城市污水生化处理出水回用于循环冷却水系统中缓蚀阻垢实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环冷却用水是工业用水的主要组成部分,开展污水回用于循环冷却水是节能降耗减排的重要手段。城市污水经二级生化处理后,具有水质水量稳定,水质组成简单的特点,可回用作循环冷却水。然而,城市污水生化出水中含有较高的Ca2+、Mg2+、S042-和HC03-等无机离子,以及少量的有机物。这些物质会加重循环冷却水系统设备表面的结垢和腐蚀问题。因此,如何缓解城市污水生化出水回用于循环冷却水系统的结垢和腐蚀问题是城市污水生化出水回用于循环冷却水的难点和关键。
     本论文在实际废水水质分析的基础上,针对城市污水生化出水回用作循环冷却水产生的结垢和腐蚀问题,系统的研究了城市污水生化出水中的无机离子和有机物对于循环冷却水系统结垢的影响。开发了适用于城市污水生化出水水质的低分子量水解聚马来酸酐(HPMA),优化出了三组分复合缓蚀阻垢剂低磷配方。主要研究内容如下:
     1、对实际水样进行水质分析,考察水样中无机离子和有机物对于结垢量的影响及对结垢颗粒形貌和晶型的影响,分析城市污水生化出水回用于循环冷却水对循环冷却水系统造成的结垢和腐蚀问题。
     2、基于城市污水生化出水水质,采用过氧化苯甲酰作为聚合反应的引发剂制备了聚羧酸型缓蚀阻垢剂低分子量水解聚马来酸酐(HPMA),当引发剂用量为单体重量的15%时,合成的HPMA在城市污水生化出水模拟废水水质条件下的阻垢性能最好,静态阻垢性能达到72%。采用凝胶色谱和傅里叶红外光谱分析了合成的HPMA分子量分别和官能团组成。合成的聚马来酸酐(PMA)的分子量集中分布在240~900g/mol,峰值分布在430g/mol左右。HPMA的平均分子量为625g/mol。将合成的低分子量HPMA与较大分子量组成的聚羧酸类缓蚀阻垢剂聚丙烯酸(PAA)一起,分别与有机膦类缓蚀阻垢剂羟基乙叉二膦酸(HEDP)、氨基三甲叉膦酸(ATMP)和2-磷酸基-1,2,4-三羧酸丁烷(PBTCA)进行了三组分复合缓蚀阻垢剂配方优化,得到了3个高性能三组分复合缓蚀阻垢剂优化配方。优化配方1组成为HEDP/HPMA/PAA=10/80/10,静态阻垢性能为80.6%,优化配方2的组成为ATMP/HPMA/PAA=10/5406/35.4,静态阻垢性能为79.5%,优化配方3的组成为PBTCA/HPMA/PAA=10/58.2/31.8,静态阻垢性能为74.3%。优化配方的静态阻垢性能高于相同用量条件下的单组份药剂。配方中各组分表现出了协同阻垢效应。
     3、本论文基于城市污水生化出水水质和循环冷却水系统工况条件,设计了适用于循环冷却水系统的动态阻垢性能评价方法。该方法既能反映缓蚀阻垢剂对Ca2+的稳定性能,也能反映缓蚀阻垢剂对结垢颗粒的分散性能。采用静态阻垢性能评价方法和动态阻垢性能测试方法对合成低分子量HPMA和3个三组分优化配方进行测试。结果显示,合成的低分子量HPMA和优化配方在用量10mg/L-30mg/L之间变化时,静态阻垢性能基本保持稳定,HPMA、优化配方1、优化配方2和优化配方3的静态阻垢效率分别达到72%、80.5%、79.5%和74.3%,四种缓蚀阻垢剂均表现出了阈值效应。而在动态性能评价方法下,合成的低分子量HPMA和3个三组分优化配方随着使用浓度在10mg/L-30mg/L之间增大,动态阻垢性能显著提高。在30mg/L用量条件下,合成的HPMA、优化配方1、优化配方2和优化配方3的动态阻垢性能分别达到95.6%、100%、98.2%和96.9%。结垢颗粒的微观形貌和晶型分析显示,开发的缓蚀阻垢剂可以使碳酸钙结垢颗粒的微观形貌和结晶晶型发生改变。合成的低分子量HPMA和优化配方可以使结垢颗粒呈现出具有椭圆边缘的颗粒状,颗粒的生长,颗粒的堆簇呈现出很多空隙。优化配方中的聚羧酸分子和有机膦分子可以影响碳酸钙结晶的不同生长方向和不同的结晶面,在对碳酸钙结晶过程的影响上表现出了协同作用。
     4、基于城市污水生化出水水质和循环冷却水工况条件,设计了适用于循环冷却水系统的动态缓蚀性能评价装置和方法,采用城市污水生化出水实际废水作为测试水样,考察了合成的低分子量HPMA和3个三组分优化配方对于碳钢的缓蚀作用。结果显示,HPMA对于该水质条件下的碳钢的缓蚀作用较小(低于20%)。而优化配方1、优化配方2和优化配方3的缓蚀效率分别达到55.5%、90.0%和71.4%。温度从40℃升高到60℃时,优化配方1、优化配方2和优化配方3的缓蚀效率分别下降不到3.45%、3.67%和3.94%。而浓缩倍数由1倍提高到4倍时,优化配方1、优化配方2和优化配方3的缓蚀效率分别下降近20.35%、18.77%和20.64%。采用交流阻抗谱分析结合电化学拟合分析了优化配方对该水质体系下碳钢的缓蚀作用机理。在优化配方1的作用下,腐蚀测试体系的膜阻抗和电荷转移阻抗分别增大为694.4Ω·cm2和292.2Ω·cm2(空白实验的膜阻抗和电荷转移阻抗分别为206.2Ω·cm2和269.1Ω·cm2),在优化配方2的作用下,腐蚀测试体系的膜阻抗和电荷转移阻抗分别增大为892.4Ω·cm2和1735Ω·cm2,在优化配方3的作用下,腐蚀测试体系的膜阻抗和电荷转移阻抗分别增大为568.2Ω·cm2和316.1Ω·cm2。优化配方中的有机膦分子与聚羧酸分子可以吸附在碳钢表面,形成致密的保护膜,从而降低碳钢的腐蚀速率。
With increasing shortages of freshwater, wastewater is now being recognized as a significant source of water for nonpotable uses. For recirculating cooling water systems, which are very important in a lot of industries, wastewater reusing as cooling water instead of fresh water will not only save a lot of fresh water resource but also reduce pollutant dischargement into the surface water system. Among different types of wastewater, secondary-treated municipal wastewater is of increasing interest, primarily because it holds promise as viable alternative source of cooling water in terms of quantity and proximity to existing and future cooling water exhausting industries (eg. Power plant). The primary challenges with secondary-treated municipal wastewater reuse for cooling arise from its low quality. The secondary-treated municipal wastewater usually contains kinds of cations including Ca+, Mg+, Na+and anions including HCO3-, SO42-, Cl-et al. In recirculating cooling systems, the water constituents become concentrated many times because of the evaporative loss of water. The elevated concentrations and high water temperature can cause severe mineral deposition and metal corrosion problems. In the present study, the effect of inorganic ions and organic maters on the mineral scale deposition was scientificly studied. It is indicated that Ca2+, Mg2+, HCO3-and SO42+showed strong effect on mineral scale deposition on stainless steel specimen. Increasing the ion concentration could make the mineral scale deposition problem much more severe. Insignificant effect of organic matter was detected. Based on the chemical composition of the secondary-treated municipal wastewater, low molecular weight Hydrolyzed polymaleic anhydride (HPMA) was synthesized. Based on the synthesized HPMA, Three component inhibitors including polyacrylic acid (PAA), and l-hydroxyethane-l,l-diphosphonic acid (HEDP) or Amino Trimethylene Phosphonic Acid (ATMP) or2-Phosphonobutane-1,2,4-Tricarboxylic Acid (PBTCA) was chosed to obtain3three-component mixture inhibitor formulations. The composition of formulation was HEDP/HPMA/PAA=10/80/10, ATMP/HPMA/PAA=10/5406/35.4, PBTCA/HPMA/PAA=10/58.2/31.8, respectively. The formulations showed much higher antiscale efficiency than the component at the same dosage.
     Based on the4times concentrated secondary-treated municipal wastewater, the synthesized HPMA and the three formulations were evaluated according to both the static scale deposition methods and the developed dynamic scale deposition methods. During the static scale deposition method, the synthesized HPMA and the three formulations showed stable inhibition efficiency (72%,80.5%,79.5%and74.3%, respectively) when the inhibitor concentration was in the range of10-30mg/L However, during the developed dynamic scale deposition method, the inhibition efficiency increased significantly with increasing the inhibitor concentration from10mg/L to30mg/L. The dynamic antiscale efficiency of the synthesized HPMA and the three formulations are all above95%, even upto100%.
     The micromorphology investigation and the crystal phase analysis of the particle precipitates indicated the synthesized HPMA and the three formulations showed strong effect on crystal growth and particle morphology of calcium carbonate during the scaling process in the recirculating cooling water system. The functional group of the Polycarboxylic acid and the organic phosphonate may react with different crystal faces and different direction of crystal growth. The two kinds of inhibitor together showed synergistic inhibition effect on mineral scale depositon.
     Using secondery-treated municipal wastewater, a dynamic corrosion test installation was set up to simulate the recirculating cooling water system. The three formulations showed excellent corrosion inhibition effect on20#carbon steel, especially formulation2with the efficiency of90%. The electrochemical impedance spectroscopy tests together with the fit results indicated that the inhibitors could adsorbed onto the surface of carbon steel to form a protective film.
引文
[1]江自生,韩买良,火电机组水资源利用情况及对策,华电技术,6(2008)1-5.
    [2]张彬,城市中水在电厂循环冷却水系统中的应用,科技创新与应用,21(2012)23.
    [3]赵强,城市污水回用技术在电厂的应用,内蒙古科技与经济,3(2009)191-192.
    [4]R.D. Vidic, Reuse of treated internal or external wastewaters in the cooling systems of coal-based thermoelectric power plants, Final Technical Report to US DOE/NETL DE-FC26-06NT42722 (2009).
    [5]EPRI, Use of Alternate Water Sources for Power Plant Cooling, Palo Alto, CA (2008).
    [6]P. Shakkthivel, T. Vasudevan, Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems, Desalination,197 (2006) 179-189.
    [7]M. Hosoz, H.M. Ertunc, H. Bulgurcu, An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower, Expert Systems with Applications, In Press, Uncorrected Proof.
    [8]I. Solmus, C. Yamall, B. Kaftanoglu, D. Baker, A. Caglar, Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles, Applied Energy,87 (2010) 2062-2067.
    [9]J.-H. Lim, J.-H. Jo, Y.-Y. Kim, M.-S. Yeo, K.-W. Kim, Application of the control methods for radiant floor cooling system in residential buildings, Building and Environment,41 (2006) 60-73.
    [10]H. Li, M.-K. Hsieh, S.-H. Chien, J.D. Monnell, D.A. Dzombak, R.D. Vidic, Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater, Water Research,45 (2011) 748-760.
    [11]R. Touir, N. Dkhireche, M. Ebn Touhami, M. Lakhrissi, B. Lakhrissi, M. Sfaira, Corrosion and scale processes and their inhibition in simulated cooling water systems by monosaccharides derivatives:Part I:EIS study, Desalination,249 (2009) 922-928.
    [12]H. Zhang, C. Dong, L. Bian, Q. Zhao, Experiment Study on Corrosion Control Using Coking Wastewater as Circulating Cooling Water, Earth Science Frontiers,15 (2008) 186-189.
    [13]I. Nishida, Y. Okaue, T. Yokoyama, The inhibition abilities of multifunctional polyelectrolytes for silica scale formation in cooling water systems:Role of the nonionic functional group, Journal of Colloid and Interface Science, In Press, Corrected Proof.
    [14]B. Wijesinghe, R.B. Kaye, C.J.D. Fell, Reuse of treated sewage effluent for cooling water make up:A feasibility study and a pilot plant study, Water Science and Technology,33 (1996) 363-369.
    [15]肖兴成,常春芝,姬雅红,污水回用作循环冷却水的缓蚀阻垢剂筛选,工业水处理,22(2002)42-44.
    [16]贾丰春,李自托,董泉玉,工业循环冷却水阻垢剂研究现状与发展,工业水处理,(2006)12-14.
    [17]Z. Shen, J. Li, K. Xu, L. Ding, H. Ren, The effect of synthesized hydrolyzed polymaleic anhydride (HPMA) on the crystal of calcium carbonate, Desalination,284 (2012) 238-244.
    [18]Y. Tang, W. Yang, X. Yin, Y. Liu, P. Yin, J. Wang, Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP, Desalination,228 (2008) 55-60.
    [19]A.L. Kavitha, T. Vasudevan, H.G. Prabu, Evaluation of synthesized antiscalants for cooling water system application, Desalination,268 (2011) 38-45.
    [20]H. Li, M.K. Hsieh, S.H. Chien, J.D. Monnell, D.A. Dzombak, R.D. Vidic, Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater, Water Research,45 (2011) 748-760.
    [21]A.G.I. Dalvi, M.N.K. Mohammad, S. Al-Sulami, K. Sahul, R. Al-Rasheed, Effect of various forms of iron in recycle brine on performance of scale control additives in MSF desalination plants, Desalination,123 (1999) 177-184.
    [22]A.G.I. Dalvi, N.M. Kither Mohammad, S. Al-Sulami, K. Sahul, R. Al-Rasheed, Role of chemical constituents in recycle brine on the performance of scale control additives in MSF plants, Desalination,129 (2000) 173-186.
    [23]M.A. Al-Sofi, O.A. Hamed, K. Bamardouf, A.G.I. Dalvi, H. Al-Washmi, M.N.M. Kither, Y. Al-Aseeri, Available safety margins of time and antiscalant dose rate, Desalination,134 (2001)241-247.
    [24]Z. Amjad, Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces: The influence of scale inhibitors, Journal of Colloid and Interface Science,123 (1988) 523-536.
    [25]Q. Yang, Y. Liu, A. Gu, J. Ding, Z. Shen, Investigation of Calcium Carbonate Scaling Inhibition and Scale Morphology by AFM, Journal of Colloid and Interface Science,240 (2001)608-621.
    [26]K.D. Demadis, E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, C. Mantzaridis, Industrial water systems:problems, challenges and solutions for the process industries, Desalination, 213(2007)38-46.
    [27]Y. Tang, W. Yang, X. Yin, Y. Liu, P. Yin, J. Wang, Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP, Desalination,228 (2008) 55-60.
    [28]J.E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers, Journal of Controlled Release,53 (1998) 119-130.
    [29]P. Shakkthivel, R. Sathiyamoorthi, T. Vasudevan, Development of acrylonitrile copolymers for scale control in cooling water systems, Desalination,164 (2004) 111-123.
    [30]P. Shakkthivel, T. Vasudevan, Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems, Desalination, 197(2006)179-189.
    [31]I. Nishida, Y. Okaue, T. Yokoyama, The inhibition abilities of multifunctional polyelectrolytes for silica scale formation in cooling water systems:Role of the nonionic functional group, Journal of Colloid and Interface Science,360 (2011) 110-116.
    [32]L. Ling, Y. Zhou, J. Huang, Q. Yao, G. Liu, P. Zhang, W. Sun, W. Wu, Carboxylate-terminated double-hydrophilic block copolymer as an effective and environmental inhibitor in cooling water systems, Desalination,304 (2012) 33-40.
    [33]F.I. Zubkov, E.V. Boltukhina, K.F. Turchin, R.S. Borisov, A.V. Varlamov, New synthetic approach to substituted isoindolo[2,1-a]quinoline carboxylic acids via intramolecular Diels-Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride, Tetrahedron,61 (2005) 4099-4113.
    [34]H.-L. Wu, C.-H. Wang, C.-C.M. Ma, Y.-C. Chiu, M.-T. Chiang, C.-L. Chiang, Preparations and properties of maleic acid and maleic anhydride functionalized multiwall carbon nanotube/poly(urea urethane) nanocomposites, Composites Science and Technology,67 (2007)1854-1860.
    [35]A. San, C. Alkan, A. Karaipekli, A. Onal, Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials, Energy Conversion and Management,49 (2008) 373-380.
    [36]C. Wang, S.-p. Li, T.-d. Li, Calcium carbonate inhibition by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor, Desalination,249 (2009) 1-4.
    [37]B. Senthilmurugan, B. Ghosh, S.S. Kundu, M. Haroun, B. Kameshwari, Maleic acid based scale inhibitors for calcium sulfate scale inhibition in high temperature application, Journal of Petroleum Science and Engineering,75 (2010) 189-195.
    [38]M.J. Garland, T.R.R. Singh, A.D. Woolfson, R.F. Donnelly, Electrically enhanced solute permeation across poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels:Effect of hydrogel crosslink density and ionic conductivity, International Journal of Pharmaceutics,406 (2011) 91-98.
    [39]B. Senthilmurugan, B. Ghosh, S. Sanker, High performance maleic acid based oil well scale inhibitors—Development and comparative evaluation, Journal of Industrial and Engineering Chemistry,17 (2011) 415-420.
    [40]W. Zhang, Z. Du, W. Wang, T. Wang, Synthesis and aggregation behavior of grafted maleic acid copolymers, Journal of Colloid and Interface Science,374 (2012) 187-196.
    [41]X. Guo, F. Qiu, K. Dong, X. Zhou, J. Qi, Y. Zhou, D. Yang, Preparation, characterization and scale performance of scale inhibitor copolymer modification with chitosan, Journal of Industrial and Engineering Chemistry 18(2012) 2177-2183.
    [42]M. Kitamura, M. Yoshimura, N. Kanda, R. Noyori, Asymmetric synthesis of p-hydroxy sulfonic acids by BINAP/Ru-catalyzed hydrogenation, Tetrahedron,55 (1999) 8769-8785.
    [43]Y. Zhang, J. Wu, S. Hao, M. Liu, Synthesis and Inhibition Efficiency of a Novel Quadripolymer Inhibitor, Chinese Journal of Chemical Engineering,15 (2007) 600-605.
    [44]M.K. Jensen, M.A. Kelland, A new class of hyperbranched polymeric scale inhibitors, Journal of Petroleum Science and Engineering,94-95 (2012) 66-72.
    [45]O.D. Linnikov, V.L. Podbereznyi, M.A. Belyshev, V.M. Balakin, V.S. Talankin, Inhibition efficiencies of scale formation by chemical additives, Desalination,74 (1989) 355-361.
    [46]J.E. Oddo, M.B. Tomson, The solubility and stoichiometry of calcium-diethylenetriaminepenta (methylene phosphorate) at 70° in brine solutions at 4.7 and 5.0 pH, Applied Geochemistry,5 (1990) 527-532.
    [47]R.G. Jonasson, K. Rispler, B. Wiwchar, W.D. Gunter, Effect of phosphonate inhibitors on calcite nucleation kinetics as a function of temperature using light scattering in an autoclave, Chemical Geology,132 (1996) 215-225.
    [48]F.H. Butt, F. Rahman, U. Baduruthamal, Evaluation of SHMP and advanced scale inhibitors for control of CaSO4, SrSO4, and CaCO3 scales in RO desalination, Desalination,109 (1997) 323-332.
    [49]E.J. Enyedy, I.M. Kovach, Modulation of human a-thrombin activity with phosphonate ester inhibitors, Bioorganic & amp; Medicinal Chemistry,5 (1997) 1531-1541.
    [50]I. Drela, P. Falewicz, S. Kuczkowska, New rapid test for evaluation of scale inhibitors, Water Research,32 (1998) 3188-3191.
    [51]J.S. Gill, A novel inhibitor for scale control in water desalination, Desalination,124 (1999) 43-50.
    [52]S.J. Dyer, G.M. Graham, Thermal stability of generic barium sulphate scale inhibitor species under static and dynamic conditions, Journal of Petroleum Science and Engineering,37 (2003) 171-181.
    [53]F. Jones, A. Stanley, A. Oliveira, A.L. Rohl, M.M. Reyhani, G.M. Parkinson, M.I. Ogden, The role of phosphonate speciation on the inhibition of barium sulfate precipitation, Journal of Crystal Growth,249 (2003) 584-593.
    [54]S.J. Dyer, C.E. Anderson, G.M. Graham, Thermal stability of amine methyl phosphonate scale inhibitors, Journal of Petroleum Science and Engineering,43 (2004) 259-270.
    [55]K.D. Troev,5-Application of H-Phosphonate Diesters and Their Derivatives, in: Chemistry and Application of H-Phosphonates, Elsevier Science Ltd, Amsterdam,2006, pp. 253-284.
    [56]N. Abdel-Aal, K. Sawada, Inhibition of adhesion and precipitation of CaCO3 by aminopolyphosphonate, Journal of Crystal Growth,256 (2003) 188-200.
    [57]K.D. Demadis, P. Baran, Chemistry of organophosphonate scale growth inhibitors: two-dimensional, layered polymeric networks in the structure of tetrasodium 2-hydroxyethyl-amino-bis(methylenephosphonate), Journal of Solid State Chemistry,177 (2004) 4768-4776.
    [58]E. Stamatakis, C. Chatzichristos, J. Sagen, A.K. Stubos, I. Palyvos, J. Muller, J.A. Stokkan, An integrated radiotracer approach for the laboratory evaluation of scale inhibitors performance in geological environments, Chemical Engineering Science,61 (2006) 7057-7067.
    [59]E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, K.D. Demadis, Environmentally benign chemical additives in the treatment and chemical cleaning of process water systems: Implications for green chemical technology, Desalination,210 (2007) 257-265.
    [60]A. Martinod, M. Euvrard, A. Foissy, A. Neville, Progressing the understanding of chemical inhibition of mineral scale by green inhibitors, Desalination,220 (2008) 345-352.
    [61]S.J. George, J. Sherbone, C. Hinz, M. Tibbett, Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function, Environmental Pollution,159 (2011) 2740-2749.
    [62]B.-R. Zhang, Y.-N. Chen, F.-T. Li, Inhibitory effects of poly(adipic acid/amine-terminated polyether D230/diethylenetriamine) on colloidal silica formation, Colloids and Surfaces A: Physicochemical and Engineering Aspects,385 (2011) 11-19.
    [63]D.J. Choi, S.J. You, J.G. Kim, Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,335 (2002) 228-235.
    [64]R.A. Gross, B. Kalra, Biodegradable polymers for the environment, Science,297 (2002) 803-807.
    [65]K.D. Demadis, E. Neofotistou, E. Mavredaki, M. Tsiknakis, E.M. Sarigiannidou, S.D. Katarachia, Inorganic foulants in membrane systems:chemical control strategies and the contribution of "green chemistry", Desalination,179 (2005) 281-295.
    [66]K.D. Demadis, A. Stathoulopoulou, Multifunctional, environmentally friendly additives for control of inorganic foulants in industrial water and process applications, Materials Performance,45 (2006) 40-44.
    [67]H.-Y. Li, W. Ma, L. Wang, R. Liu, L.-S. Wei, Q. Wang, Inhibition of calcium and magnesium-containing scale by a new antiscalant polymer in laboratory tests and a field trial, Desalination,196 (2006) 237-247.
    [68]E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, K.D. Demadis, Environmentally benign chemical additives in the treatment and chemical cleaning of process water systems: Implications for green chemical technology, Desalination,210 (2007) 257-265.
    [69]B. Akin, M. Oner, Y. Bayram, K.D. Demadis, Effects of carboxylate-modified, "Green" inulin Biopolymers on the crystal growth of calcium oxalate, Crystal Growth & Design,8 (2008) 1997-2005.
    [70]A. Martinod, M. Euvrard, A. Foissy, A. Neville, Progressing the understanding of chemical inhibition of mineral scale by green inhibitors, Desalination,220 (2008) 345-352.
    [71]F.M. Mahgoub, B.A. Abdel-Nabey, Y.A. El-Samadisy, Adopting a multipurpose inhibitor to control corrosion of ferrous alloys in cooling water systems, Materials Chemistry and Physics,120(2010) 104-108.
    [72]M.R. Choudhury, M.-K. Hsieh, R.D. Vidic, D.A. Dzombak, Corrosion management in power plant cooling systems using tertiary-treated municipal wastewater as makeup water, Corrosion Science,61 (2012) 231-241.
    [73]D.-J. Choi, S.-J. You, J.-G. Kim, Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems, Materials Science and Engineering:A,335 (2002) 228-235.
    [74]R. Touir, N. Dkhireche, M.E. Touhami, M.E. Bakri, A.H. Rochdi, R.A. Belakhmima, Study of the mechanism action of sodium gluconate used for the protection of scale and corrosion in cooling water system, Journal of Saudi Chemical Society.
    [75]N. Eldaker, Effect of Substituted BTA on the Anod Dissolution of Iron in H2SO4, Corrosion 37(1981)27-32.
    [76]L. Tommesani, G. Brunoro, A. Frignani, C. Monticelli, M. Dal Colle, On the protective action of 1,2,3-benzotriazole derivative films against copper corrosion, Corrosion Science,39 (1997) 1221-1237.
    [77]白雪,程世超,1,2,3-苯并三氮唑铜缓蚀剂的研究进展,化学工业与工程技术,6(2011)21-26.
    [78]王新龙,贾红兵,李玉桂,有机磷缓蚀剂研究进展,腐蚀与防护,8(2000)356-359.
    [79]A.C. Bastos, M.G.S. Ferreira, A.M. Simoes, Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc, Progress in Organic Coatings, 52 (2005) 339-350.
    [80]A.M. Simoes, J. Torres, R. Picciochi, J.C.S. Fernandes, Corrosion inhibition at galvanized steel cut edges by phosphate pigments, Electrochimica Acta,54 (2009) 3857-3865.
    [81]T.M.H. Saber, A.H. Salem, Inhibition of the corrosion of steel pipes carrying potable water:Ⅱ. Optimization of Ca2+ and HCO3- content in the presence of phosphate inhibitors, Desalination,93 (1993) 461-471.
    [82]M. Edwards, L. Hidmi, D. Gladwell, Phosphate inhibition of soluble copper corrosion by-product release, Corrosion Science,44 (2002) 1057-1071.
    [83]M.B. Valcarce, M. Vazquez, Phosphate ions used as green inhibitor against copper corrosion in tap water, Corrosion Science,52 (2010) 1413-1420.
    [84]G. Palaghias, The role of phosphate and carbonic acid-bicarbonate buffers in the corrosion processes of the oral cavity, Dental Materials,1 (1985) 139-144.
    [85]崔崇威,李绍峰,杨红,冯文涛,刘暘,焦雅吉,PBTCA. HEDP, ATMP缓蚀性能的理论研究,材料科学与工艺,6(2006)608-611.
    [86]赵维,夏明珠,雷武,王风云,有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究,中国腐蚀与防护学报,4(2002)217-220.
    [87]M. Vakili Azghandi, A. Davoodi, G.A. Farzi, A. Kosari, Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions, Corrosion Science,64 (2012) 44-54.
    [88]J. Saien, H. Delavari, A.R. Solymani, Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies, Journal of Hazardous Materials,177 (2010) 1031-1038.
    [89]N. Plesu, G. Ilia, A. Pascariu, G. Vlase, Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends, Synthetic Metals,156 (2006) 230-238.
    [90]L.D. Zhang, W.L. Liu, C.L. Xiao, J.S. Yao, Z.P. Fan, X.L. Sun, X. Zhang, L. Wang, X.Q. Wang, Preparation of poly (styrene)-b-poly (acrylic acid)/y-Fe2O3 composites, Journal of Magnetism and Magnetic Materials,323 (2011) 3087-3091.
    [91]J.E.P. da Silva, S.I.C. de Torresi, R.M. Torresi, Polyaniline/poly(methylmethacrylate) blends for corrosion protection:The effect of passivating dopants on different metals, Progress in Organic Coatings,58 (2007) 33-39.
    [92]J.E. Pereira da Silva, S.I. Cordoba de Torresi, R.M. Torresi, Polyaniline acrylic coatings for corrosion inhibition:the role played by counter-ions, Corrosion Science,47 (2005) 811-822.
    [93]A.M. Atta, O.E. El-Azabawy, H.S. Ismail, M.A. Hegazy, Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium, Corrosion Science,53 (2011) 1680-1689.
    [94]W.-Y. Shi, C. Ding, J.-L. Yan, X.-Y. Han, Z.-M. Lv, W. Lei, M.-Z. Xia, F.-Y. Wang, Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces, Desalination,291 (2012) 8-14.
    [95]M.A.S. Oliveira, J.J. Moraes, R. Faez, Impedance studies of poly(methylmethacrylate-co-acrylic acid) doped polyaniline films on aluminum alloy, Progress in Organic Coatings,65 (2009) 348-356.
    [96]K. Kamaraj, S. Sathiyanarayanan, S. Muthukrishnan, G. Venkatachari, Corrosion protection of iron by benzoate doped polyaniline containing coatings, Progress in Organic Coatings,64 (2009) 460-465.
    [97]B. Muller, I. Forster, W. Klager, Corrosion inhibition of zinc pigments in aqueous alkaline media by polymers, Progress in Organic Coatings,31 (1997) 229-233.
    [98]B. Muller, M. Schubert, Corrosion inhibition of copper and brass pigments in aqueous alkaline media by copolymers, Progress in Organic Coatings,37 (1999) 193-197.
    [99]N. Plesu, I. Grozav, S. Iliescu, G. Ilia, Acrylic blends based on polyaniline. Factorial design, Synthetic Metals,159 (2009) 501-507.
    [100]Y. Jianguo, W. Lin, V. Otieno-Alego, D.P. Schweinsberg, Polyvinylpyrrolidone and polyethylenimine as inhibitors for the corrosion of a low carbon steel in phosphoric acid, Corrosion Science,37 (1995) 975-985.
    [101]B. Muller, T. Schmelich, High-molecular-weight styrene-maleic acid copolymers as corrosion-inhibitors for aluminum pigments, Corrosion Science,37 (1995) 877-883.
    [102]K. Ikeda, S. Saitoh, Y. Suzuki, A. Tsubota, M. Kobayashi, I. Koida, M. Kobayashi, Y. Arase, K. Chayama, N. Murashima, H. Kumada, Effect of arterial administration of a high-molecular weight antitumor agent, styrene maleic acid neocarzinostatin, in embolization-resistant liver cancer, International Journal of Clinical Oncology,4 (1999) 148-155.
    [103]K. Ikeda, S. Saitoh, Y. Suzuki, A. Tsubota, I. Koida, M. Kobayashi, Y. Arase, K. Chayama, N. Murashima, H. Kumada, Effect of arterial administration of a high molecular weight anti-tumor agent, styrene maleic acid neocarzinostatin, for multiple small liver cancer-A pilot study, Journal of Gastroenterology,32 (1997) 513-520.
    [104]K. Ikeda, S. Saitoh, H. Kumada, Effect of arterial administration of a high molecular weight anti-tumor agent styrene maleic acid neocarzinostatin for multiple small liver cancer, Gan to kagaku ryoho. Cancer & chemotherapy,25 Suppl 1 (1998) 19-23.
    [105]A. ElSayed, A study of the inhibiting action of some polymers on the corrosion of iron in acidic media, Corrosion Prevention & Control,43 (1996) 27-34.
    [106]S. Patil, S.R. Sainkar, P.P. Patil, Poly(o-anisidine) coatings on copper:synthesis, characterization and evaluation of corrosion protection performance, Applied Surface Science,225 (2004) 204-216.
    [107]A. Guenbour, A. Kacemi, A. Benbachir, Corrosion protection of copper by polyaminophenol films, Progress in Organic Coatings,39 (2000) 151-155.
    [108]B. Trachli, M. Keddam, H. Takenouti, A. Srhiri, Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl, Corrosion Science,44 (2002)997-1008.
    [109]B. Trachli, M. Keddam, H. Takenouti, A. Srhiri, Protective effect of electropolymerized 2-mercaptobenzimidazole upon copper corrosion, Progress in Organic Coatings,44 (2002) 17-23.
    [110]D.P. Schweinsberg, G.A. Hope, A. Trueman, V. Otieno-Alego, An electrochemical and SERS study of the action of polyvinylpyrrolidone and polyethylenimine as inhibitors for copper in aerated H2SO4, Corrosion Science,38 (1996) 587-599.
    [111]邹鹏,王琼,聚天冬氨酸及其复配物阻垢缓蚀性能的研究,全面腐蚀控制,6(2012)39-41.
    [112]韶晖,冷一欣,聚天冬氨酸及其复配物对硫酸钙的阻垢性能,工业水处理,7(2003)30-32.
    [113]徐群杰,曹敏,聚天冬氨酸及其复配对白铜(B30)缓蚀作用的电化学研究,华东电力,3 (2007)13-15.
    [114]徐群杰,董孔祥,周国定,聚天冬氨酸和钨酸钠复配对模拟水中铜的缓蚀作用研究,腐蚀与防护,10(2005)415-417.
    [115]徐群杰,龚健,周国定,聚天冬氨酸和钨酸钠复配对模拟水中黄铜的缓蚀作用研究,华东电力,10(2005)15-17.
    [116]徐群杰,周国定,陆柱,聚天冬氨酸和钨酸钠复配对模拟水中白铜(B10)的缓蚀作用,精细化工,3(2006)290-293.
    [117]徐群杰,王伟,周国定,聚天冬氨酸和钨酸钠复配对氯化钠溶液中铜的缓蚀作用研究,材料保护,7(2006)51-54.
    [118]徐群杰,周国定,王会峰,蔡文斌,聚天冬氨酸和钨酸钠复配对3%NaCl溶液中白铜B10的缓蚀作用,电化学,1(2006)65-68.
    [119]林修洲,龚敏,环境友好型铜缓蚀剂研究进展,腐蚀与防护,5(2009)328-331.
    [120]W. Guo, H. Wang, Y. Shi, G. Zhang, Sonochemical degradation of the antibiotic cephalexin in aqueous solution, Water Sa,36 (2010) 651-654.
    [121]E. Gaggelli, N. Gaggelli, D. Valensin, G. Valensin, M. Jezowska-Bojczuk, H. Kozlowski, Structure and dynamics of the lincomycin-copper(II) complex in water solution by H-l and C-13 NMR studies, Inorganic Chemistry,41 (2002) 1518-1522.
    [122]S.P. Gandhi, S.J. Rajput, Study of Degradation Profile and Development of Stability Indicating Methods for Cefixime Trihydrate, Indian Journal of Pharmaceutical Sciences,71 (2009)438-U160.
    [123]A.L. Harvey, Natural products in drug discovery, Drug Discovery Today,13 (2008) 894-901.
    [124]L. Hu, S. Zhang, W. Li, B. Hou, Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater, Corrosion Science,52 (2010) 2891-2896.
    [125]G. Gece, S. Bilgic, Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media, Corrosion Science,51 (2009) 1876-1878.
    [126]G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corrosion Science,50 (2008) 2981-2992.
    [127]E.B. Grant, D. Guiadeen, E.Z. Baum, B.D. Foleno, H.Y. Jin, D.A. Montenegro, E.A. Nelson, K. Bush, D.J. Hlasta, The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors, Bioorganic & Medicinal Chemistry Letters,10 (2000) 2179-2182.
    [128]C. Kus, N. Altanlar, Synthesis of some new benzimidazole carbamate derivatives for evaluation of antifungal activity, Turkish Journal of Chemistry,27 (2003) 35-39.
    [129]R. Laucournet, C. Pagnoux, T. Chartier, J.F. Baumard, Catechol derivatives and anion adsorption onto alumina surfaces in aqueous media:influence on the electrokinetic properties, Journal of the European Ceramic Society,21 (2001) 869-878.
    [130]D. Landman, J.M. Quale, Management of infections due to resistant enterococci:a review of therapeutic options, Journal of Antimicrobial Chemotherapy,40 (1997) 161-170.
    [131]H.D. Lece, K.C. Emreguel, O. Atakol, Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors, Corrosion Science,50 (2008) 1460-1468.
    [132]A.A. Kyle, M.V. Dahl, Topical therapy for fungal infections, American Journal of Clinical Dermatology,5 (2004) 443-451.
    [133]K. Melkersson, E. Jansson, The atypical antipsychotics quetiapine, risperidone ziprasidone do not increase insulin release in vitro, Neuroendocrinology Letters,26 (2005) 205-208.
    [134]P. Lukkari, T. Nyman, M.L. Riekkola, Determination of 9 beta-blockers in serum by micellar electrokinetic capillary chromatography, Journal of Chromatography A,674 (1994) 241-246.
    [135]H. Lode, K. Borner, P. Koeppe, T. Schaberg, Azithromycin-Review of key chemical, pharmacokinetic and microbiological features, Journal of Antimicrobial Chemotherapy,37 (1996) 1-8.
    [136]D. Mareci, G. Nemtoi, N. Aelenei, C. Bocanu, The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva, European cells & materials,10 (2005) 1-7; discussion 1-7.
    [137]P.D. Lyne, Structure-based virtual screening:an overview, Drug Discovery Today,7 (2002) 1047-1055.
    [138]X. Liu, P.C. Okafor, Y.G. Zheng, The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives, Corrosion Science,51 (2009) 744-751.
    [139]A.J. Macleod, G. Digout, R.L. Ozere, C.E. Vanrooyen, H.B. Ross, Lincomycin-new antibiotic active against staphylococci+other gram-positive cocci-clinical+laboratory studies, Canadian Medical Association Journal,91 (1964) 1056-&.
    [140]P.H. Long, The clinical use of sulfanilamide sulfapyridine, sulfathiazole, sulfaguanidine, and sulfadiazine in the prophylaxis and treatment of infections, Canadian Medical Association Journal,44(1941)217-227.
    [141]P.S. McManus, V.O. Stockwell, G.W. Sundin, A.L. Jones, Antibiotic use in plant agriculture, Annual Review of Phytopathology,40 (2002) 443-+.
    [142]M.A. Naeem, A. Mahmood, S.A. Khan, Z. Shahiq, Development and Evaluation of Controlled-Release Bilayer Tablets Containing Microencapsulated Tramadol and Acetaminophen, Tropical Journal of Pharmaceutical Research,9 (2010) 347-354.
    [143]R. Mrozek-Lyszczek, Thermal investigations of cefadroxil complexes with transition metals-Coupled TG-DSC and TG-FT IR techniques, Journal of Thermal Analysis and Calorimetry, 78(2004)473-486.
    [144]I. Naqvi, A.R. Saleemi, S. Naveed, Cefixime:A drug as Efficient Corrosion Inhibitor for Mild Steel in Acidic Media. Electrochemical and Thermodynamic Studies, International Journal of Electrochemical Science,6 (2011) 146-161.
    [145]G.N. Mu, X.H. Li, Q. Qu, J. Zhou, Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution, Corrosion Science,48 (2006) 445-459.
    [146]Y. Nakagawa, S. Itai, T. Yoshida, T. Nagai, Physicochemical properties and stability in the acidic solution of a new macrolide antibiotic clarithromycin, in comparison with erythromycin, Chemical & Pharmaceutical Bulletin,40 (1992) 725-728.
    [147]M. Neill, J.W. Kazura, Effect of diethylcarbamazine in a murine model of brugia-malayi microfilaraemia, Bulletin of the World Health Organization,57 (1979) 329-330.
    [148]H. Nikaido, Multidrug efflux pumps of gram-negative bacteria, Journal of Bacteriology,178 (1996)5853-5859.
    [149]M. Nishida, Matsubar.T, T. Murakawa, Y. Mine, Y. Yokota, S. Goto, S. Kuwahara, Cefazolin, A new semisynthetic cephalosporin antibiotic, Journal of Antibiotics,23 (1970) 137-&.
    [150]A.C. Nicolescu, C. Mircioiu, Inhibition of a calcium-dependent cysteine protease by doxycycline, Farmacia,58 (2010) 136-144.
    [151]T.L. Oprea, Virtual screening in lead discovery:A viewpoint, Molecules,7 (2002) 51-62.
    [152]I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Adsorption Characteristics and Corrosion Inhibitive Properties of Clotrimazole for Aluminium Corrosion in Hydrochloric Acid, International Journal of Electrochemical Science,4 (2009) 863-877.
    [153]J.P. O'Callaghan, Evolution of a rational use of opioids in chronic pain, European Journal of Pain,5(2001)21-26.
    [154]I.B. Obot, N.O. Obi-Egbedi, Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition, E-Journal of Chemistry,7 (2010) 837-843.
    [155]T. Tuken, B. Yazici, M. Erbil, The effect of nicotinamide on iron corrosion in chloride solutions, Turkish Journal of Chemistry,26 (2002) 735-742.
    [156]M. Sisecioglu, M.T. Uguz, M. Cankaya, H. Ozdemir, I. Gulcin, Effects of Ceftazidime Pentahydrate, Prednisolone, Amikacin Sulfate, Ceftriaxone Sodium and Teicoplanin on Bovine Milk Lactoperoxidase Activity, International Journal of Pharmacology,7 (2011) 79-83.
    [157]S.M. Tamborim, S.L.P. Dias, S.N. Silva, L.F.P. Dick, D.S. Azambuja, Preparation and electrochemical characterization of amoxicillin-doped cellulose acetate films for AA2024-T3 aluminum alloy coatings, Corrosion Science,53 (2011) 1571-1580.
    [158]G. Gece, Drugs:A review of promising novel corrosion inhibitors, Corrosion Science,53 (2011)3873-3898.
    [159]B. Zhang, L. Zhang, F. Li, W. Hu, P.M. Hannam, Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water, Corrosion Science,52 (2010) 3883-3890.
    [160]吴耿,邱学青,楼宏铭,循环冷却水系统无磷缓蚀剂研究进展,腐蚀科学与防护技术,6(2004)371-374.
    [161]X. Ouyang, X. Qiu, H. Lou, D. Yang, Corrosion and scale inhibition properties of sodium lignosulfonate and its potential application in recirculating cooling water system, Industrial & Engineering Chemistry Research,45 (2006) 5716-5721.
    [162]N. Kladkaew, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Corrosion Behavior of Carbon Steel in the Monoethanolamine-H2O-CO2-O-2-SO2 System:Products, Reaction Pathways, and Kinetics, Industrial & Engineering Chemistry Research,48 (2009) 10169-10179.
    [163]A.F. Denzine, M.S. Reading, An improved, rapid corrosion rate measurement technique for all process environments, Materials Performance,37 (1998) 35-41.
    [164]雷武,夏明珠,王风云,冷却水系统中阻垢剂性能的评定方法,化工进展,4(2002)275-277.
    [165]S. Keysar, D. Hasson, R. Semiat, D. Bramson, Corrosion protection of mild steel by a calcite layer, Industrial & Engineering Chemistry Research,36 (1997) 2903-2909.
    [166]M.-K. Hsieh, H. Li, S.-H. Chien, J.D. Monnell, I. Chowdhury, D.A. Dzombak, R.D. Vidic, Corrosion Control When Using Secondary Treated Municipal Wastewater as Alternative Makeup Water for Cooling Tower Systems, Water Environment Research,82 (2010) 2346-2356.
    [167]M.-K. Hsieh, D.A. Dzombak, R.D. Vidie, Bridging Gravimetric and Electrochemical Approaches To Determine the Corrosion Rate of Metals and Metal Alloys in Cooling Systems:Bench Scale Evaluation Method, Industrial & Engineering Chemistry Research, 49(2010)9117-9123.
    [168]A. Morizot, A. Neville, T. Hodgkiess, Studies of the deposition of CaCO3 on a stainless steel surface by a novel electrochemical technique, Journal of Crystal Growth,198-199, Part 1 (1999)738-743.
    [169]N. Abdel-Aal, K. Satoh, K. Sawada, Study of the adhesion mechanism of CaCO3 using a combined bulk chemistry/QCM technique, Journal of Crystal Growth,245 (2002) 87-100.
    [170]S.P. Gopi, V.K. Subramanian, Polymorphism in CaCO3—Effect of temperature under the influence of EDTA(di sodium salt), Desalination,297 (2012) 38-47.
    [171]L. Yu, L. Liang, S. Liu, Y. Lv, J. Lin, H. Li, Cathodal polarization plus weighing to quickly evaluate scale inhibitors, Chemical Engineering Research and Design,89 (2011) 1056-1060.
    [172]张金钟,毛学强,刘万元,蒋吉强,杜磊,祝春,评价缓蚀剂性能方法的研究进展,化学工程与装备,12(2011)139-140.
    [173]M.R. Choudhury, M.-K. Hsieh, R.D. Vidic, D.A. Dzombak, Development of an Instantaneous Corrosion Rate Monitoring System for Metal and Metal Alloys in Recirculating Cooling Systems, Industrial & Engineering Chemistry Research,51 (2012) 4230-4239.
    [174]A.L. Kavitha, T. Vasudevan, H.G. Prabu, Evaluation of synthesized antiscalants for cooling water system application, Desalination,268 (2011) 38-45.
    [175]J.M. Didymus, P. Oliver, S. Mann, A.L. Devries, P.V. Hauschka, P. Westbroek, Influence of low-molecular-weight and macromolecular organic additives on the morphology of calcium-carbonate, J. Chem. Soc.-Faraday Trans.,89 (1993) 2891-2900.
    [176]D. Hasson, H. Shemer, A. Sher, State of the Art of Friendly "Green" Scale Control Inhibitors: A Review Article, Industrial & Engineering Chemistry Research,50 (2011) 7601-7607.
    [177]张建,李国威,朱彦荣,王桂良,聚环氧琥珀酸及其复配物的缓蚀性能研究,腐蚀科学与防护技术,2(2010)128-130.
    [178]王娴,苯并咪唑类缓蚀剂缓蚀机理以及研究趋势,清洗世界,6(2012)27-33.
    [179]N.K. Allam, E.A. Ashour, Electrochemical and stress corrosion cracking behavior of 67Cu-33Zn alloy in aqueous electrolytes containing chloride and nitrite ions:Effect of di-sodium hydrogen phosphate (DSHP), Materials Science and Engineering:B,156 (2009) 84-89.
    [180]D. Huang, J. Hu, G.-L. Song, X. Guo, Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg-10Gd-3Y-0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures, Electrochimica Acta,56 (2011) 10166-10178.
    [181]T.A. Markley, M. Forsyth, A.E. Hughes, Corrosion protection of AA2024-T3 using rare earth diphenyl phosphates, Electrochimica Acta,52 (2007) 4024-4031.
    [182]I.M. Zin, S.B. Lyon, V.I. Pokhmurskii, Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture, Corrosion Science,45 (2003) 777-788.
    [183]李燕,陆柱,钨酸盐缓蚀机理的研究进展,材料保护,11(2000)29-31.
    [184]S. Franz, S. Rammelt, D. Scharnweber, J.C. Simon, Immune responses to implants-A review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 32(2011)6692-6709.
    [185]H.S. Seo, Y.M. Ko, J.W. Shim, Y.K. Lim, J.-K. Kook, D.-L. Cho, B.H. Kim, Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization, Applied Surface Science,257 (2010) 596-602.
    [186]J. Yang, F. Wang, L. Fang, T. Tan, Synthesis, characterization and application of a novel chemical sand-fixing agent-poly(aspartic acid) and its composites, Environmental Pollution, 149(2007)125-130.
    [187]石文艳,夏媛,雷武,夏明珠,王风云,张其平,张跃华,5种氨基酸对铁缓蚀机理的分 子动力学模拟,中国腐蚀与防护学报,6(2011)478-482.
    [188]张伟,王超,康永,水溶性壳聚糖缓蚀剂缓蚀机理及其发展趋势,清洗世界,8(2011)32-39.
    [189]B.-J. Ni, R.J. Zeng, F. Fang, W.-M. Xie, G.-P. Sheng, H.-Q. Yu, Fractionating soluble microbial products in the activated sludge process, Water Research,44 (2010) 2292-2302.
    [190]G. Chen, Y. Zhang, X. Zhou, J. Xu, Synthesis of styrene-maleic anhydride copolymer esters and their surface enriched properties when blending with polyethylene, Applied Surface Science,253 (2006) 1107-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700