. Thus, we solved the structures of a couple of diphosphorylated peptides (a10mer and a9mer) complexed with HLA-B27, respectively. These data clarified not only the particular features of diphosphopeptides other than peptides containing a single phosphate displayed by MHC class I, but also the molecular basis of the presentation of self antigens which serve as neoepitopes after the multiple altering of PTMs and protein slicing. In addition, we showed the phosphosite-dependent effect of phosphates on peptide binding affinity by using circular dichroism spectroscopy. Our work provided the first-ever structural and thermodynamic insights into the presentation of diphosphopeptides by MHC class I, and highlighted a potential influence of such special modification event on antigenic identity and TCR engagement. Multisite phosphopeptides represent a library of new potential drug and vaccine candidates against autoimmune disease and tumor require further exploration.
     Moreover, based on previous reports, we surveyed the celluar immunogenicity of seven HLA-A2restricted phosphopeptides via inoculation of HLA-A2transgenic mice with peptides, and objectively evaluated the value of phosphopeptides which be applied as potential tumor vaccines. Furthermore, we also used5'-RACE system to obtain the sequences of phosphopeptide-specific TCR repertoires, which provided methodological approaches for further study in this area.
     In summary, in this study we made structural and immunological investigations on Nt-acetylated and phosphorylated peptides presented by MHC class I molecules using the method combination of immunoinformatics, mouse-model, cell biology, and structural crystallography. Our results revealed the aspect and mechanism of antigens that function as'multi-altered self' through the PTMs of adding groups and protein slicing, and suggested the potential influence of the PTMs on antigen presentation and T-cell recognition. The application values of such antigens containing PTMs in immunotherapy and vaccine design are discussed.
引文
[1]周光炎主编.免疫学原理.上海:上海科学技术出版社;2007.
    [2]Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity[J]. Trends Immunol.2001,22(8):443-449.
    [3]Engelhard VH, Altrich-Vanlith M, Ostankovitch M et al. Post-translational modifications of naturally processed MHC-binding epitopes[J]. Curr Opin Immunol.2006,18(1):92-97.
    [4]Anderton SM. Post-translational modifications of self antigens:implications for autoimmunity[J]. Curr Opin Immunol.2004,16(6):753-758.
    [5]Little CC. The genetics of tumor transplantation, in Biology of the Laboratory Mouse, edited by Snell G. D.. Dover[J]. Biology of the Laboratory Mouse.1941:279-309.
    [6]Shreffler DC. Seventy-five years of immunology:the view from the MHC[J]. J Immunol. 1988,141(6):1791-1798.
    [7]Yunis EJ.1987 Philip Levine award lecture. MHC haplotypes in biology and medicine[J]. Am J Clin Pathol.1988,89(2):268-280.
    [8]Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes[J]. J Immunol.1978,120(6): 1809-1812.
    [9]Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system[J]. Nature.1974, 248(450):701-702.
    [10]Rothbard JB, Gefter ML. Interactions between Immunogenic Peptides and Mhc Proteins[J]. Annual Review of Immunology.1991,9:527-565.
    [11]陈慰峰主编,金伯泉副主编.医学免疫学第4版.北京:人民卫生出版社;2004.
    [12]Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation[J]. Nat Rev Immunol.2008,8(8):607-618.
    [13]Watts C, Powis S. Pathways of antigen processing and presentation[J]. Rev Immunogenet. 1999,1(1):60-74.
    [14]Rock KL, Goldberg AL. Degradation of cell proteins and the generation of MHC class I-presented peptides[J]. Annu Rev Immunol.1999,17:739-779.
    [15]Sijts A, Zaiss D, Kloetzel PM. The role of the ubiquitin-proteasome pathway in MHC class I antigen processing:implications for vaccine design[J]. Curr Mol Med.2001,1(6):665-676.
    [16]Kloetzel PM. Antigen processing by the proteasome[J]. Nat Rev Mol Cell Biol.2001,2(3): 179-187.
    [17]Kisselev AF, Akopian TN, Woo KM et al. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation[J]. J Biol Chem.1999,274(6):3363-3371.
    [18]Kloetzel PM, Ossendorp F. Proteasome and peptidase function in MHC-class-Ⅰ-mediated antigen presentation[J]. Curr Opin Immunol.2004,16(1):76-81.
    [19]Preckel T, Fung-Leung WP, Cai Z et al. Impaired immunoproteasome assembly and immune responses in PA28-/-mice[J]. Science.1999,286(5447):2162-2165.
    [20]Neefjes J, Jongsma ML, Paul P et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation[J]. Nat Rev Immunol.2011,11 (12):823-836.
    [21]Trowsdale J, Hanson I, Mockridge I et al. Sequences encoded in the class II region of the MHC related to the'ABC' superfamily of transporters.1990[J]. J Immunol.2008,180(5): 2733-2736.
    [22]Pamer E, Cresswell P. Mechanisms of MHC class Ⅰ--restricted antigen processing[J]. Annu Rev Immunol.1998,16:323-358.
    [23]Uebel S, Tampe R. Specificity of the proteasome and the TAP transporter[J]. Curr Opin Immunol.1999,11(2):203-208.
    [24]Stoltze L, Schirle M, Schwarz G et al. Two new proteases in the MHC class I processing pathway[J]. Nat Immunol.2000,1(5):413-418.
    [25]Seifert U, Maranon C, Shmueli A et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope[J]. Nat Immunol.2003,4(4):375-379.
    [26]Levy F, Burri L, Morel S et al. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases[J]. J Immunol.2002,169(8):4161-4171.
    [27]Reits E, Neijssen J, Herberts C et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation[J]. Immunity.2004,20(4): 495-506.
    [28]Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation[J]. Nat Immunol.2004,5(7):670-677.
    [29]Neisig A, Roelse J, Sijts AJ et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences[J]. J Immunol.1995,154(3):1273-1279.
    [30]van Endert PM, Riganelli D, Greco G et al. The peptide-binding motif for the human transporter associated with antigen processing[J]. J Exp Med.1995,182(6):1883-1895.
    [31]Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs:first listing[J]. Immunogenetics.1995,41(4):178-228.
    [32]Blanchard N, Kanaseki T, Escobar H et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells[J]. J Immunol.2010,184(6):3033-3042.
    [33]Tanioka T, Hattori A, Masuda S et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases[J]. J Biol Chem.2003, 278(34):32275-32283.
    [34]Saric T, Chang SC, Hattori A et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class Ⅰ-presented peptides[J]. Nat Immunol.2002,3(12): 1169-1176.
    [35]Serwold T, Gaw S, Shastri N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules[J]. Nat Immunol.2001,2(7):644-651.
    [36]Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions[J]. J Chem Neuroanat.2004,28(1-2):51-65.
    [37]Peaper DR, Cresswell P. Regulation of MHC class I assembly and peptide binding[J]. Annu Rev Cell Dev Biol.2008,24:343-368.
    [38]Jackson MR, Cohen-Doyle MF, Peterson PA et al. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90)[J]. Science.1994,263(5145):384-387.
    [39]Nossner E, Parham P. Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules[J]. J Exp Med.1995,181(1): 327-337.
    [40]Michalak M, Milner RE, Burns K et al. Calreticulin[J]. Biochem J.1992,285 (Pt 3): 681-692.
    [41]Frickel EM, Riek R, Jelesarov I et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain[J]. Proc Natl Acad Sci U S A.2002,99(4):1954-1959.
    [42]Ortmann B, Copeman J, Lehner PJ et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes[J]. Science.1997,277(5330): 1306-1309.
    [43]Sadasivan B, Lehner PJ, Ortmann B et al. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP[J]. Immunity.1996,5(2): 103-114.
    [44]Bangia N, Lehner PJ, Hughes EA et al. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex[J]. Eur J Immunol.1999,29(6):1858-1870.
    [45]Paquet ME, Williams DB. Mutant MHC class I molecules define interactions between components of the peptide-loading complex[J]. Int Immunol.2002,14(4):347-358.
    [46]Wearsch PA, Cresswell P. The quality control of MHC class I peptide loading[J]. Curr Opin Cell Biol.2008,20(6):624-631.
    [47]Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum[J]. Curr Opin Cell Biol.2004,16(4):343-349.
    [48]Roelse J, Gromme M, Momburg F et al. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling[J]. J Exp Med.1994,180(5): 1591-1597.
    [49]Reits EA, Vos JC, Gromme M et al. The major substrates for TAP in vivo are derived from newly synthesized proteins[J]. Nature.2000,404(6779):774-778.
    [50]Schubert U, Anton LC, Gibbs J et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes[J]. Nature.2000,404(6779):770-774.
    [51]Li M, Wang IX, Li Y et al. Widespread RNA and DNA sequence differences in the human transcriptome[J]. Science.2011,333(6038):53-58.
    [52]Netzer N, Goodenbour JM, David A et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity[J], Nature.2009,462(7272):522-526.
    [53]Yewdell JW, Reits E, Neefjes J. Making sense of mass destruction:Quantitating MHC class I antigen presentation[J]. Nature Reviews Immunology.2003,3(12):952-961.
    [54]Khan S, de Giuli R, Schmidtke G et al. Cutting edge:Neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein[J]. Journal of Immunology. 2001,167(9):4801-4804.
    [55]Vigneron N, Stroobant V, Chapiro J et al. An antigenic peptide produced by peptide splicing in the proteasome[J]. Science.2004,304(5670):587-590.
    [56]Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing[J]. Nature.2004,427(6971):252-256.
    [57]Dalet A, Robbins PF, Stroobant V et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation[J]. Proc Natl Acad Sci U S A.2011,108(29):E323-331.
    [58]Seifert U, Bialy LP, Ebstein F et al. Immunoproteasomes Preserve Protein Homeostasis upon Interferon-Induced Oxidative Stress[J]. Cell.2010,142(4):613-624.
    [59]Pang B, Neijssen J, Qiao X et al. Direct antigen presentation and gap junction mediated cross-presentation during apoptosis[J]. J Immunol.2009,183(2):1083-1090.
    [60]Saccheri F, Pozzi C, Avogadri F et al. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity[J]. Sci Transl Med.2010,2(44):44ra57.
    [61]Anders AK, Call MJ, Schulze MS et al. HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide[J]. Nat Immunol.2011,12(1):54-61.
    [62]Denzin LK, Fallas JL, Prendes M et al. Right place, right time, right peptide:DO keeps DM focused[J]. Immunol Rev.2005,207:279-292.
    [63]Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease[J]. Nat Rev Immunol.2010,10(6):403-414.
    [64]Crotzer VL, Blum JS. Autophagy and adaptive immunity[J]. Immunology.2010,131(1): 9-17.
    [65]Horst D, Verweij MC, Davison AJ et al. Viral evasion of T cell immunity:ancient mechanisms offering new applications[J]. Curr Opin Immunol.2011,23(1):96-103.
    [66]Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2[J]. Nature.1987,329(6139):506-512.
    [67]Madden DR, Saper MA, Garrett TP et al. Comparison of orthorhombic and monoclinic crystal structures of HLA-A2[J]. Cold Spring Harb Symp Quant Biol.1989,54 Pt 1: 353-359.
    [68]Silver ML, Parker KC, Wiley DC. Reconstitution by MHC-restricted peptides of HLA-A2 heavy chain with beta 2-microglobulin, in vitro[J]. Nature.1991,350(6319):619-622.
    [69]Garboczi DN, Madden DR, Wiley DC. Five viral peptide-HLA-A2 co-crystals. Simultaneous space group determination and X-ray data collection[J]. J Mol Biol.1994, 239(4):581-587.
    [70]Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution[J]. J Mol Biol.1991,219(2):277-319.
    [71]Klein J, Sato A. The HLA system. First of two parts[J]. N Engl J Med.2000,343(10): 702-709.
    [72]Liu J, Gao GF. Major Histocompatibility Complex:Interaction with Peptides. In:eLS:John Wiley & Sons, Ltd; 2011.
    [73]Beck S. The Human Genome Project:What we have learnt about the MHC region on chromosome 6 and its potential to Behcet's disease[J]. Adamantiades-Behcet's Disease.2003, 528:207-211.
    [74]Gleimer M, Wahl AR, Hickman HD et al. Although divergent in residues of the peptide binding site, conserved chimpanzee Patr-AL and polymorphic human HLA-A*02 have overlapping peptide-binding repertoires[J]. J Immunol.2011,186(3):1575-1588.
    [75]Chu F, Lou Z, Chen YW et al. First glimpse of the peptide presentation by rhesus macaque MHC class I:crystal structures of Mamu-A*01 complexed with two immunogenic SIV epitopes and insights into CTL escape[J]. J Immunol.2007,178(2):944-952.
    [76]Liu J, Dai L, Qi J et al. Diverse peptide presentation of rhesus macaque major histocompatibility complex class I Mamu-A 02 revealed by two peptide complex structures and insights into immune escape of simian immunodeficiency virus[J]. J Virol.2011,85(14): 7372-7383.
    [77]Wu Y, Gao F, Liu J et al. Structural basis of diverse peptide accommodation by the rhesus macaque MHC class I molecule Mamu-B*17:insights into immune protection from simian immunodeficiency virus[J]. J Immunol.2011,187(12):6382-6392.
    [78]Macdonald IK, Harkiolaki M, Hunt L et al. MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors[J]. PLoS Pathog.2010,6(10):e1001149.
    [79]Li X, Liu J, Qi J et al. Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class I N*01801:a host strategy to present featured peptides[J]. J Virol.2011,85(12):6038-6048.
    [80]Zhang N, Qi J, Feng S et al. Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides[J]. J Virol.2011,85(22):11709-11724.
    [81]Koch M, Camp S, Collen T et al. Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding[J]. Immunity.2007,27(6):885-899.
    [82]Zhang J, Chen Y, Qi J et al. Narrow groove and restricted anchors of MHC class I molecule BF2*0401 plus peptide transporter restriction can explain disease susceptibility of B4 chickens[J]. J Immunol.2012,189(9):4478-4487.
    [83]曹雪涛主编.免疫学前言进展第二版.北京:人民卫生出版社;2011.
    [84]Hansen TH, Huang S, Arnold PL et al. Patterns of nonclassical MHC antigen presentation[J]. Nat Immunol.2007,8(6):563-568.
    [85]Goldsby RA, Kindt TJ, Kuby J et al. Immunology.5th ed; 2002.
    [86]Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc[J]. Nature.1994,372(6504):379-383.
    [87]Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor[J]. Proc Natl Acad Sci U S A.2008,105(29):10095-10100.
    [88]Chapman TL, Heikeman AP, Bjorkman PJ. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL 18[J]. Immunity.1999,11(5):603-613.
    [89]Wang R, Natarajan K, Margulies DH. Structural basis of the CD8 alpha beta/MHC class I interaction:focused recognition orients CD8 beta to a T cell proximal position[J]. J Immunol. 2009,183(4):2554-2564.
    [90]Gao GF, Tormo J, Gerth UC et al. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2[J]. Nature.1997,387(6633):630-634.
    [91]Kern PS, Teng MK, Smolyar A et al. Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb[J]. Immunity.1998,9(4):519-530.
    [92]Gao GF, Willcox BE, Wyer JR et al. Classical and nonclassical class I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8alphaalpha[J]. J Biol Chem.2000,275(20):15232-15238.
    [93]Shi Y, Qi JX, Iwamoto A et al. Plasticity of human CD8 alpha alpha binding to peptide-HLA-A*2402[J]. Molecular Immunology.2011,48(15-16):2198-2202.
    [94]Wang JH, Meijers R, Xiong Y et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class Ⅱ MHC molecule[J]. Proc Natl Acad Sci U S A. 2001,98(19):10799-10804.
    [95]Murphy KP. Janeway's immunobiology.8th ed. New York:Garland Science, Taylor & Francis Group, LLC; 2012.
    [96]Felix NJ, Allen PM. Specificity of T-cell alloreactivity[J]. Nat Rev Immunol.2007,7(12): 942-953.
    [97]Held W, Mariuzza RA. Cis interactions of immunoreceptors with MHC and non-MHC ligands[J]. Nat Rev Immunol.2008,8(4):269-278.
    [98]Arden B, Clark SP, Kabelitz D et al. Human T-cell receptor variable gene segment families[J]. Immunogenetics.1995,42(6):455-500.
    [99]Rowen L, Koop BF, Hood L. The complete 685-kilobase DNA sequence of the human beta T cell receptor locus[J]. Science.1996,272(5269):1755-1762.
    [100]Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire[J]. Nature. 1999,402(6759):255-262.
    [101]Marrack P, Scott-Browne JP, Dai S et al. Evolutionarily conserved amino acids that control TCR-MHC interaction[J]. Annual Review of Immunology.2008,26:171-203.
    [102]Garboczi DN, Ghosh P, Utz U et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2[J]. Nature.1996,384(6605):134-141.
    [103]Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors[J]. Annual Review of Immunology.2006,24:419-466.
    [104]Stewart-Jones GB, McMichael AJ, Bell JI et al. A structural basis for immunodominant human T cell receptor recognition[J]. Nat Immunol.2003,4(7):657-663.
    [105]Bulek AM, Cole DK, Skowera A et al. Structural basis for the killing of human beta cells by CD8(+) T cells in type 1 diabetes[J]. Nat Immunol.2012,13(3):283-289.
    [106]Bodmer WE The HLA system:structure and function[J]. J Clin Pathol.1987,40(9): 948-958.
    [107]Marsh SG. Nomenclature for factors of the HLA system, update November 2012[J]. Tissue Antigens.2013,81(4):249-252.
    [108]Sidney J, Grey HM, Southwood S et al. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules[J]. Hum Immunol.1996,45(2):79-93.
    [109]Reche PA, Reinherz EL. Definition of MHC supertypes through clustering of MHC peptide binding repertoires[J]. Artificial Immune Systems, Proceedings.2004,3239: 189-196.
    [110]Lund O, Nielsen M, Kesmir C et al. Definition of supertypes for HLA molecules using clustering of specificity matrices[J]. Immunogenetics.2004,55(12):797-810.
    [111]Southwood S, Solomon C, Hoof I et al. Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities[J]. Immunogenetics.2011,63(5): 275-290.
    [112]Fremont DH, Matsumura M, Stura EA et al. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb[J]. Science.1992,257(5072):919-927.
    [113]Madden DR, Garboczi DN, Wiley DC. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2[J]. Cell.1993, 75(4):693-708.
    [114]Speir JA, Stevens J, Joly E et al. Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa[J]. Immunity.2001,14(1):81-92.
    [115]Tynan FE, Borg NA, Miles JJ et al. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance[J]. J Biol Chem.2005,280(25):23900-23909.
    [116]Liu YC, Chen Z, Burrows SR et al. The energetic basis underpinning T-cell receptor recognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule[J]. J Biol Chem.2012,287(15):12267-12276.
    [117]Tynan FE, Burrows SR, Buckle AM et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide[J]. Nat Immunol.2005,6(11): 1114-1122.
    [118]Collins EJ, Garboczi DN, Wiley DC. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site[J]. Nature.1994,371(6498):626-629.
    [119]Turner SJ, Doherty PC, McCluskey J et al. Structural determinants of T-cell receptor bias in immunity[J]. Nat Rev Immunol.2006,6(12):883-894.
    [120]Meijers R, Lai CC, Yang Y et al. Crystal structures of murine MHC Class I H-2 D(b) and K(b) molecules in complex with CTL epitopes from influenza A virus:implications for TCR repertoire selection and immunodominance[J]. J Mol Biol.2005,345(5):1099-1110.
    [121]Liu J, Wu P, Gao F et al. Novel Immunodominant Peptide Presentation Strategy:a Featured HLA-A*2402-Restricted Cytotoxic T-Lymphocyte Epitope Stabilized by Intrachain Hydrogen Bonds from Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein[J]. J Virol.2010,84(22):11849-11857.
    [122]Theodossis A, Guillonneau C, Welland A et al. Constraints within major histocompatibility complex class I restricted peptides:Presentation and consequences for T-cell recognition[J]. Proc Natl Acad Sci U S A.2010,107(12):5534-5539.
    [123]Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis[J]. Nature.1974, 251(5475):547-548.
    [124]Zinkernagel RM, Doherty PC. The discovery of MHC restriction[J]. Immunol Today.1997, 18(1):14-17.
    [125]Bjorkman PJ. MHC restriction in three dimensions:a view of T cell receptor/ligand interactions[J]. Cell.1997,89(2):167-170.
    [126]Hansasuta P, Dong T, Thananchai H et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific[J]. Eur J Immunol.2004,34(6):1673-1679.
    [127]Lichterfeld M, Williams KL, Mui SK et al. T cell receptor cross-recognition of an HIV-1 CD8+ T cell epitope presented by closely related alleles from the HLA-A3 superfamily[J]. Int Immunol.2006,18(7):1179-1188.
    [128]Zhang S, Liu J, Cheng H et al. Structural basis of cross-allele presentation by HLA-A*0301 and HLA-A*1101 revealed by two HIV-derived peptide complexes[J]. Mol Immunol.2011,49(1-2):395-401.
    [129]Kumar P, Vahedi-Faridi A, Saenger W et al. Structural Basis for T Cell Alloreactivity among Three HLA-B14 and HLA-B27 Antigens[J]. Journal of Biological Chemistry.2009, 284(43):29784-29797.
    [130]Borbulevych OY, Piepenbrink KH, Gloor BE et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility[J]. Immunity.2009,31(6): 885-896.
    [131]Ding YH, Smith KJ, Garboczi DN et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids[J]. Immunity.1998,8(4):403-411.
    [132]Kjer-Nielsen L, Clements CS, Purcell AW et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity[J]. Immunity.2003,18(1):53-64.
    [133]Gras S, Burrows SR, Kjer-Nielsen L et al. The shaping of T cell receptor recognition by self-tolerance[J]. Immunity.2009,30(2):193-203.
    [134]Gras S, Wilmann PG, Chen ZJ et al. A Structural Basis for Varied alpha beta TCR Usage against an Immunodominant EBV Antigen Restricted to a HLA-B8 Molecule[J]. Journal of Immunology.2012,188(1):311-321.
    [135]Ghodke Y, Joshi K, Chopra A et al. HLA and disease[J]. Eur J Epidemiol.2005,20(6): 475-488.
    [136]Townsend AR, Gotch FM, Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein[J]. Cell.1985,42(2):457-467.
    [137]Townsend AR, Rothbard J, Gotch FM et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides[J]. Cell. 1986,44(6):959-968.
    [138]Rotzschke O, Falk K, Wallny HJ et al. Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y[J]. Science.1990,249(4966):283-287.
    [139]Rammensee HG, Falk K, Rotzschke O. Peptides naturally presented by MHC class I molecules[J]. Annu Rev Immunol.1993,11:213-244.
    [140]Demotz S, Grey HM, Appella E et al. Characterization of a naturally processed MHC class Ⅱ-restricted T-cell determinant of hen egg lysozyme[J], Nature.1989,342(6250): 682-684.
    [141]Van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule[J]. Nature.1990,348(6298):213-216.
    [142]Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry[J]. Science.1992,255(5049): 1261-1263.
    [143]Liu J, Zhang S, Tan S et al. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development[J]. Exp Biol Med (Maywood).2011,236(3):253-267.
    [144]Pinkse GG, Tysma OH, Bergen CA et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes[J]. Proc Natl Acad Sci U S A.2005,102(51): 18425-18430.
    [145]McMurtrey CP, Lelic A, Piazza P et al. Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes[J]. Proc Natl Acad Sci U S A.2008, 105(8):2981-2986.
    [146]Wang B, Chen H, Jiang X et al. Identification of an HLA-A*0201-restricted CD8+T-cell epitope SSp-1 of SARS-CoV spike protein[J]. Blood.2004,104(1):200-206.
    [147]Liu J, Sun YP, Qi JX et al. The Membrane Protein of Severe Acute Respiratory Syndrome Coronavirus Acts as a Dominant Immunogen Revealed by a Clustering Region of Novel Functionally and Structurally Defined Cytotoxic T-Lymphocyte Epitopes[J]. Journal of Infectious Diseases.2010,202(8):1171-1180.
    [148]Kuzushima K, Hayashi N, Kudoh A et al. Tetramer-assisted identification and characterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virus-specific CD8+T cells[J]. Blood.2003,101(4):1460-1468.
    [149]Sylvester-Hvid C, Kristensen N, Blicher T et al. Establishment of a quantitative ELISA capable of determining peptide-MHC class I interaction[J]. Tissue Antigens.2002,59(4): 251-258.
    [150]Toma A, Laika T, Haddouk S et al. Recognition of human proinsulin leader sequence by class I-restricted T-cells in HLA-A*0201 transgenic mice and in human type 1 diabetes[J], Diabetes.2009,58(2):394-402.
    [151]Altman JD, Moss PA, Goulder PJ et al. Phenotypic analysis of antigen-specific T lymphocytes[J]. Science.1996,274(5284):94-96.
    [152]Czerkinsky C, Andersson G, Ekre HP et al. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells[J]. J Immunol Methods.1988,110(1):29-36.
    [153]Pala P, Hussell T, Openshaw PJ. Flow cytometric measurement of intracellular cytokines[J]. J Immunol Methods.2000,243(1-2):107-124.
    [154]Cerottini JC, Engers HD, Macdonald HR et al. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures[J]. J Exp Med.1974,140(3):703-717.
    [155]Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro[J]. J Cell Physiol.1977,91(3):335-344.
    [156]Stone JD, Demkowicz WE, Stern LJ. HLA-restricted epitope identification and detection of functional T cell responses by using MHC-peptide and costimulatory microarrays[J]. Proc Natl Acad Sci U S A.2005,102(10):3744-3749.
    [157]Oelke M, Maus MV, Didiano D et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells[J]. Nature Medicine. 2003,9(5):619-624.
    [158]Pira GL, Ivaldi F, Bottone L et al. High throughput functional microdissection of pathogen-specific T-cell immunity using antigen and lymphocyte arrays[J]. Journal of Immunological Methods.2007,326(1-2):22-32.
    [159]Skowera A, Ellis R.J, Varela-Calvino R et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope[J]. Journal of Clinical Investigation.2008,118(10):3390-3402.
    [160]Porgador A, Yewdell JW, Deng YP et al. Localization, quantitation, and in situ detection of specific peptide MHC class I complexes using a monoclonal antibody[J]. Immunity.1997, 6(6):715-726.
    [161]Cohen CJ, Sarig O, Yamano Y et al. Direct phenotypic analysis of human MHC class I antigen presentation:visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies[J]. J Immunol.2003, 170(8):4349-4361.
    [162]Mohagheghpour N, Gammon D, Kawamura LM et al. CTL response to Mycobacterium tuberculosis:identification of an immunogenic epitope in the 19-kDa lipoprotein[J]. J Immunol.1998,161(5):2400-2406.
    [163]Solache A, Morgan CL, Dodi Al et al. Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus[J]. J Immunol.1999,163(10):5512-5518.
    [164]Adams HP, Koziol JA. Prediction of binding to MHC class I molecules[J]. J Immunol Methods.1995,185(2):181-190.
    [165]D'Amaro J, Houbiers JG, Drijfhout JW et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs[J]. Hum Immunol.1995,43(1):13-18.
    [166]Lata S, Bhasin M, Raghava GP. Application of machine learning techniques in predicting MHC binders[J]. Methods Mol Biol.2007,409:201-215.
    [167]Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains[J]. J Immunol.1994, 152(1):163-175.
    [168]Rammensee H, Bachmann J, Emmerich NP et al. SYFPEITHI:database for MHC ligands and peptide motifs[J]. Immunogenetics.1999,50(3-4):213-219.
    [169]Reche PA, Glutting JP, Zhang H et al. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles[J]. Immunogenetics.2004, 56(6):405-419.
    [170]Schuler MM, Donnes P, Nastke MD et al. SNEP:SNP-derived epitope prediction program for minor H antigens[J]. Immunogenetics.2005,57(11):816-820.
    [171]Donnes P, Elofsson A. Prediction of MHC class I binding peptides, using SVMHC[J]. BMC Bioinformatics.2002,3:25.
    [172]Nielsen M, Lundegaard C, Worning P et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations[J]. Protein Sci.2003,12(5):1007-1017.
    [173]Zhang GL, Khan AM, Srinivasan KN et al. MULTIPRED:a computational system for prediction of promiscuous HLA binding peptides[J]. Nucleic Acids Res.2005,33(Web Server issue):W172-179.
    [174]Akutsu T, Sim KL. Protein Threading Based on Multiple Protein Structure Alignment[J]. Genome Inform Ser Workshop Genome Inform.1999,10:23-29.
    [175]Schueler-Furman O, Altuvia Y, Sette A et al. Structure-based prediction of binding peptides to MHC class I molecules:application to a broad range of MHC alleles[J]. Protein Sci.2000,9(9):1838-1846.
    [176]Hattotuwagama CK, Doytchinova IA, Flower DR. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes:a comparative molecular similarity index analysis (CoMSIA) study[J]. J Chem Inf Model.2005,45(5):1415-1423.
    [177]Homer RW, Swanson J, Jilek RJ et al. SYBYL line notation (SLN):a single notation to represent chemical structures, queries, reactions, and virtual libraries[J]. J Chem Inf Model. 2008,48(12):2294-2307.
    [178]Guan P, Hattotuwagama CK, Doytchinova IA et al. MHCPred 2.0:an updated quantitative T-cell epitope prediction server[J]. Appl Bioinformatics.2006,5(1):55-61.
    [179]Caflisch A, Niederer P, Anliker M. Monte Carlo docking of oligopeptides to proteins[J]. Proteins.1992,13(3):223-230.
    [180]Rosenfeld R, Zheng Q, Vajda S et al. Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors[J]. J Mol Biol.1993,234(3):515-521.
    [181]Kuttler C, Nussbaum AK, Dick TP et al. An algorithm for the prediction of proteasomal cleavages[J]. J Mol Biol.2000,298(3):417-429.
    [182]Nielsen M, Lundegaard C, Lund O et al. The role of the proteasome in generating cytotoxic T-cell epitopes:insights obtained from improved predictions of proteasomal cleavage[J]. Immunogenetics.2005,57(1-2):33-41.
    [183]Nussbaum AK, Kuttler C, Hadeler KP et al. PAProC:a prediction algorithm for proteasomal cleavages available on the WWW[J]. Immunogenetics.2001,53(2):87-94.
    [184]Hakenberg J, Nussbaum AK, Schild H et al. MAPPP:MHC class I antigenic peptide processing prediction[J]. Appl Bioinformatics.2003,2(3):155-158.
    [185]Bhasin M, Lata S, Raghava GP. TAPPred prediction of TAP-binding peptides in antigens[J]. Methods Mol Biol.2007,409:381-386.
    [186]Lefranc MP. IMGT, the International ImMunoGeneTics Information System[J]. Cold Spring Harb Protoc.2011,2011(6):595-603.
    [187]Zhang Q, Wang P, Kim Y et al. Immune epitope database analysis resource (IEDB-AR)[J]. Nucleic Acids Res.2008,36:W513-W518.
    [188]Robinson J, Halliwell JA, Mc William H et al. IPD--the Immuno Polymorphism Database[J]. Nucleic Acids Res.2013,41 (Database issue):D1234-1240.
    [189]Brusic V, Rudy G, Harrison LC. MHCPEP, a database of MHC-binding peptides:update 1997[J]. Nucleic Acids Res.1998,26(1):368-371.
    [190]Reche PA, Zhang H, Glutting JP et al. EPIMHC:a curated database of MHC-binding peptides for customized computational vaccinology[J]. Bioinformatics.2005,21(9): 2140-2141.
    [191]Bhasin M, Singh H, Raghava GP. MHCBN:a comprehensive database of MHC binding and non-binding peptides[J]. Bioinformatics.2003,19(5):665-666.
    [192]Blythe MJ, Doytchinova IA, Flower DR. JenPep:a database of quantitative functional peptide data for immunology [J]. Bioinformatics.2002,18(3):434-439.
    [193]Schonbach C, Koh JL, Flower DR et al. FIMM, a database of functional molecular immunology:update 2002[J]. Nucleic Acids Res.2002,30(1):226-229.
    [194]Rodda SJ. Peptide libraries for T cell epitope screening and characterization[J]. J Immunol Methods.2002,267(1):71-77.
    [195]El Hage F, Stroobant V, Vergnon I et al. Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway[J]. Proc Natl Acad Sci U S A.2008,105(29):10119-10124.
    [196]Kondo E, Akatsuka Y, Kuzushima K et al. Identification of novel CTL epitopes of CMV-pp65 presented by a variety of HLA alleles[J]. Blood.2004,103(2):630-638.
    [197]Toebes M, Coccoris M, Bins A et al. Design and use of conditional MHC class I ligands[J]. Nature Medicine.2006,12(2):246-251.
    [198]Bakker AH, Hoppes R, Linnemann C et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1,-A3,-All, and-B7[J]. Proc Natl Acad Sci U S A.2008,105(10):3825-3830.
    [199]Grotenbreg GM, Roan NR, Guillen E et al. Discovery of CD8(+) T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers[J]. Proc Natl Acad Sci U S A.2008,105(10):3831-3836.
    [200]Constantin CM, Bonney EE, Altman JD et al. Major histocompatibility complex (MHC) tetramer technology:an evaluation[J]. Biol Res Nurs.2002,4(2):115-127.
    [201]Sedgwick JD. ELISPOT assay:a personal retrospective[J]. Methods Mol Biol.2005,302: 3-14.
    [202]Kalyuzhny AE. Chemistry and biology of the ELISPOT assay[J]. Methods Mol Biol.2005, 302:15-31.
    [203]Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses[J]. Annu Rev Immunol.1999,17:51-88.
    [204]Gras S, Kjer-Nielsen L, Burrows SR et al. T-cell receptor bias and immunity[J]. Curr Opin Immunol.2008,20(1):119-125.
    [205]Bollard CM, Gottschalk S, Leen AM et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer[J]. Blood.2007,110(8):2838-2845.
    [206]Kobayashi H. Modification of tumor cell antigen[J]. Prog Clin Biol Res.1983,132E: 305-314.
    [207]Borbulevych OY, Baxter TK, Yu ZY et al. Increased immunogenicity of an anchor-modified tumor-associated antigen is due to the enhanced stability of the peptide/MHC complex:Implications for vaccine design[J]. Journal of Immunology.2005, 174(8):4812-4820.
    [208]Webb Al, Dunstone MA, Chen W et al. Functional and structural characteristics of NY-ESO-1-related HLA A2-restricted epitopes and the design of a novel immunogenic analogue[J]. J Biol Chem.2004,279(22):23438-23446.
    [209]Chen JL, Stewart-Jones G, Bossi G et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines[J]. J Exp Med.2005,201(8):1243-1255.
    [210]Slansky JE, Rattis FM, Boyd LF et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex[J]. Immunity. 2000,13(4):529-538.
    [211]Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma[J]. Nat Med.1998,4(3):321-327.
    [212]Finishing the euchromatic sequence of the human genome[J]. Nature.2004,431(7011): 931-945.
    [213]Jensen ON. Modification-specific proteomics:characterization of post-translational modifications by mass spectrometry[J]. Curr Opin Chem Biol.2004,8(1):33-41.
    [214]Ayoubi TA, Van De Ven WJ. Regulation of gene expression by alternative promoters[J]. FASEB J.1996,10(4):453-460.
    [215]Mann M, Jensen ON. Proteomic analysis of post-translational modifications[J]. Nat Biotechnol.2003,21(3):255-261.
    [216]Zhao YM, Jensen ON. Modification-specific proteomics:Strategies for characterization of post-translational modifications using enrichment techniques[J]. Proteomics.2009,9(20): 4632-4641.
    [217]Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. Protein posttranslational modifications:the chemistry of proteome diversifications[J]. Angew Chem Int Ed Engl.2005,44(45): 7342-7372.
    [218]Arnesen T. Towards a functional understanding of protein N-terminal acetylation[J]. PLoS Biol.2011,9(5):e1001074.
    [219]Polevoda B, Sherman F. Nalpha-terminal acetylation of eukaryotic proteins[J]. J Biol Chem.2000,275(47):36479-36482.
    [220]Tsunasawa S, Stewart JW, Sherman F. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase[J]. J Biol Chem.1985,260(9):5382-5391.
    [221]Sherman F, Stewart JW, Tsunasawa S. Methionine or not methionine at the beginning of a protein[J]. Bioessays.1985,3(1):27-31.
    [222]Lowther WT, Orville AM, Madden DT et al. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis[J]. Biochemistry.1999,38(24):7678-7688.
    [223]Moerschell RP, Hosokawa Y, Tsunasawa S et al. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation[J]. J Biol Chem.1990, 265(32):19638-19643.
    [224]Prchal JT, Cashman DP, Kan YW. Hemoglobin Long Island is caused by a single mutation (adenine to cytosine) resulting in a failure to cleave amino-terminal methionine[J]. Proc Natl Acad Sci U S A.1986,83(1):24-27.
    [225]Yamada T, Kato K, Kawahara K et al. Separation of recombinant human interleukin-2 and methionyl interleukin-2 produced in Escherichia coli[J]. Biochem Biophys Res Commun. 1986,135(3):837-843.
    [226]Devlin PE, Drummond RJ, Toy P et al. Alteration of amino-terminal codons of human granulocyte-colony-stimulating factor increases expression levels and allows efficient processing by methionine aminopeptidase in Escherichia coli[J]. Gene.1988,65(1):13-22.
    [227]Kendall RL, Yamada R, Bradshaw RA. Cotranslational amino-terminal processing[J]. Methods Enzymol.1990,185:398-407.
    [228]Driessen HP, de Jong WW, Tesser GI et al. The mechanism of N-terminal acetylation of proteins[J]. CRC Crit Rev Biochem.1985,18(4):281-325.
    [229]Li X, Chang YH. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases[J]. Proc Natl Acad Sci U S A.1995,92(26):12357-12361.
    [230]Towler DA, Eubanks SR, Towery DS et al. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase[J]. J Biol Chem.1987, 262(3):1030-1036.
    [231]Hansen JE, Marner J, Pavlov D et al. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle[J]. Biochemistry.2000,39(7):1792-1799.
    [232]Groll M, Heinemeyer W, Jager S et al. The catalytic sites of 20S proteasomes and their role in subunit maturation:a mutational and crystallographic study[J]. Proc Natl Acad Sci U S A.1999,96(20):10976-10983.
    [233]Arnesen T, Van Damme P, Polevoda B et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans[J]. Proc Natl Acad Sci U S A.2009,106(20):8157-8162.
    [234]Polevoda B, Arnesen T, Sherman F. A synopsis of eukaryotic Nalpha-terminal acetyltransferases:nomenclature, subunits and substrates[J]. BMC Proc.2009,3 Suppl 6:S2.
    [235]Polevoda B, Sherman F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins[J]. J Mol Biol.2003,325(4):595-622.
    [236]Sriram SM, Kim BY, Kwon YT. The N-end rule pathway:emerging functions and molecular principles of substrate recognition[J]. Nat Rev Mol Cell Biol.2011,12(11): 735-747.
    [237]Mogk A, Bukau B. When the Beginning Marks the End[J]. Science.2010,327(5968): 966-967.
    [238]Varshavsky A. The N-end rule pathway and regulation by proteolysis[J]. Protein Sci.2011.
    [239]Varshavsky A. The N-end rule:functions, mysteries, uses[J]. Proc Natl Acad Sci U S A. 1996,93(22):12142-12149.
    [240]Tasaki T, Kwon YT. The mammalian N-end rule pathway:new insights into its components and physiological roles[J]. Trends in Biochemical Sciences.2007,32(11): 520-528.
    [241]Varshavsky A. The N-end rule at atomic resolution[J]. Nature Structural & Molecular Biology.2008,15(12):1238-1240.
    [242]Narita K. Isolation of acetylpeptide from enzymic digests of TMV-protein[J]. Biochim Biophys Acta.1958,28(1):184-191.
    [243]Persson B, Flinta C, von Heijne G et al. Structures of N-terminally acetylated proteins[J]. Eur J Biochem.1985,152(3):523-527.
    [244]Hershko A, Heller H, Eytan E et al. Role of the alpha-amino group of protein in ubiquitin-mediated protein breakdown[J]. Proc Natl Acad Sci U S A.1984,81(22): 7021-7025.
    [245]Ben-Saadon R, Fajerman I, Ziv T et al. The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue[J]. J Biol Chem.2004,279(40):41414-41421.
    [246]Jornvall H. Acetylation of Protein N-terminal amino groups structural observations on alpha-amino acetylated proteins[J]. J Theor Biol.1975,55(1):1-12.
    [247]Mayer A, Siegel NR, Schwartz AL et al. Degradation of Proteins with Acetylated Amino Termini by the Ubiquitin System[J]. Science.1989,244(4911):1480-1483.
    [248]Hwang CS, Shemorry A, Varshavsky A. N-terminal acetylation of cellular proteins creates specific degradation signals[J]. Science.2010,327(5968):973-977.
    [249]Deng M, Hochstrasser M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase[J]. Nature.2006,443(7113):827-831.
    [250]Vembar SS, Brodsky JL. One step at a time:endoplasmic reticulum-associated degradation[J]. Nature Reviews Molecular Cell Biology.2008,9(12):944-U930.
    [251]Forte GM, Pool MR, Stirling CJ. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum[J]. PLoS Biol.2011,9(5):e1001073.
    [252]Cohen P. The regulation of protein function by multisite phosphorylation--a 25 year update[J]. Trends Biochem Sci.2000,25(12):596-601.
    [253]Yaffe MB. Phosphotyrosine-binding domains in signal transduction[J]. Nat Rev Mol Cell Biol.2002,3(3):177-186.
    [254]Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications[J]. Mol Cell.2008,31(4):449-461.
    [255]Glozak MA, Sengupta N, Zhang X et al. Acetylation and deacetylation of non-histone proteins[J]. Gene.2005,363:15-23.
    [256]Spiro RG. Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology.2002,12(4):43R-56R.
    [257]Yague J, Alvarez I, Rognan D et al. An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo[J]. J Exp Med.2000, 191(12):2083-2092.
    [258]Zarling AL, Ficarro SB, White FM et al. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo[J]. J Exp Med. 2000,192(12):1755-1762.
    [259]Dzhambazov B, Holmdahl M, Yamada H et al. The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans[J]. Eur J Immunol.2005,35(2):357-366.
    [260]Zamvil SS, Mitchell DJ, Moore AC et al. T-Cell Epitope of the Autoantigen Myelin Basic-Protein That Induces Encephalomyelitis[J]. Nature.1986,324(6094):258-260.
    [261]Haurum JS, Hoier IB, Arsequell G et al. Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo[J]. J Exp Med.1999, 190(1):145-150.
    [262]Engelhard VH. Creating new peptide antigens by slicing and splicing proteins[J]. Nat Immunol.2004,5(2):128-129.
    [263]Xu Y, Gendler SJ, Franco A. Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas[J]. J Exp Med.2004,199(5):707-716.
    [264]Van den Steen PE, Proost P, Brand DD et al. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B[J]. Biochemistry.2004,43(33):10809-10816.
    [265]Yadav R, Yoshimura Y, Boesteanu A et al. The H4b minor histocompatibility antigen is caused by a combination of genetically determined and posttranslational modifications[J]. J Immunol.2003,170(10):5133-5142.
    [266]Depontieu FR, Qian J, Zarling AL et al. Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy[J]. Proc Natl Acad Sci U S A. 2009,106(29):12073-12078.
    [267]Selby M, Erickson A, Dong C et al. Hepatitis C virus envelope glycoprotein E1 originates in the endoplasmic reticulum and requires cytoplasmic processing for presentation by class I MHC molecules[J]. J Immunol.1999,162(2):669-676.
    [268]Ferris RL, Hall C, Sipsas NV et al. Processing of HIV-1 envelope glycoprotein for class I-restricted recognition:dependence on TAP1/2 and mechanisms for cytosolic localization[J]. J Immunol.1999,162(3):1324-1332.
    [269]Yague J, Vazquez J, De Castro JAL. A post-translational modification of nuclear proteins, N-G,N-G-dimethyl-Arg, found in a natural HLA class I peptide ligand[J]. Protein Science. 2000,9(11):2210-2217.
    [270]Dengjel J, Rammensee HG, Stevanovic S. Glycan side chains on naturally presented MHC class Ⅱ ligands[J]. J Mass Spectrom.2005,40(1):100-104.
    [271]Birnboim HC, Lemay AM, Lam DK et al. Cutting edge:MHC class Ⅱ-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response[J]. J Immunol.2003,171(2):528-532.
    [272]Herzog J, Maekawa Y, Cirrito TP et al. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells[J]. Proc Natl Acad Sci U S A.2005,102(22):7928-7933.
    [273]Qiao SW, Bergseng E, Molberg O et al. Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease:importance of proline spacing and glutamine deamidation[J]. J Immunol.2005,175(1):254-261.
    [274]Fleckenstein B, Qiao SW, Larsen MR et al. Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides[J]. Journal of Biological Chemistry.2004,279(17):17607-17616.
    [275]Cao L, Sun D, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire[J]. J Neuroimmunol.1998,88(1-2):21-29.
    [276]Tranquill LR, Cao L, Ling NC et al. Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients[J]. Mult Scler.2000, 6(4):220-225.
    [277]Pierce RA, Field ED, den Haan JM et al. Cutting edge:the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique[J]. J Immunol.1999, 163(12):6360-6364.
    [278]Meadows L, Wang W, den Haan JM et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition[J]. Immunity.1997,6(3):273-281.
    [279]McAdam SN, Fleckenstein B, Rasmussen IB et al. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope:critical role for asparagine deamidation[J]. J Exp Med.2001,193(11):1239-1246.
    [280]Mamula MJ, Gee RJ, Elliott JI et al. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins[J]. J Biol Chem.1999,274(32):22321-22327.
    [281]Greer JM, Denis B, Sobel RA et al. Thiopalmitoylation of myelin proteolipid protein epitopes enhances immunogenicity and encephalitogenicity[J]. J Immunol.2001,166(11): 6907-6913.
    [282]Monneaux F, Lozano JM, Patarroyo ME et al. T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice[J]. Eur J Immunol.2003,33(2):287-296.
    [283]Neugebauer KM, Merrill JT, Wener MH et al. SR proteins are autoantigens in patients with systemic lupus erythematosus. Importance of phosphoepitopes[J]. Arthritis Rheum. 2000,43(8):1768-1778.
    [284]Meadows L, Wang W, denHaan JMM et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition[J]. Immunity.1997,6(3):273-281.
    [285]Kim CY, Quarsten H, Bergseng E et al. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease[J]. Proc Natl Acad Sci U S A.2004,101(12): 4175-4179.
    [286]Hill JA, Southwood S, Sette A et al. Cutting edge:the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB 1*0401 MHC class Ⅱ molecule[J]. J Immunol.2003,171(2):538-541.
    [287]Moss CX, Matthews SP, Lamont DJ et al. Asparagine deamidation perturbs antigen presentation on class II major histocompatibility complex molecules[J]. J Biol Chem.2005, 280(18):18498-18503.
    [288]Manoury B, Mazzeo D, Fugger L et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP[J]. Nat Immunol. 2002,3(2):169-174.
    [289]Ang XL, Wade Harper J. SCF-mediated protein degradation and cell cycle control[J]. Oncogene.2005,24(17):2860-2870.
    [290]Skipper JC, Hendrickson RC, Gulden PH et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins[J]. J Exp Med.1996,183(2):527-534.
    [291]Wood P, Elliott T. Glycan-regulated antigen processing of a protein in the endoplasmic reticulum can uncover cryptic cytotoxic T cell epitopes[J]. Journal of Experimental Medicine. 1998,188(4):773-778.
    [292]de Haan EC, Wagenaar-Hilbers JP, Liskamp RM et al. Limited plasticity in T cell recognition of modified T cell receptor contact residues in MHC class II bound peptides[J]. Mol Immunol.2005,42(3):355-364.
    [293]van Stipdonk MJB, Willems AA, Amor S et al. T cells discriminate between differentially phosphorylated forms of alpha B-crystallin, a major central nervous system myelin antigen[J]. Int Immunol.1998,10(7):943-950.
    [294]Michaelsson E, Malmstrom V, Reis S et al. T cell recognition of carbohydrates on type II collagen[J]. J Exp Med.1994,180(2):745-749.
    [295]Backlund J, Treschow A, Bockermann R et al. Glycosylation of type Ⅱ collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis[J]. Eur J Immunol.2002,32(12):3776-3784.
    [296]Fugger L, Rothbard JB, Sonderstrup-McDevitt G. Specificity of an HLA-DRB 1*0401-restricted T cell response to type II collagen[J]. Eur J Immunol.1996, 26(4):928-933.
    [297]Backlund J, Carlsen S, Hoger T et al. Predominant selection of T cells specific for the glycosylated collagen type II epitope (263-270) in humanized transgenic mice and in rheumatoid arthritis[J]. Proc Natl Acad Sci U S A.2002,99(15):9960-9965.
    [298]Brahms H, Raymackers J, Union A et al. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies[J]. Journal of Biological Chemistry.2000, 275(22):17122-17129.
    [299]Glithero A, Tormo J, Haurum JS et al. Crystal structures of two H-2D(b)/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity [J]. Immunity.1999,10(1): 63-74.
    [300]Speir JA, Abdel-Motal UM, Jondal M et al. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL[J]. Immunity.1999,10(1):51-61.
    [301]Mohammed F, Cobbold M, Zarling AL et al. Phosphorylation-dependent interaction between antigenic peptides and MHC class Ⅰ:a molecular basis for the presentation of transformed self[J]. Nat Immunol.2008,9(11):1236-1243.
    [302]Petersen J, Wurzbacher SJ, Williamson NA et al. Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes[J]. Proc Natl Acad Sci U S A.2009,106(8):2776-2781.
    [303]Li Y, Depontieu FR, Sidney J et al. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells[J]. J Mol Biol. 2010,399(4):596-603.
    [304]Pritzker LB, Joshi S, Gowan JJ et al. Deimination of myelin basic protein.1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D[J]. Biochemistry.2000,39(18):5374-5381.
    [305]Gahring L, Carlson NG, Meyer EL et al. Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation[J]. J Immunol.2001, 166(3):1433-1438.
    [306]Kittlesen DJ, Thompson LW, Gulden PH et al. Human melanoma patients recognize an HLA-A1-restricted GTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development[J]. J Immunol.1998,160(5):2099-2106.
    [307]Chen W, Yewdell JW, Levine RL et al. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants[J]. J Exp Med.1999,189(11):1757-1764.
    [308]Larson JK, Otvos L, Jr., Ertl HC. Posttranslational side chain modification of a viral epitope results in diminished recognition by specific T cells[J]. J Virol.1992,66(7): 3996-4002.
    [309]Starheim KK, Gevaert K, Arnesen T. Protein N-terminal acetyltransferases:when the start matters[J]. Trends Biochem Sci.2012,37(4):152-161.
    [310]He XL, Radu C, Sidney J et al. Structural snapshot of aberrant antigen presentation linked to autoimmunity:the immunodominant epitope of MBP complexed with I-Au[J]. Immunity. 2002,17(1):83-94.
    [311]Yague J, Marina A, Vazquez J et al. Major histocompatibility complex class I molecules bind natural peptide ligands lacking the amino-terminal binding residue in vivo[J]. J Biol Chem.2001,276(47):43699-43707.
    [312]Sobao Y, Tsuchiya N, Takiguchi M et al. Overlapping peptide-binding specificities of HLA-B27 and B39:evidence for a role of peptide supermotif in the pathogenesis of spondylarthropathies[J]. Arthritis Rheum.1999,42(1):175-181.
    [313]Eastmond CJ. Psoriatic arthritis. Genetics and HLA antigens[J]. Baillieres Clin Rheumatol. 1994,8(2):263-276.
    [314]Gladman DD, Farewell VT. The role of HLA antigens as indicators of disease progression in psoriatic arthritis. Multivariate relative risk model[J]. Arthritis Rheum.1995,38(6): 845-850.
    [315]Yamaguchi A, Tsuchiya N, Mitsui H et al. Association of HLA-B39 with HLA-B27-negative ankylosing spondylitis and pauciarticular juvenile rheumatoid arthritis in Japanese patients. Evidence for a role of the peptide-anchoring B pocket[J]. Arthritis Rheum. 1995,38(11):1672-1677.
    [316]Yague J, Ramos M, Vazquez J et al. The South Amerindian allotype HLA-B*3909 has the largest known similarity in peptide specificity and common natural ligands with HLA-B27[J]. Tissue Antigens.1999,53(3):227-236.
    [317]Madden DR, Gorga JC, Strominger JL et al. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC[J]. Cell. 1992,70(6):1035-1048.
    [318]Falk K, Rotzschke O, Takiguchi M et al. Peptide motifs of HLA-B38 and B39 molecules[J]. Immunogenetics.1995,41(2-3):162-164.
    [319]Madden DR. The three-dimensional structure of peptide-MHC complexes[J]. Annu Rev Immunol.1995,13:587-622.
    [320]Matsumura M, Fremont DH, Peterson PA et al. Emerging principles for the recognition of peptide antigens by MHC class I molecules[J]. Science.1992,257(5072):927-934.
    [321]Bouvier M, Wiley DC. Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules[J]. Science.1994,265(5170):398-402.
    [322]Bouvier M, Guo HC, Smith KJ et al. Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino-or carboxyl-terminal group substituted by a methyl group[J]. Proteins.1998,33(1):97-106.
    [323]Khan AR, Baker BM, Ghosh P et al. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site[J]. J Immunol.2000,164(12):6398-6405.
    [324]Dundas J, Ouyang Z, Tseng J et al. CASTp:computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues[J]. Nucleic Acids Res.2006,34(Web Server issue):W116-118.
    [325]Reid SW, McAdam S, Smith KJ et al. Antagonist HIV-1 Gag peptides induce structural changes in HLA B8[J]. J Exp Med.1996,184(6):2279-2286.
    [326]Kjer-Nielsen L, Clements CS, Brooks AG et al. The structure of HLA-B8 complexed to an immunodominant viral determinant:peptide-induced conformational changes and a mode of MHC class I dimerization[J]. J Immunol.2002,169(9):5153-5160.
    [327]Tynan FE, Reid HH, Kjer-Nielsen L et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule[J]. Nat Immunol. 2007,8(3):268-276.
    [328]Webb AI, Borg NA, Dunstone MA et al. The structure of H-2K(b) and K(bm8) complexed to a herpes simplex virus determinant:evidence for a conformational switch that governs T cell repertoire selection and viral resistance[J]. J Immunol.2004,173(1):402-409.
    [329]Apostolopoulos V, Yuriev E, Ramsland PA et al. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor[J]. Proc Natl Acad Sci U S A.2003,100(25): 15029-15034.
    [330]Hutchinson EC, Denham EM, Thomas B et al. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry[J]. PLoS Pathog.2012,8(11):e1002993.
    [331]Gianfrani C, Oseroff C, Sidney J et al. Human memory CTL response specific for influenza A virus is broad and multispecific[J]. Hum Immunol.2000,61(5):438-452.
    [332]Adar Y, Singer Y, Levi R et al. A universal epitope-based influenza vaccine and its efficacy against H5N1[J]. Vaccine.2009,27(15):2099-2107.
    [333]Dercamp C, Sanchez V, Barrier J et al. Depletion of human NK and CD8 cells prior to in vitro H1N1 flu vaccine stimulation increases the number of gamma interferon-secreting cells compared to the initial undepleted population in an ELISPOT assay [J]. Clin Diagn Lab Immunol.2002,9(2):230-235.
    [334]Shams H, Wizel B, Weis SE et al. Contribution of CD8(+) T cells to gamma interferon production in human tuberculosis[J]. Infect Immun.2001,69(5):3497-3501.
    [335]Schweiger R, Linial M. Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data[J]. Biology Direct.2010,5.
    [336]Zarling AL, Polefrone JM, Evans AM et al. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy[J]. Proc Natl Acad Sci U S A.2006, 103(40):14889-14894.
    [337]Stewart-Jones GBE, di Gleria K, Kollnberger S et al. Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B*2705[J]. Eur J Immunol.2005,35(2):341-351.
    [338]Ladell K, Hashimoto M, Iglesias MC et al. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells[J]. Immunity.2013,38(3):425-436.
    [339]Genolet R, Stevenson BJ, Farinelli L et al. Highly diverse TCRalpha chain repertoire of pre-immune CD8(+) T cells reveals new insights in gene recombination[J]. EMBO J.2012, 31(21):4247-4248.
    [340]Freeman JD, Warren RL, Webb JR et al. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing[J]. Genome Res.2009,19(10):1817-1824.
    [341]Li H, Zhou M, Han J et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments[J]. J Immunol.2005,174(1):195-204.
    [342]Yoon SH, Lee KN, Park JH et al. Molecular epidemiology of foot-and-mouth disease virus serotypes A and O with emphasis on Korean isolates:temporal and spatial dynamics[J]. Arch Virol.2011,156(5):817-826.
    [343]An TQ, Tian ZJ, Xiao Y et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis.2010,16(2):365-367.
    [344]Shao JJ, Wong CK, Lin T et al. Promising multiple-epitope recombinant vaccine against foot-and-mouth disease virus type O in swine[J]. Clin Vaccine Immunol.2011,18(1): 143-149.
    [345]Gorse GJ, Baden LR, Wecker M et al. Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults[J]. Vaccine.2008,26(2):215-223.
    [346]Li Pira G, Ivaldi F, Moretti P et al. High throughput T epitope mapping and vaccine development[J]. J Biomed Biotechnol.2010,2010:325720.
    [347]Sidney J, Peters B, Frahm N et al. HLA class I supertypes:a revised and updated classification[J]. BMC Immunol.2008,9:1.
    [348]Reche PA, Reinherz EL. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires[J]. Methods Mol Biol.2007,409:163-173.
    [349]Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and-B polymorphism[J]. Immunogenetics.1999,50(3-4):201-212.
    [350]Wang RF, Johnston SL, Southwood S et al. Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and-A33[J]. J Immunol.1998,160(2):890-897.
    [351]Takedatsu H, Shichijo S, Katagiri K et al. Identification of peptide vaccine candidates sharing among HLA-A3+,-A11+,-A31+, and-A33+ cancer patients[J]. Clin Cancer Res. 2004,10(3):1112-1120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700