分子动力学模拟在生物大分子体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着计算机水平的不断提高,分子动力学模拟已发展成为生物、化学、物理、材料等领域的一种重要科研手段。应用分子动力学模拟,一方面可以得到体系随时间演变的动态信息,另一方面,也可以得到体系的热力学相关信息。这些信息都是传统实验很难获取的。生命科学目前的发展已经深入到原子水平,分子动力学依靠其在微观水平上精确的控制性以及操作性,在研究蛋白质折叠/去折叠、分子识别、离子运输、酶催化反应机理中也发挥着越来越重要的作用。本文利用分子动力学模拟方法,对几类具有重要生理意义的生物大分子体系进行了系统而详细的研究,主要内容包括以下四个部分:
     1.解旋酶Mss116p对双链RNA的识别机制
     DEAD-box蛋白质家族是最大的RNA解旋酶家族,与几乎所有涉及到RNA的领域都密切相关。但是,该类蛋白质识别并结合RNA的具体机制尚不明确。在本文中,我们利用分子动力学模拟与MM-GBSA方法,对DEAD-box的模板蛋白Mss116p与双链RNA之间的相互作用进行了深入研究。结合自由能分析的结果表明:双链RNA的两条链与Mss116p的结合活性是不相等的。其中的一条链提供了主要的结合活性,而另一条链与蛋白质几乎没有任何结合活性。同时,在Mss116p与双链RNA的结合过程中,非极性相互作用提供了主要的结合驱动力。虽然极性相互作用对于结合的贡献很小,但它在稳定蛋白质-RNA相互作用时也有着重要作用。与野生型的Mss116p相比,两种突变体,Q412A与D441A与dsRNA的结合自由能有明显的降低,其主要原因是极性相互作用的减少。三个重要的氨基酸残基Lys409,Arg415以及Arg438在突变体中都丧失了结合活性。总的来说,上述结论对实验进行了很好的补充,有助于人们更全面的理解Mss116p的解旋机理。同时,本文中方法的应用也可以推广到DEAD-box家族的其它蛋白质上,用以研究它们的识别机制。
     2.马尔堡病毒蛋白VP35对双链RNA的识别机制
     线状病毒经常会造成非常严重的传染病,而人们至今依然没有找到有效的药物。所有的线状病毒都可以编码一种叫VP35的蛋白,这种蛋白可以隐藏病毒的遗传物质双链RNA,以此逃脱人体的免疫系统。因此,VP35与双链RNA的接触面将是一个较为可信抗病毒药物设计的靶点。为了研究VP35与双链RNA的识别机制,我们采取了分子动力学模拟与MM-GBSA方法去研究VP35与双链RNA的复合物,并同时研究了几个突变体复合物。能量分析的结果表明非极性相互作用提供了结合的主要驱动力。虽然分子间静电力在VP35与双链RNA的结合中起了非常重要的作用,但整体的极性相互作用却是不利于两者的结合,这也导致了整体结合活性偏低。与野生型VP35相比,三个突变体F228A,R271A与K298A与双链RNA的结合能力有明显的降低。同时,分析结果也表明如果一条RNA链与VP35失去了结合活性,那么整个双链RNA都将与VP35失去结合活性。同时我们还确定了结合过程中最重要的三个残基,Arg271,Arg294以及Lys298,这三个残基在突变体中都失去了结合活性。我们对VP35与双链RNA结合机制的研究成果将有助于开发新的抗病毒药物。
     3.维生素H合成过程中BioH的底物特异性研究
     众所周知,庚二酰甲酯-ACP复合物是维生素H的前驱化合物,也是其合成过程中的酶BioH的生理底物。而壬二酰甲酯与ACP的复合物也可以被BioH所催化,但是其水解速率非常低。迄今为止,人们对于BioH的底物特异性,以及将庚二酰甲酯的C7链延长到C9之后,水解速率降低的原因还不清楚。为此,我们利用分子动力学模拟与结合自由能计算,研究了碳链伸长对BioH底物结合造成的影响。我们的结果表明底物特异性是由BioH与ACP共同决定的。增加的两个碳的碳链将不会与BioH的疏水空腔产生位阻,而是会造成ACP与BioH接触面上结构的变化。从另一方面说,壬二酰底物过低的水解速率也与BioH及ACP之间结合能力的减弱有关,主要是体现在接触面上两个主要的盐桥、氢键网络的破坏。本文的研究为BioH与庚二酰甲酯-ACP复合物的结构与功能提供了重要的数据,为全面的理解BioH的催化机理奠定了理论基础。
     4.突变及低pH环境对transthyretin二聚体稳定性及去折叠机制的影响
     Transthyretin的解离与聚集可以引发数种淀粉样蛋白沉淀疾病。TTR二聚体是一个实验上很难观测到的重要中间体。迄今为止,关于TTR解离过程中的结构变化与分子机制,以及其去折叠的路径等问题仍然缺乏研究。为此,我们利用恒定pH动力学研究了突变L55P以及低pH对TTR二聚体稳定性及去折叠过程的影响。结果表明,酸性环境可以致使TTR结构变的松散,突变则会造成TTR外端结构的破坏。在酸性环境中,L55P二聚体有巨大的结构变化,并有明显的解离趋势。我们的结果表明,strand C的解离将是整个去折叠过程的起点。除此之外,两个单体界面处的氢键对稳定TTR二聚体结构有重要作用。对于TTR二聚体动力学的模拟为研究TTR结构与功能之间的关系提供了有意义的结论,并从微观层面上阐明了TTR二聚体的解离过程。
In recent years, with the development of computational science, moleculardynamics simulation has been widely applicated in biology, chemistry, physics andmaterial. Molecular dynamics simulation can provide detail information of the systemmotions as a function of time, as well as the information of thermodynamic property.Both of them are hardly to be gained from the experiments. To date, the investigation inlife science has gone deep into molecular level. Molecular dynamics simulation iscompletely under the control of scientists, so that by altering specific contributions theirrole in determining a property at atomic level can be known. Thus, this method isplaying an increasingly important role in the study of protein folding/unfolding,molecular recognition, ion transport, and enzyme catalyzed reaction mechanism. In thisdissertation, we investigated several important biological macromolecules by means ofmolecular dynamics simulation method, mainly included the following parts:
     1. Exploring the Molecular Basis of dsRNA Recognition by Mss116p UsingMolecular Dynamics Simulations and Free-Energy Calculations
     DEAD-box proteins are the largest family of helicase that are important in nearlyall aspects of RNA metabolism. However, it is unclear how these proteins recognize andbind RNA. Here, we present a detailed analysis of the related DEAD-box proteinMss116p-RNA interaction, using molecular dynamics simulations with MM-GBSAcalculations. The energetic analysis indicates that the two strands of double strandsRNA (dsRNA) are recognized asymmetrically by Mss116p. The strand1of dsRNAprovides the main binding affinity. Meanwhile, the nonpolar interaction provides themain driving force for the binding process. Although the contribution of polarinteraction is small, it is vital in stabilizing the protein RNA interaction. Comparedwith the wild type Mss116p, two studied mutants Q412A and D441A have obviouslyreduced binding free energies with dsRNA because of the decreasing of polarinteraction. Three important residues Lys409, Arg415and Arg438lose their bindingaffinity significantly in mutants. In conclusion, these results complement previousexperiments to advance comprehensive understanding of Mss116p-dsRNA interaction. The results also would provide support for the application of similar approaches to theunderstanding of other DEAD-box protein-RNA complexes.
     2. Exploring the mechanism how Marburg virus VP35recognizes and bindsdsRNA by molecular dynamics simulations and free energy calculations
     Filoviruses often cause terrible infectious disease which has not been successfullydealt with pharmacologically. All filoviruses encode a unique protein termed VP35which can mask doubled-stranded RNA to deactivate interferon. The interface ofVP35-dsRNA would be a feasible target for structure-based antiviral agent design. Toexplore the essence of VP35-dsRNA interaction, molecular dynamics simulationcombined with MM-GBSA calculations were performed on Marburg virusVP35-dsRNA complex and several mutational complexes. The energetic analysisindicates that nonpolar interactions provide the main driving force for the bindingprocess. Although the intermolecular electrostatic interactions play important roles inVP35-dsRNA interaction, the whole polar interactions are unfavorable for bindingwhich result in a low binding affinity. Compared with wild type VP35, the studiedmutants F228A, R271A and K298A have obviously reduced binding free energies withdsRNA reflecting in the reduction of polar or nonpolar interactions. The results alsoindicate that the loss of binding affinity for one dsRNA strand would abolish the totalbinding affinity. Three important residues Arg271, Arg294and Lys298which makesthe largest contribution for binding in VP35lose their binding affinity significantly inmutants. The uncovering of VP35-dsRNA recognition mechanism will provide someinsights for development of antiviral drug.
     3. Molecular dynamic investigations of BioH protein substrate specificity forbiotin synthesis
     Pimeloyl-ACP methyl ester, which is long known to be a biotin precursor, is thephysiological substrate of BioH. Azelayl methyl esters conjugated to ACP is also indeedaccepted by BioH with very low rate of hydrolysis. To date, the substrate specificity forBioH and the molecular origin for the experimentally observed rate changes ofhydrolysis by the chain elongation to C9species have remained elusive. To this end, wehave investigated chain elongation effects on the structures by using the fully atomisticmolecular dynamics simulations combined with binding free energy calculations. Theresults indicate that the substrate specificity is determined by BioH together with ACP.The added two methylenes would increase the structural flexibility by protein motionsat the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelaylsubstrate is suggested to be associated with the loose of contacts between BioH andACP, and with the lost electrostatic interactions of two ionic/hydrogen bondingnetworks at the interface of the two proteins. The present study provides importantinsights into the structure-function relationships of the complex of BioH withMe-pimeloyl-ACP, which could contribute to further understanding about themechanism of the biotin synthetic pathway, including the catalytic role of BioH.
     4. Mutation and low pH effect on the stability as well as unfolding kinetics oftransthyretin dimer
     Transthyretin (TTR) dissociation and aggregation appear to cause several amyloiddiseases. TTR dimer is an important intermediate that is hard to be observed from thebiological experiments. To date, the molecular origin and the structural motifs for TTRdimer dissociation, as well as the unfolding process have not been rationalized at atomicresolution. To this end, we have investigated the effect of low pH and mutation L55P onstability as well as the unfolding pathway of TTR dimer using constant pH moleculardynamics simulations. The result shows that acidic environment results in loose TTRdimer structure. Mutation L55P causes the disruption of strand D and makes theCE-loop very flexible. In acidic conditions, dimeric L55P mutant exhibits notableconformation changes and an evident trend to separate. Our work shows that themovements of strand C and the loops nearby are the beginning of unfolding process. Inaddition, hydrogen bond network at the interface of the two monomers plays a part instabilizing TTR dimer. The dynamic investigation on TTR dimer provides importantinsights into the structure-function relationships of TTR, and rationalizes the structuralorigin for the tendency of unfolding and changes of structure that occur uponintroduction of mutation and pH along the TTR dimer dissociation and unfoldingprocess.
引文
[1]朱玉贤,李毅,郑晓峰.现代分子生物学[M].北京:高等教育出版社,2002.
    [2] WATSON J D. Molecular biology of the gene [M]. Pearson Education India,2004.
    [3]甘子钊,韩汝珊,张学群.生命科学中的物理学[M].北京:北京大学出版社,1996.
    [4]李宝健.展望21世纪的生命科学[J].生命科学,2000,12(1):37-40.
    [5]梁毅.结构生物学[M].北京:科学出版社,2005.
    [6]刘次全,白春礼,张静.结构分子生物学[M].北京:高等教育出版社,1997.
    [7]宋思扬,罗大民.生命科学导论[M].北京:高等教育出版社,2011.
    [8] KLUG H P, ALEXANDER L E. X-ray diffraction procedures: for polycrystallineand amorphous materials [M]. X-Ray Diffraction Procedures: For Polycrystallineand Amorphous Materials,2nd Edition, ISBN0-471-49369-4Wiley-VCH,1974.1974.
    [9] MOULDER J F, STICKLE W F, SOBOL P E, et al. Handbook of x-rayphotoelectron spectroscopy: a reference book of standard spectra for identificationand interpretation of [M]. Perkin-Elmer: Boca Raton, FL,1992.
    [10] RUPRECHT J J, MIELKE T, VOGEL R, et al. Electron crystallography revealsthe structure of metarhodopsin I [J]. The EMBO journal,2004,23(18):3609-3620.
    [11] KIIHLBRANDT W, WANG D, FUJIYOSHI Y. Atomic model of plantlight-harvesting complex by electron crystallography [J]. Nature,1994,367(2):614.
    [12] SATTLER M, SCHLEUCHER J, GRIESINGER C. Heteronuclearmultidimensional NMR experiments for the structure determination of proteins insolution employing pulsed field gradients [J]. Progress in Nuclear MagneticResonance Spectroscopy,1999,34(2):93-158.
    [13] ADRIAN M, DUBOCHET J, LEPAULT J, et al. Cryo-electron microscopy ofviruses [J]. Nature,1984,308(5954):32-36.
    [14] COLLINS F S, PATRINOS A, JORDAN E, et al. New goals for the US humangenome project:1998-2003[J]. Science,1998,282(5389):682-689.
    [15]罗静初.生物信息学概论[M].北京:北京大学出版社.2002.
    [16] MARDIS E R. Next-generation DNA sequencing methods [J]. Annu RevGenomics Hum Genet,2008,9:387-402.
    [17] SHENDURE J, JI H. Next-generation DNA sequencing [J]. Nature biotechnology,2008,26(10):1135-1145.
    [18]陈竺,李伟俞,曼熊慧, et al.人类基因组计划的机遇和挑战: Ⅰ.从结构基因组学到功能基因组学[J].生命的化学,1998,18(5):5-13.
    [19] ALURU S. Handbook of computational molecular biology [M]. CRC Press,2005.
    [20] ATTWOOD T, GISEL A, ERIKSSON N, et al. Concepts, historical milestonesand the central place of bioinformatics in modern biology: a European perspective[J]. Bioinformatics-Trends and Methodologies,2011:
    [21] MICHAEL HUERTA F H, YUAN LIU, GREGORY DOWNING, ANDBELINDA SETO. NIH working definition of bioinformatics and computationalbiology; proceedings of the Bioinformatics Definition Committee, F,2000[C].
    [22] SAEYS Y, INZA I, LARRA AGA P. A review of feature selection techniques inbioinformatics [J]. Bioinformatics,2007,23(19):2507-2517.
    [23] GU J, BOURNE P E. Structural bioinformatics [M]. John Wiley&Sons,2009.
    [24] OUZOUNIS C A. Rise and demise of bioinformatics? Promise and progress [J].PLoS computational biology,2012,8(4): e1002487.
    [25] ECK R V, DAYHOFF M O. Evolution of the structure of ferredoxin based onliving relics of primitive amino acid sequences [J]. Science,1966,152(3720):363-366.
    [26] BENSON D A, KARSCH-MIZRACHI I, LIPMAN D J, et al. GenBank [J].Nucleic acids research,2008,36(suppl1): D25-D30.
    [27] HAILE J M. Molecular dynamics simulation: elementary methods [M]. JohnWiley&Sons, Inc.,1992.
    [28]王克夷.蛋白质导论[M].北京:科学出版社,2007.
    [29] GARNIER J, GIBRAT J-F, ROBSON B. GOR method for predicting proteinsecondary structure from amino acid sequence [J]. Methods in enzymology,1995,266:540-553.
    [30] CASSEL D, PFEUFFER T. Mechanism of cholera toxin action: covalentmodification of the guanyl nucleotide-binding protein of the adenylate cyclasesystem [J]. Proceedings of the National Academy of Sciences,1978,75(6):2669-2673.
    [31] GOLDBETER A, KOSHLAND D E. An amplified sensitivity arising fromcovalent modification in biological systems [J]. Proceedings of the NationalAcademy of Sciences,1981,78(11):6840-6844.
    [32] NINFA A J, MAGASANIK B. Covalent modification of the glnG product, NRI,by the glnL product, NRII, regulates the transcription of the glnALG operon inEscherichia coli [J]. Proceedings of the National Academy of Sciences,1986,83(16):5909-5913.
    [33] ANFINSEN C B. Studies on the principles that govern the folding of proteinchains [M].1972.
    [34] BOUTET E, LIEBERHERR D, TOGNOLLI M, et al. Uniprotkb/swiss-prot [M].Plant Bioinformatics. Springer.2007:89-112.
    [35] BERNSTEIN F C, KOETZLE T F, WILLIAMS G J, et al. The protein data bank[J]. European Journal of Biochemistry,1977,80(2):319-324.
    [36] MATTHEWS B W. Protein Structure Initiative: getting into gear [J]. Naturestructural&molecular biology,2007,14(6):459-460.
    [37] EISENBERG D, MARCOTTE E M, XENARIOS I, et al. Protein function in thepost-genomic era [J]. Nature,2000,405(6788):823-826.
    [38] STUART D, JONES E, WILSON K, et al. SPINE: Structural Proteomics INEurope-the best of both worlds [J]. Acta Crystallographica Section D: BiologicalCrystallography,2006,62(10):
    [39] ZHENG J, GAO X, BERETTA L, et al. The human liver proteome project (hlpp)workshop during the4th hupo world congress [J]. Proteomics,2006,6(6):1716-1718.
    [40] RODRIGUEZ R, CHINEA G, LOPEZ N, et al. Homology modeling, model andsoftware evaluation: three related resources [J]. Bioinformatics,1998,14(6):523-528.
    [41] LIITHY R, BOWIE J U, EISENBERG D. Assessment of protein models withthree-dimensional profiles [J]. Nature,1992,356(6364):83-85.
    [42] NAKASHIMA H, NISHIKAWA K, TATSUO O. The folding type of a protein isrelevant to the amino acid composition [J]. Journal of biochemistry,1986,99(1):153-162.
    [43] CHOU K-C, ZHANG C-T. Prediction of protein structural classes [J]. Criticalreviews in biochemistry and molecular biology,1995,30(4):275-349.
    [44] PILLARDY J, CZAPLEWSKI C, LIWO A, et al. Recent improvements inprediction of protein structure by global optimization of a potential energy function[J]. Proceedings of the National Academy of Sciences,2001,98(5):2329-2333.
    [45] NICHOLLS A, SHARP K A, HONIG B. Protein folding and association: insightsfrom the interfacial and thermodynamic properties of hydrocarbons [J]. Proteins:Structure, Function, and Bioinformatics,1991,11(4):281-296.
    [46] LINDORFF-LARSEN K, PIANA S, DROR R O, et al. How fast-folding proteinsfold [J]. Science,2011,334(6055):517-520.
    [47] SAENGER W. Principles of nucleic acid structure [M]. Springer-Verlag,1984.
    [48] WATSON J D, CRICK F H. Molecular structure of nucleic acids [J]. Nature,1953,171(4356):737-738.
    [49] OJALA D, MONTOYA J, ATTARDI G. tRNA punctuation model of RNAprocessing in human mitochondria [J].1981:
    [50] COLE J R, WANG Q, CARDENAS E, et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis [J]. Nucleic acids research,2009,37(suppl1): D141-D145.
    [51] PELHAM H R, JACKSON R J. An efficient mRNA‐dependent translationsystem from reticulocyte lysates [J]. European Journal of Biochemistry,1976,67(1):247-256.
    [52] ZHUANG Y, WEINER A M. A compensatory base change in U1snRNAsuppresses a5′splice site mutation [J]. Cell,1986,46(6):827-835.
    [53] SCHMID H P, AKHAYAT O, DE SA C M, et al. The prosome: an ubiquitousmorphologically distinct RNP particle associated with repressed mRNPs andcontaining specific ScRNA and a characteristic set of proteins [J]. The EMBOjournal,1984,3(1):29.
    [54] LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flankedby adenosines, indicates that thousands of human genes are microRNA targets [J].Cell,2005,120(1):15-20.
    [55] GILBERT W. Origin of life: The RNA world [J]. Nature,1986,319(6055):
    [56] KRUGER K, GRABOWSKI P J, ZAUG A J, et al. Self-splicing RNA:autoexcision and autocyclization of the ribosomal RNA intervening sequence ofTetrahymena [J]. Cell,1982,31(1):147-157.
    [57] FIRE A, XU S, MONTGOMERY M K, et al. Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [58] BAN N, NISSEN P, HANSEN J, et al. The complete atomic structure of the largeribosomal subunit at2.4resolution [J]. Science,2000,289(5481):905-920.
    [59] LEACH A R. Molecular modelling: principles and applications [M]. PearsonEducation,2001.
    [60] CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force fieldfor the simulation of proteins, nucleic acids, and organic molecules [J]. Journal ofThe American Chemical Society,1995,117(19):5179-5197.
    [61] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln [J]. Annalen derPhysik,1927,389(20):457-484.
    [62] ANDREWS D H. The relation between the Raman spectra and the structure oforganic molecules [J]. Physical Review,1930,36(3):544.
    [63] HILL T L. On steric effects [J]. The Journal of Chemical Physics,2004,14(7):465-465.
    [64] HENDRICKSON J B. Molecular geometry. I. Machine computation of thecommon rings [J]. Journal of The American Chemical Society,1961,83(22):4537-4547.
    [65] LIFSON S, WARSHEL A. Consistent Force Field for Calculations ofConformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n‐AlkaneMolecules [J]. The Journal of Chemical Physics,2003,49(11):5116-5129.
    [66] LEVITT M, LIFSON S. Refinement of protein conformations using amacromolecular energy minimization procedure [J]. Journal of molecular biology,1969,46(2):269-279.
    [67] AVRIEL M. Nonlinear programming: analysis and methods [M]. Courier DoverPublications,2012.
    [68] SNYMAN J. Practical mathematical optimization: an introduction to basicoptimization theory and classical and new gradient-based algorithms [M]. Springer,2005.
    [69] HESTENES M R, STIEFEL E. Methods of conjugate gradients for solving linearsystems [M]. NBS,1952.
    [70] HENKELMAN G, J NSSON H. A dimer method for finding saddle points on highdimensional potential surfaces using only first derivatives [J]. The Journal ofChemical Physics,1999,111(15):7010-7022.
    [71] ATKINSON K E. An introduction to numerical analysis [M]. John Wiley&Sons,2008.
    [72] YPMA T J. Historical development of the Newton-Raphson method [J]. SIAMreview,1995,37(4):531-551.
    [73] GILL P E, MURRAY W, WRIGHT M H. Practical optimization [J].1981:
    [74] SCHWEFEL H-P. Numerical optimization of computer models [M]. John Wiley&Sons, Inc.,1981.
    [75] ALDER B J, WAINWRIGHT T. Studies in molecular dynamics. I. Generalmethod [J]. The Journal of Chemical Physics,2004,31(2):459-466.
    [76] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J].Physical Review B,1993,47(1):558.
    [77] TUCKERMAN M E, MARTYNA G J. Understanding modern moleculardynamics: techniques and applications [J]. The Journal of Physical Chemistry B,2000,104(2):159-178.
    [78] ALDER B, GASS D, WAINWRIGHT T. Studies in Molecular Dynamics. VIII.The Transport Coefficients for a Hard‐Sphere Fluid [J]. The Journal of ChemicalPhysics,2003,53(10):3813-3826.
    [79] NOS S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular physics,1984,52(2):255-268.
    [80] BRUNGER A T, KURIYAN J, KARPLUS M. Crystallographic R factorrefinement by molecular dynamics [J]. Science,1987,235(4787):458-460.
    [81] PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: Anew molecular dynamics method [J]. Journal of Applied physics,1981,52(12):7182-7190.
    [82] RAPPE A K, GODDARD III W A. Charge equilibration for molecular dynamicssimulations [J]. The Journal of Physical Chemistry,1991,95(8):3358-3363.
    [83] RAPAPORT D C. The art of molecular dynamics simulation [M]. Cambridgeuniversity press,2004.
    [84] SMITH W, FORESTER T. DL_POLY_2.0: A general-purpose parallel moleculardynamics simulation package [J]. Journal of molecular graphics,1996,14(3):136-141.
    [85] KOSLOFF D, KOSLOFF R. A Fourier method solution for the time dependentSchr dinger equation as a tool in molecular dynamics [J]. Journal ofComputational Physics,1983,52(1):35-53.
    [86] SHAW D E, DROR R O, SALMON J K, et al. Millisecond-scale moleculardynamics simulations on Anton; proceedings of the High Performance ComputingNetworking, Storage and Analysis, Proceedings of the Conference on, F,2009[C].IEEE.
    [87] SHAW D E, MARAGAKIS P, LINDORFF-LARSEN K, et al. Atomic-levelcharacterization of the structural dynamics of proteins [J]. Science,2010,330(6002):341-346.
    [88] RAVAL A, PIANA S, EASTWOOD M P, et al. Refinement of protein structurehomology models via long, all‐atom molecular dynamics simulations [J].Proteins: Structure, Function, and Bioinformatics,2012,80(8):2071-2079.
    [89] SCHLICK T. Molecular Modeling and Simulation: An Interdisciplinary Guide: AnInterdisciplinary Guide [M]. Springer,2010.
    [90] VERLET L. Computer" experiments" on classical fluids. I. Thermodynamicalproperties of Lennard-Jones molecules [J]. Physical Review,1967,159(1):98.
    [91] VERLET L. Computer" experiments" on classical fluids. ii. equilibrium correlationfunctions [J]. Physical Review,1968,165(1):201.
    [92] BEEMAN D. Some multistep methods for use in molecular dynamics calculations[J]. Journal of Computational Physics,1976,20(2):130-139.
    [93] RAHMAN A. Correlations in the motion of atoms in liquid argon [J]. PhysicalReview,1964,136(2A): A405.
    [94] MARTYS N S, MOUNTAIN R D. Velocity Verlet algorithm fordissipative-particle-dynamics-based models of suspensions [J]. Physical Review E,1999,59(3):3733.
    [95] VAN GUNSTEREN W, BERENDSEN H. A leap-frog algorithm for stochasticdynamics [J]. Molecular Simulation,1988,1(3):173-185.
    [96] SNYMAN J. An improved version of the original leap-frog dynamic method forunconstrained minimization: LFOP1(b)[J]. Applied mathematical modelling,1983,7(3):216-218.
    [97] MARK P, NILSSON L. Structure and dynamics of the TIP3P, SPC, and SPC/Ewater models at298K [J]. The Journal of Physical Chemistry A,2001,105(43):9954-9960.
    [98] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison ofsimple potential functions for simulating liquid water [J]. The Journal of ChemicalPhysics,1983,79(2):926-935.
    [99] SCHAEFER M, KARPLUS M. A comprehensive analytical treatment ofcontinuum electrostatics [J]. The Journal of Physical Chemistry,1996,100(5):1578-1599.
    [100] BERENDSEN H, GRIGERA J, STRAATSMA T. The missing term in effectivepair potentials [J]. Journal of Physical Chemistry,1987,91(24):6269-6271.
    [101] ESSMANN U, PERERA L, BERKOWITZ M L, et al. A smooth particle meshEwald method [J]. The Journal of Chemical Physics,1995,103(19):8577-8593.
    [102] EWALD P P. Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Annalen der Physik,1921,369(3):253-287.
    [103] PEARLMAN D A, CASE D A, CALDWELL J W, et al. AMBER, a package ofcomputer programs for applying molecular mechanics, normal mode analysis,molecular dynamics and free energy calculations to simulate the structural andenergetic properties of molecules [J]. Computer Physics Communications,1995,91(1):1-41.
    [104] SALOMON‐FERRER R, CASE D A, WALKER R C. An overview of theAmber biomolecular simulation package [J]. Wiley Interdisciplinary Reviews:Computational Molecular Science,2013,3(2):198-210.
    [105] CASE D A, CHEATHAM T E, DARDEN T, et al. The Amber biomolecularsimulation programs [J]. Journal of Computational Chemistry,2005,26(16):1668-1688.
    [106] CASE D, DARDEN T, CHEATHAM III T, et al. AMBER12[J]. University ofCalifornia, San Francisco,2012:
    [107] WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of ageneral amber force field [J]. Journal of Computational Chemistry,2004,25(9):1157-1174.
    [108] JAYARAM B, SPROUS D, BEVERIDGE D. Solvation free energy ofbiomacromolecules: Parameters for a modified generalized Born modelconsistent with the AMBER force field [J]. The Journal of Physical Chemistry B,1998,102(47):9571-9576.
    [109] MEAGHER K L, REDMAN L T, CARLSON H A. Development ofpolyphosphate parameters for use with the AMBER force field [J]. Journal ofComputational Chemistry,2003,24(9):1016-1025.
    [110] WEINER S J, KOLLMAN P A, CASE D A, et al. A new force field formolecular mechanical simulation of nucleic acids and proteins [J]. Journal ofThe American Chemical Society,1984,106(3):765-784.
    [111] WEINER S J, KOLLMAN P A, NGUYEN D T, et al. An all atom force field forsimulations of proteins and nucleic acids [J]. Journal of ComputationalChemistry,1986,7(2):230-252.
    [112] VAN GUNSTEREN W F. Computer simulation of biomolecular systems:theoretical and experimental applications [M]. Kluwer Academic Pub,1994.
    [113] BEACHY M D, CHASMAN D, MURPHY R B, et al. Accurate ab initioquantum chemical determination of the relative energetics of peptideconformations and assessment of empirical force fields [J]. Journal of TheAmerican Chemical Society,1997,119(25):5908-5920.
    [114] HORNAK V, ABEL R, OKUR A, et al. Comparison of multiple Amber forcefields and development of improved protein backbone parameters [J]. Proteins:Structure, Function, and Bioinformatics,2006,65(3):712-725.
    [115] WANG L, DUAN Y, SHORTLE R, et al. Study of the stability and unfoldingmechanism of BBA1by molecular dynamics simulations at differenttemperatures [J]. Protein Science,1999,8(6):1292-1304.
    [116] HIGO J, ITO N, KURODA M, et al. Energy landscape of a peptide consisting ofα‐helix,310‐helix, β‐turn, β‐hairpin, and other disordered conformations[J]. Protein Science,2001,10(6):1160-1171.
    [117] CHEATHAM III T E, CIEPLAK P, KOLLMAN P A. A modified version of theCornell et al. force field with improved sugar pucker phases and helical repeat[J]. Journal of Biomolecular Structure and Dynamics,1999,16(4):845-862.
    [118] WANG J, CIEPLAK P, KOLLMAN P A. How well does a restrainedelectrostatic potential (RESP) model perform in calculating conformationalenergies of organic and biological molecules?[J]. Journal of ComputationalChemistry,2000,21(12):1049-1074.
    [119] ADURI R, PSCIUK B T, SARO P, et al. AMBER force field parameters for thenaturally occurring modified nucleosides in RNA [J]. Journal of ChemicalTheory and Computation,2007,3(4):1464-1475.
    [120] CIEPLAK P, DUPRADEAU F-Y, DUAN Y, et al. Polarization effects inmolecular mechanical force fields [J]. Journal of Physics: Condensed Matter,2009,21(33):333102.
    [121] WANG Z X, ZHANG W, WU C, et al. Strike a balance: optimization ofbackbone torsion parameters of AMBER polarizable force field for simulationsof proteins and peptides [J]. Journal of Computational Chemistry,2006,27(6):781-790.
    [122] DIXON R W, KOLLMAN P A. Advancing beyond the atom‐centered modelin additive and nonadditive molecular mechanics [J]. Journal of ComputationalChemistry,1997,18(13):1632-1646.
    [123] DUAN Y, WU C, CHOWDHURY S, et al. A point‐charge force field formolecular mechanics simulations of proteins based on condensed‐phasequantum mechanical calculations [J]. Journal of Computational Chemistry,2003,24(16):1999-2012.
    [124] LEE M C, DUAN Y. Distinguish protein decoys by using a scoring functionbased on a new AMBER force field, short molecular dynamics simulations, andthe generalized born solvent model [J]. Proteins: Structure, Function, andBioinformatics,2004,55(3):620-634.
    [125] YANG L, TAN C-H, HSIEH M-J, et al. New-generation amber united-atomforce field [J]. The Journal of Physical Chemistry B,2006,110(26):13166-13176.
    [126] P REZ A, MARCH N I, SVOZIL D, et al. Refinement of the AMBER ForceField for Nucleic Acids: Improving the Description of α/γ Conformers [J].Biophysical journal,2007,92(11):3817-3829.
    [127] BANá P, HOLLAS D, ZGARBOV M, et al. Performance of molecularmechanics force fields for RNA simulations: stability of UUCG and GNRAhairpins [J]. Journal of Chemical Theory and Computation,2010,6(12):3836-3849.
    [128] JOUNG I S, CHEATHAM III T E. Determination of alkali and halidemonovalent ion parameters for use in explicitly solvated biomolecularsimulations [J]. The Journal of Physical Chemistry B,2008,112(30):9020-9041.
    [129] JOUNG I S, CHEATHAM III T E. Molecular dynamics simulations of thedynamic and energetic properties of alkali and halide ions usingwater-model-specific ion parameters [J]. The Journal of Physical Chemistry B,2009,113(40):13279-13290.
    [130] WANG B, MERZ K M. A fast QM/MM (quantum mechanical/molecularmechanical) approach to calculate nuclear magnetic resonance chemical shiftsfor macromolecules [J]. Journal of Chemical Theory and Computation,2006,2(1):209-215.
    [131] PETERS M B, YANG Y, WANG B, et al. Structural survey of zinc-containingproteins and development of the zinc AMBER force field (ZAFF)[J]. Journal ofChemical Theory and Computation,2010,6(9):2935-2947.
    [132] G TZ A W, WILLIAMSON M J, XU D, et al. Routine microsecond moleculardynamics simulations with AMBER on GPUs.1. Generalized Born [J]. Journalof Chemical Theory and Computation,2012,8(5):1542-1555.
    [133] WEISER J, SHENKIN P S, STILL W C. Approximate atomic surfaces fromlinear combinations of pairwise overlaps (LCPO)[J]. Journal of ComputationalChemistry,1999,20(2):217-230.
    [134] MASSOVA I, KOLLMAN P A. Combined molecular mechanical andcontinuum solvent approach (MM-PBSA/GBSA) to predict ligand binding [J].Perspectives in Drug Discovery and Design,2000,18(1):113-135.
    [135] CORDIN O, BANROQUES J, TANNER N K, et al. The DEAD-box proteinfamily of RNA helicases [J]. Gene,2006,367:17-37.
    [136] LINDER P. Dead-box proteins: a family affair—active and passive players inRNP-remodeling [J]. Nucleic acids research,2006,34(15):4168-4180.
    [137] JANKOWSKY E, FAIRMAN M E. RNA helicases—one fold for manyfunctions [J]. Current opinion in structural biology,2007,17(3):316-324.
    [138] FAIRMAN-WILLIAMS M E, GUENTHER U-P, JANKOWSKY E. SF1andSF2helicases: family matters [J]. Current opinion in structural biology,2010,20(3):313-324.
    [139] YANG Q, DEL CAMPO M, LAMBOWITZ A M, et al. DEAD-box proteinsunwind duplexes by local strand separation [J]. Molecular cell,2007,28(2):253-263.
    [140] YANG Q, JANKOWSKY E. The DEAD-box protein Ded1unwinds RNAduplexes by a mode distinct from translocating helicases [J]. Nature structural&molecular biology,2006,13(11):981-986.
    [141] MOHR S, STRYKER J M, LAMBOWITZ A M. A DEAD-box proteinfunctions as an ATP-dependent RNA chaperone in group I intron splicing [J].Cell,2002,109(6):769-779.
    [142] DEL CAMPO M, TIJERINA P, BHASKARAN H, et al. Do DEAD-boxproteins promote group II intron splicing without unwinding RNA?[J].Molecular cell,2007,28(1):159-166.
    [143] DEL CAMPO M, MOHR S, JIANG Y, et al. Unwinding by local strandseparation is critical for the function of DEAD-box proteins as RNA chaperones[J]. Journal of molecular biology,2009,389(4):674-693.
    [144] HUANG H R, ROWE C E, MOHR S, et al. The splicing of yeast mitochondrialgroup I and group II introns requires a DEAD-box protein with RNA chaperonefunction [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2005,102(1):163-168.
    [145] POTRATZ J P, DEL CAMPO M, WOLF R Z, et al. ATP-Dependent Roles ofthe DEAD-Box Protein Mss116p in Group II Intron Splicing In Vitro and InVivo [J]. Journal of molecular biology,2011,411(3):661-679.
    [146] MOHR G, DEL CAMPO M, MOHR S, et al. Function of the C-terminal domainof the DEAD-box protein Mss116p analyzed in vivo and in vitro [J]. Journal ofmolecular biology,2008,375(5):1344.
    [147] DEL CAMPO M, LAMBOWITZ A M. Structure of the Yeast DEAD boxprotein Mss116p reveals two wedges that crimp RNA [J]. Molecular cell,2009,35(5):598-609.
    [148] MALLAM A L, JARMOSKAITE I, TIJERINA P, et al. Solution structures ofDEAD-box RNA chaperones reveal conformational changes and nucleic acidtethering by a basic tail [J]. Proceedings of the National Academy of Sciences ofthe United States of America,2011,108(30):12254-12259.
    [149] KAROW A R, KLOSTERMEIER D. A structural model for the DEAD boxhelicase YxiN in solution: localization of the RNA binding domain [J]. Journalof molecular biology,2010,402(4):629-637.
    [150] LIU F, PUTNAM A, JANKOWSKY E. ATP hydrolysis is required forDEAD-box protein recycling but not for duplex unwinding [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2008,105(51):20209-20214.
    [151] MALLAM A L, DEL CAMPO M, GILMAN B, et al. Structural basis forRNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p[J]. Nature,2012:
    [152] MOHR G, DEL CAMPO M, TURNER K G, et al. High-throughput geneticidentification of functionally important regions of the yeast DEAD-box proteinMss116p [J]. Journal of molecular biology,2011,413(5):952-972.
    [153] BIFANO A L, TURK E M, CAPRARA M G. Structure-guided mutationalanalysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing[J]. Journal of molecular biology,2010,398(3):429-443.
    [154] PAN D, SUN H, SHEN Y, et al. Exploring the molecular basis of dsRNArecognition by NS1protein of influenza A virus using molecular dynamicssimulation and free energy calculation [J]. Antiviral research,2011,92(3):424-433.
    [155] XUE W, LIU H, YAO X. Molecular mechanism of HIV‐1integrase–vDNAinteractions and strand transfer inhibitor action: A molecular modelingperspective [J]. Journal of Computational Chemistry,2012,33(5):527-536.
    [156] CHEN L, ZHANG J-L, YU L-Y, et al. Influence of Hyperthermophilic ProteinCren7on the Stability and Conformation of DNA: Insights from MolecularDynamics Simulation and Free Energy Analysis [J]. Journal of PhysicalChemistry B,2012,116(41):12415-12425.
    [157] SINGH A, SNYDER S, LEE L, et al. Effect of oligonucleotide length on theassembly of DNA materials: molecular dynamics simulations of layer-by-layerDNA films [J]. Langmuir,2010,26(22):17339-17347.
    [158] STUDIO D. version2.5[M/OL]. Accelrys Inc: San Diego, CA, USA,2009.
    [159] CASE D, DARDEN T, CHEATHAM III T, et al. AMBER11[J]. University ofCalifornia, San Francisco,2010,142:
    [160] BANá P, HOLLAS D, ZGARBOVá M, et al. Performance of molecularmechanics force fields for RNA simulations: stability of UUCG and GNRAhairpins [J]. Journal of Chemical Theory and Computation,2010,6(12):3836-3849.
    [161] SWADLING J B, SUTER J L, GREENWELL H C, et al. Influence of SurfaceChemistry and Charge on Mineral-RNA Interactions [J]. Langmuir,2013:
    [162] LINDORFF‐LARSEN K, PIANA S, PALMO K, et al. Improved side‐chaintorsion potentials for the Amber ff99SB protein force field [J].Proteins-Structure Function And Genetics,2010,78(8):1950-1958.
    [163] LI D W, BR SCHWEILER R. NMR‐Based Protein Potentials [J]. AngewandteChemie,2010,122(38):6930-6932.
    [164] BEAUCHAMP K A, LIN Y-S, DAS R, et al. Are protein force fields gettingbetter? A systematic benchmark on524diverse NMR measurements [J]. Journalof Chemical Theory and Computation,2012,8(4):1409-1414.
    [165] PAL S, BANDYOPADHYAY S. Importance of Protein ConformationalMotions and Electrostatic Anchoring Sites on the Dynamics and Hydrogen BondProperties of Hydration Water [J]. Langmuir,2013:
    [166] ESSMANN U, PERERA L, BERKOWITZ M L, et al. A smooth particle meshEwald method [J]. Journal of Chemical Physics,1995,103(19):8577-8593.
    [167] TOSAKA R, YAMAMOTO H, OHDOMARI I, et al. Adsorption mechanism ofribosomal protein L2onto a silica surface: a molecular dynamics simulationstudy [J]. Langmuir,2010,26(12):9950-9955.
    [168] JOHNSON S, BRONOWSKA A, CHAN J, et al. Redox-InducedConformational Change in Mercaptoalkanoic Acid Multilayer Films [J].Langmuir,2012,28(16):6632-6637.
    [169] FENG F, LEE S H, CHO S W, et al. Conjugated Polyelectrolyte Dendrimers:Aggregation, Photophysics, and Amplified Quenching [J]. Langmuir,2012,28(48):16679-16691.
    [170] RYCKAERT J-P, CICCOTTI G, BERENDSEN H J. Numerical integration ofthe cartesian equations of motion of a system with constraints: moleculardynamics of n-alkanes [J]. Journal of Computational Physics,1977,23(3):327-341.
    [171] DELANO W L. The PyMOL molecular graphics system [J].2002:
    [172] PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera—avisualization system for exploratory research and analysis [J]. Journal ofComputational Chemistry,2004,25(13):1605-1612.
    [173] KOLLMAN P A, MASSOVA I, REYES C, et al. Calculating structures and freeenergies of complex molecules: combining molecular mechanics and continuummodels [J]. Accounts of chemical research,2000,33(12):889-897.
    [174] YAO J, CHU Y, AN R, et al. Understanding Product Specificity of ProteinLysine Methyltransferases from QM/MM Molecular Dynamics and Free EnergySimulations: The Effects of Mutation on SET7/9beyond the Tyr/Phe Switch [J].Journal of chemical information and modeling,2012,52(2):449-456.
    [175] HAWKINS G D, CRAMER C J, TRUHLAR D G. Parametrized models ofaqueous free energies of solvation based on pairwise descreening of soluteatomic charges from a dielectric medium [J]. The Journal of Physical Chemistry,1996,100(51):19824-19839.
    [176] HAWKINS G D, CRAMER C J, TRUHLAR D G. Pairwise solute descreeningof solute charges from a dielectric medium [J]. Chemical Physics Letters,1995,246(1):122-129.
    [177] XU B, SHEN H, ZHU X, et al. Fast and accurate computation schemes forevaluating vibrational entropy of proteins [J]. Journal of ComputationalChemistry,2011,32(15):3188-3193.
    [178] HOU T, WANG J, LI Y, et al. Assessing the performance of the MM/PBSA andMM/GBSA methods.1. The accuracy of binding free energy calculations basedon molecular dynamics simulations [J]. Journal of chemical information andmodeling,2011,51(1):69-82.
    [179] HOU T, WANG J, LI Y, et al. Assessing the performance of the molecularmechanics/Poisson Boltzmann surface area and molecularmechanics/generalized Born surface area methods. II. The accuracy of rankingposes generated from docking [J]. Journal of Computational Chemistry,2011,32(5):866-877.
    [180] CUI Y L, ZHANG J L, ZHENG Q C, et al. Structural and Dynamic Basis ofHuman Cytochrome P4507B1: A Survey of Substrate Selectivity and MajorActive Site Access Channels [J]. Chemistry-A European Journal,2013,19(2):549-557.
    [181] HOU T, LI N, LI Y, et al. Characterization of domain–peptide interactioninterface: prediction of SH3domain-mediated protein–protein interactionnetwork in yeast by generic structure-based models [J]. Journal of ProteomeResearch,2012,11(5):2982-2995.
    [182] HOU T, ZHANG W. Characterization of domain-peptide interaction interface: acase study on the amphiphysin-1SH3domain [J]. Journal of molecular biology,2008,376(4):1201.
    [183] MALLAM A L, DEL CAMPO M, GILMAN B, et al. Structural basis forRNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p[J]. Nature,2012,490(7418):121-125.
    [184] BIFANO A L, CAPRARA M G. A DExH/D-box protein coordinates the twosteps of splicing in a group I intron [J]. Journal of molecular biology,2008,383(3):667-682.
    [185] SANCHEZ A, WAGONER K E, ROLLIN P E. Sequence-Based HumanLeukocyte Antigen—B Typing of Patients Infected with Ebola Virus in Ugandain2000: Identification of Alleles Associated with Fatal and Nonfatal DiseaseOutcomes [J]. Journal of Infectious Diseases,2007,196(Supplement2):S329-S336.
    [186] KUHN J H, BECKER S, EBIHARA H, et al. Proposal for a revised taxonomyof the family Filoviridae: classification, names of taxa and viruses, and virusabbreviations [J]. Archives of Virology,2010,155(12):2083-2103.
    [187] BAUSCH D G, BORCHERT M, GREIN T, et al. Risk factors for Marburghemorrhagic fever, Democratic Republic of the Congo [J]. Emerging InfectiousDiseases,2003,9(12):1531.
    [188] BAIZE S, LEROY E M, GEORGES-COURBOT M-C, et al. Defective humoralresponses and extensive intravascular apoptosis are associated with fataloutcome in Ebola virus-infected patients [J]. Nature Medicine,1999,5(4):423-426.
    [189] MAHANTY S, GUPTA M, PARAGAS J, et al. Protection from lethal infectionis determined by innate immune responses in a mouse model of Ebola virusinfection [J]. Virology,2003,312(2):415-424.
    [190] BARRETTE R W, METWALLY S A, ROWLAND J M, et al. Discovery ofswine as a host for the Reston ebolavirus [J]. Science,2009,325(5937):204-206.
    [191] BASLER C F, AMARASINGHE G K. Evasion of interferon responses by Ebolaand Marburg viruses [J]. Journal of Interferon&Cytokine Research,2009,29(9):511-520.
    [192] LEUNG D W, PRINS K C, BASLER C F, et al. Ebolavirus VP35is amultifunctional virulence factor [J]. Virulence,2010,1(6):526-531.
    [193] HAASNOOT J, DE VRIES W, GEUTJES E-J, et al. The Ebola virus VP35protein is a suppressor of RNA silencing [J]. PLoS pathogens,2007,3(6): e86.
    [194] SCH MANN M, GANTKE T, M HLBERGER E. Ebola virus VP35antagonizesPKR activity through its C-terminal interferon inhibitory domain [J]. Journal ofVirology,2009,83(17):8993-8997.
    [195] BASLER C F, MIKULASOVA A, MARTINEZ-SOBRIDO L, et al. The Ebolavirus VP35protein inhibits activation of interferon regulatory factor3[J].Journal of Virology,2003,77(14):7945-7956.
    [196] C RDENAS W B, LOO Y-M, GALE M, et al. Ebola virus VP35protein bindsdouble-stranded RNA and inhibits alpha/beta interferon production induced byRIG-I signaling [J]. Journal of Virology,2006,80(11):5168-5178.
    [197] KUMAR H, KAWAI T, AKIRA S. Pathogen recognition by the innate immunesystem [J]. International reviews of immunology,2011,30(1):16-34.
    [198] PICHLMAIR A, SCHULZ O, TAN C P, et al. RIG-I-mediated antiviralresponses to single-stranded RNA bearing5'-phosphates [J]. Science,2006,314(5801):997-1001.
    [199] LEUNG D W, AMARASINGHE G K. Structural insights into RNA recognitionand activation of RIG-I-like receptors [J]. Current Opinion In Structural Biology,2012,22(3):297-303.
    [200] LEUNG D W, PRINS K C, BOREK D M, et al. Structural basis for dsRNArecognition and interferon antagonism by Ebola VP35[J]. Nature structural&molecular biology,2010,17(2):165-172.
    [201] PRINS K C, C RDENAS W B, BASLER C F. Ebola virus protein VP35impairsthe function of interferon regulatory factor-activating kinases IKKε and TBK-1[J]. Journal of Virology,2009,83(7):3069-3077.
    [202] RAMANAN P, EDWARDS M R, SHABMAN R S, et al. Structural basis forMarburg virus VP35–mediated immune evasion mechanisms [J]. Proceedings ofthe National Academy of Sciences,2012,109(50):20661-20666.
    [203] KIMBERLIN C R, BORNHOLDT Z A, LI S, et al. Ebolavirus VP35uses abimodal strategy to bind dsRNA for innate immune suppression [J]. Proceedingsof the National Academy of Sciences,2010,107(1):314-319.
    [204] LEUNG D W, GINDER N D, NIX J C, et al. Expression, purification,crystallization and preliminary X-ray studies of the Ebola VP35interferoninhibitory domain [J]. Acta Crystallographica Section F: Structural Biology andCrystallization Communications,2009,65(2):163-165.
    [205] LEUNG D W, GINDER N D, FULTON D B, et al. Structure of the Ebola VP35interferon inhibitory domain [J]. Proceedings of the National Academy ofSciences,2009,106(2):411-416.
    [206] BALE S, JULIEN J-P, BORNHOLDT Z A, et al. Marburg Virus VP35CanBoth Fully Coat the Backbone and Cap the Ends of dsRNA for InterferonAntagonism [J]. PLoS pathogens,2012,8(9): e1002916.
    [207] LIU H, YAO X, WANG C, et al. In silico identification of the potential drugresistance sites over2009influenza A (H1N1) virus neuraminidase [J].Molecular Pharmaceutics,2010,7(3):894-904.
    [208] QIN F, YE W, CHEN Y, et al. Specific recognition between intrinsicallydisordered LEF and DNA [J]. Physical Chemistry Chemical Physics,2012,14(2):538-545.
    [209] YU H, NOSKOV S Y, ROUX B. Two mechanisms of ion selectivity in proteinbinding sites [J]. Proceedings of the National Academy of Sciences,2010,107(47):20329-20334.
    [210] KORMOS B L, PIENIAZEK S N, BEVERIDGE D L, et al. U1A protein‐stemloop2RNA recognition: Prediction of structural differences from proteinmutations [J]. Biopolymers,2011,95(9):591-606.
    [211] CHEATHAM T E, CASE D A. Twenty‐five years of nucleic acid simulations[J]. Biopolymers,2013:
    [212] XUE Q, ZHANG J-L, ZHENG Q-C, et al. Exploring the Molecular Basis ofdsRNA Recognition by Mss116p Using Molecular Dynamics Simulations andFree-Energy Calculations [J]. Langmuir,2013,29(35):11135-11144.
    [213] ZUO Z, GANDHI N S, ARNDT K M, et al. Free energy calculations of theinteractions of c‐Jun‐based synthetic peptides with the c‐Fos protein [J].Biopolymers,2012,97(11):899-909.
    [214] WU R, WANG S, ZHOU N, et al. A proton-shuttle reaction mechanism forhistone deacetylase8and the catalytic role of metal ions [J]. Journal of TheAmerican Chemical Society,2010,132(27):9471-9479.
    [215] MENG X-Y, ZHANG H-X, LOGOTHETIS D E, et al. The MolecularMechanism by which PIP2Opens the Intracellular G-Loop Gate of a Kir3.1Channel [J]. Biophysical Journal,2012,102(9):2049-2059.
    [216] LU S, JIANG Y, LV J, et al. Mechanism of kinase inactivation and nonbindingof FRATide to GSK3β due to K85M mutation: molecular dynamics simulationand normal mode analysis [J]. Biopolymers,2011,95(10):669-681.
    [217] WANG Y, ZHENG Q-C, ZHANG J-L, et al. Highlighting a π–π interaction: aprotein modeling and molecular dynamics simulation study on Anophelesgambiae glutathione S-transferase1-2[J]. Journal of Molecular Modeling,2013:1-11.
    [218] CUI Y-L, ZHENG Q-C, ZHANG J-L, et al. Molecular Dynamic Investigationsof the Mutational Effects on Structural Characteristics and Tunnel Geometry inCYP17A1[J]. Journal of chemical information and modeling,2013,53(12):3308-3317.
    [219] AGARWAL V, LIN S, LUKK T, et al. Structure of the enzyme-acyl carrierprotein (ACP) substrate gatekeeper complex required for biotin synthesis [J].Proceedings of the National Academy of Sciences,2012,109(43):17406-17411.
    [220] WHITE S W, ZHENG J, ZHANG Y-M, et al. The structural biology of type IIfatty acid biosynthesis [J]. Annu Rev Biochem,2005,74:791-831.
    [221] LIN S, HANSON R E, CRONAN J E. Biotin synthesis begins by hijacking thefatty acid synthetic pathway [J]. Nature chemical biology,2010,6(9):682-688.
    [222] CRONAN J. Molecular properties of short chain acyl thioesters of acyl carrierprotein [J]. Journal of Biological Chemistry,1982,257(9):5013-5017.
    [223] FRISCH M, GWT H, SCHLEGEL G, et al. Gaussian092009[J]. Gaussian, Inc,Wallingford, CT,2009:
    [224] KRASI SKI G, CYPRYK M, KWIATKOWSKA M, et al. Molecular Modelingof the Lipase-Catalyzed Hydrolysis of Acetoxymethyl (i-propoxy)phenylphosphine Oxide and its P-borane Analogue [J]. Journal of MolecularGraphics and Modelling,2012:
    [225] XU Z, MEHER B R, EUSTACHE D, et al. Insight into the interaction betweenDNA bases and defective graphenes: Covalent or non-covalent [J]. Journal ofMolecular Graphics and Modelling,2014,47:8-17.
    [226] SHINDE R N, SOBHIA M E. Binding and discerning interactions of PTP1Ballosteric inhibitors: Novel insights from molecular dynamics simulations [J].Journal of Molecular Graphics and Modelling,2013,45:98-110.
    [227] GONZ LEZ-MENDI ROZ M, áLVAREZ-V ZQUEZ A B,RUBIO-MARTINEZ J. Structural analysis of the inhibition of APRIL by TACIand BCMA through molecular dynamics simulations [J]. Journal of MolecularGraphics and Modelling,2012:
    [228] DU J, XI L, LEI B, et al. Structure‐based quantitative structure‐activityrelationship studies of checkpoint kinase1inhibitors [J]. Journal ofComputational Chemistry,2010,31(15):2783-2793.
    [229] MULAKALA C, VISWANADHAN V N. Could MM-GBSA be accurateenough for calculation of absolute protein/ligand binding free energies?[J].Journal of Molecular Graphics and Modelling,2013,46:41-51.
    [230] JAEGER K, DIJKSTRA B, REETZ M. Bacterial biocatalysts: molecularbiology, three-dimensional structures, and biotechnological applications oflipases [J]. Annual Reviews in Microbiology,1999,53(1):315-351.
    [231] ROUJEINIKOVA A, SIMON W J, GILROY J, et al. Structural studies of fattyacyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that canexpand to fit longer substrates [J]. Journal of Molecular Biology,2007,365(1):135-145.
    [232] CHITI F, DOBSON C M. Protein misfolding, functional amyloid, and humandisease [J]. Annual Review Of Biochemistry,2006,75:333-366.
    [233] DOBSON C M. Protein folding and misfolding [J]. Nature,2003,426(6968):884-890.
    [234] GOSAL W S, MORTEN I J, HEWITT E W, et al. Competing PathwaysDetermine Fibril Morphology in the Self-assembly of β2-Microglobulin intoAmyloid [J]. Journal Of Molecular Biology,2005,351(4):850-864.
    [235] GUIJARRO J I, SUNDE M, JONES J A, et al. Amyloid fibril formation by anSH3domain [J]. Proceedings Of The National Academy Of Sciences,1998,95(8):4224.
    [236] CHITI F, TADDEI N, BUCCIANTINI M, et al. Mutational analysis of thepropensity for amyloid formation by a globular protein [J]. The EMBO journal,2000,19(7):1441-1449.
    [237] FERR O-GONZALES A D, SOUTO S O, SILVA J L, et al. The preaggregatedstate of an amyloidogenic protein: hydrostatic pressure converts nativetransthyretin into the amyloidogenic state [J]. Proceedings Of The NationalAcademy Of Sciences,2000,97(12):6445.
    [238] SELKOE D J. Folding proteins in fatal ways [J]. Nature,2003,426(6968):900-904.
    [239] MONACO H L, RIZZI M, CODA A. Structure of a complex of two plasmaproteins: transthyretin and retinol-binding protein [J]. Science,1995,268(5213):1039-1041.
    [240] WOJTCZAK A, LUFT J, CODY V. Mechanism of molecular recognition.Structural aspects of3,3'-diiodo-L-thyronine binding to human serumtransthyretin [J]. Journal Of Biological Chemistry,1992,267(1):353-357.
    [241] JACOBSON D R, PASTORE R D, YAGHOUBIAN R, et al. Variant-sequencetransthyretin (isoleucine122) in late-onset cardiac amyloidosis in blackAmericans [J]. New England Journal Of Medicine,1997,336(7):466-473.
    [242] WESTERMARK P, SLETTEN K, JOHANSSON B, et al. Fibril in senilesystemic amyloidosis is derived from normal transthyretin [J]. Proceedings OfThe National Academy Of Sciences,1990,87(7):2843.
    [243] MITSUHASHI S, YAZAKI M, TOKUDA T, et al. Biochemical characteristicsof variant transthyretins causing hereditary leptomeningeal amyloidosis [J].Amyloid-journal Of Protein Folding Disorders,2005,12(4):216-225.
    [244] FOSS T R, WISEMAN R L, KELLY J W. The pathway by which the tetramericprotein transthyretin dissociates [J]. Biochemistry,2005,44(47):15525-15533.
    [245] QUINTAS A, VAZ D C, CARDOSO I, et al. Tetramer dissociation andmonomer partial unfolding precedes protofibril formation in amyloidogenictransthyretin variants [J]. Journal Of Biological Chemistry,2001,276(29):27207.
    [246] SHNYROV V L, VILLAR E, ZHADAN G G, et al. Comparative calorimetricstudy of non-amyloidogenic and amyloidogenic variants of the homotetramericprotein transthyretin [J]. Biophysical Chemistry,2000,88(1):61-67.
    [247] LIANG Y, JASBI S Z, HAFTCHENARY S, et al. Binding interactions inearly-and late-stage amyloid aggregates of TTR(105–115)[J].Biophysical Chemistry,2009,144(1):1-8.
    [248] RODRIGUES J R, SIM ES C J V, SILVA C G, et al. Potentially amyloidogenicconformational intermediates populate the unfolding landscape of transthyretin:Insights from molecular dynamics simulations [J]. Protein Science,2010,19(2):202-219.
    [249] YANG M, YORDANOV B, LEVY Y, et al. The sequence-dependent unfoldingpathway plays a critical role in the amyloidogenicity of transthyretin [J].Biochemistry,2006,45(39):11992-12002.
    [250] CHAKRABORTY S, CHATTERJEE B, BASU S. A mechanistic insight intothe amyloidogenic structure of hIAPP peptide revealed from sequence analysisand molecular dynamics simulation [J]. Biophysical Chemistry,2012,168:1-9.
    [251] LAI Z, COL N W, KELLY J W. The acid-mediated denaturation pathway oftransthyretin yields a conformational intermediate that can self-assemble intoamyloid [J]. Biochemistry,1996,35(20):6470-6482.
    [252] JACOBSON D R, MCFARLIN D E, KANE I, et al. Transthyretin Pro55, avariant associated with early-onset, aggressive, diffuse amyloidosis with cardiacand neurologic involvement [J]. Human Genetics,1992,89(3):353-356.
    [253] CHU W T, WU Y J, ZHANG J L, et al. Constant pH Molecular Dynamics(CpHMD) and mutation studies: Insights into AaegOBP1pH-induced ligandreleasing mechanism [J]. BBA-Proteins Proteomics,2012,1824(7):913-918.
    [254] WILLIAMS S L, DE OLIVEIRA C A F, MCCAMMON J A. Coupling constantpH molecular dynamics with accelerated molecular dynamics [J]. Journal ofChemical Theory and Computation,2010,6(2):560-568.
    [255] MONGAN J, CASE D A, MCCAMMON J A. Constant pH molecular dynamicsin generalized Born implicit solvent [J]. Journal Of Computational Chemistry,2004,25(16):2038-2048.
    [256] DUAN Y, WU C, CHOWDHURY S, et al. A point-charge force field formolecular mechanics simulations of proteins based on condensed-phasequantum mechanical calculations [J]. Journal Of Computational Chemistry,2003,24(16):1999-2012.
    [257] TSUI V, CASE D A. Theory and applications of the generalized Born solvationmodel in macromolecular simulations [J]. Biopolymers,2000,56(4):275-291.
    [258] ONUFRIEV A, BASHFORD D, DAVID A. Modification of the generalizedBorn model suitable for macromolecules [J]. The Journal of Physical ChemistryB,2000,104(15):3712-3720.
    [259] ONUFRIEV A, CASE D A, BASHFORD D. Effective Born radii in thegeneralized Born approximation: the importance of being perfect [J]. Journal OfComputational Chemistry,2002,23(14):1297-1304.
    [260] SHAO J, TANNER S W, THOMPSON N, et al. Clustering molecular dynamicstrajectories:1. Characterizing the performance of different clustering algorithms[J]. Journal of Chemical Theory and Computation,2007,3(6):2312-2334.
    [261] AMADEI A, CERUSO M A, DI NOLA A. On the convergence of theconformational coordinates basis set obtained by the essential dynamics analysisof proteins' molecular dynamics simulations [J]. Proteins: Structure, Function,and Bioinformatics,1999,36(4):419-424.
    [262] AMADEI A, LINSSEN A, BERENDSEN H J. Essential dynamics of proteins[J]. Proteins: Structure, Function, and Bioinformatics,1993,17(4):412-425.
    [263] BAKAN A, MEIRELES L M, BAHAR I. ProDy: protein dynamics inferredfrom theory and experiments [J]. Bioinformatics,2011,27(11):1575-1577.
    [264] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual moleculardynamics [J]. Journal of molecular graphics,1996,14(1):33-38.
    [265] S RENSEN J, HAMELBERG D, SCHI TT B, et al. Comparative MD analysisof the stability of transthyretin providing insight into the fibrillation mechanism[J]. Biopolymers,2007,86(1):73-82.
    [266] SERAG A A, ALTENBACH C, GINGERY M, et al. Arrangement of subunitsand ordering of β-strands in an amyloid sheet [J]. Nature Structural&MolecularBiology,2002,9(10):734-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700