冷却水污垢对策评价与预测方法及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污垢是热的不良导体,它既是造成换热设备、流体机械能源浪费、环境污染的直接原因,也是严重威胁设备正常运行,降低设备利用率,引起巨大经济损失的重大诱因,因而成为各工业行业节能减排的主要目标。但鉴于污垢形成机理的极为复杂,其形成机理的研究目前还远远落后于实际应用的需求,直接研究和不断改进各种污垢对策的理论和技术,虽有治标不治本之憾,却可快捷地、至少局部满足节能减排的急需。本论文系基于作者参与“十一五”国家重点基础研究发展规划基金项目:《高能耗行业典型换热设备节能的先进理论与方法》之四“传热表面污垢生成机理与对策”[2007CB206904]的污垢对策评价和污垢特性预测部分的研究工作,将研究所得进行了较系统的总结而成。
     本论文的主要研究内容有:
     针对我国目前指导水处理剂阻垢性能评定的化工行业标准HG/T2160-1991—鼓泡法及其评定设备的不足,根据国外上世纪末提出的电导滴定法,研制了一种一体化智能型阻垢剂性能的快速评定装置。该装置基于微机技术应用平台,实现了水处理剂阻垢性能评定的全程自动化,通过检测结果的影响因素分析和实验条件优选,给出了实验室最佳测量条件,与现有各评定方法和设备相比,本仪器的精准度高、重复性好、评定快捷、操作简便、能耗小,有望成为鼓泡法评定设备的换代产品。
     根据碳酸钠溶液滴定氯化钙过程中溶液的光学特性,提出了基于透光率检测评定阻垢剂性能的方法,研制了集光电检测器、自动滴定控制、恒温控制和计算机一体化透光率智能检测分析评价装置,通过综合性能测试、影响因素分析和实验条件优选,给出实验室测量条件,为水处理剂阻垢效果评定提供了又一种新方法和实用装置。
     基于碳酸钙成垢过程动力学与电导滴定过程电导率随滴定时间变化特征的对比分析,拟定了一个碳酸钙成垢诱导期的确切定义,给出了钙离子和碳酸根离子浓度、成核速率和生长速率等参数的在线计算方法,通过电导率滴定法的静态、动态模拟实验证明了方法的可行性,为深入研究碳酸钙成垢诱导期的机理模型提供了新的简便、有效手段。
     为满足冷却水污垢特性预报的广泛需求,本文设计了以模拟管壳式冷却器为主要部件的动态模拟实验系统,进行指定工况和一定管材/水质配的动态模拟运行,选择与冷却水污垢特性相关性强的一组可测水质参数和模拟换热器运行工况参数为直(接检)测变量,以应用需要量大的污垢特性参数为目标(被估计)变量,利用人工智能算法建立两类变量的实验数据的定量关联式(数学模型),通过对典型工业冷却水的水样(松花江吉林市区段的水样)的连续监测和长达一年以上的实验数据处理、分析,来获取可信的水样污垢特性以相应水质参数和运行工况参数表述的数学模型。基于此法开发的污垢热阻、流动压降和腐蚀速率三个冷却水污垢特性参数为目标的污垢特性动态模拟在线预测系统,在实验验证了预测模型的重复性和设备的检测精确度后,可利用此模型和设备预测其他地域冷却水样的污垢特性,从而为水冷却器设计、管路阻力准确计算、泵的选型、阻垢缓蚀的优选提供可靠的污垢特性数据。鉴于预测系统尚未完成一个完整的运行周期,故本文只简述了预测方法和检测系统设计。
Fouling is a poor heat conductor. It is not only the result of energy waste of heat exchanger and fluid machinery and environmental pollution, but also is great harm on the equipment operation and the major incentives of reducing equipment utilization and causing heavy economic losses. Therefore fouling has become the main objectives of energy saving and emission reduction in industry. In view of the fouling mechanism complexity and the dissatisfaction with researching fouling, the meaning of the research in fouling monitoring technique and equipment is great. This work was supported by a grant from the Major State Basic Research Development Program of China (973 Program) (No.2007CB206904). The main studying contents include:
     In consideration of the deficiency of the traditional bubble test and manual conductometric titration, this study developed a new integrated intelligent instrument for rapid evaluation of the scale inhibitor efficiency based of the conductometric titration. It brought about automatically evaluation of the scale inhibitor efficiency with microcomputer. This paper analyzes the factors affecting detection results and optimizes experiment conditions based on a new integrated intelligent instrument for evaluating rapidly scale inhibitor performance. The instrument is high precision, good repeatability, quick-evaluation and easy-operation. It could meet the needs of the enterprises which exploit or utilize the scale inhibitor by means of the precision and rapid evaluating the scale inhibitor efficiency. This instrument may become the alternative suggestion of bubble test device.
     This study puts forward a new method evaluating rapidly the scale inhibitor efficiency by titration solution volume of the corresponding inflection point based on measuring transmittance as sodium carbonate titrating calcium chloride. A new integrated transmittance intelligent instrument is developed, including: photoelectric detector, automatic titration controller, temperature controller and computer. The optimal evaluating conditions are accompanied with analysing and optimizing influencing factors.
     Based on the comparative analysis of the essential characteristic of conductimetric titration curve with the calcium carbonate fouling process dynamic, this study proposed a precise definition for the calcium carbonate fouling induction period. The fouling induction period, Ca~(2+) and CO_3~(2-) concentration, nucleation rate, crystals growth rate and reaction order are determined by real time measuring titration conductivity. The results show that: the definition of the calcium carbonate fouling induction period is exact and easy detecting, the experimental unit for real-time monitoring fouling induction period and all above-mentioned parameters is convenient and feasible.
     In consideration of the feature predicting the cooling water fouling, this paper is designed to an dynamic experimental system simulating shell-and-tube heat exchanger. It can be used for monitoring water parameters, working conditions parameters and fouling characteristics parameters in the specified conditions. The quantitative relation of these monitoring parameters is established in the artificial intelligence algorithms. The typical industrial cooling water is continuously measured for more than a year in order to test the repeatability and precision of prediction model and the equipment, such as the water of songhua river in Jilin City. This mothed and equipment can be used for predicting or monitoring fouling thermal resistance of other geographical cooling water for the water cooler designing, accurately calculating the resistance of pipeline, pump selection and evaluating the scale inhibitor and corrosion. Due to the system unfinished a complete cycle, this paper only describes predicting method and testing system design.
引文
[1] Somerscales E F C. Fouling of Heat Transfer Surfaces: A Historical Review. Heat Transfer Engineering, 1990, 11(1):19~36.
    [2]杨善让,徐志明,孙灵芳.换热设备的污垢与对策(第二版),北京:科学出版社,2004.
    [3] Hewitt G F, Shires G L, Bott T R. Process Heat Transfer. Boca Raton: CRC Press, 1994.
    [4]顾维藻,神家锐,马重芳,等.强化传热.北京:科学出版社,1990.217~229.
    [5]节水型社会建设“十一五”规划.国家发展和改革委员会, 2006.
    [6]周本省.工业水处理技术.北京:化学工业出版社.2002.
    [7] Falko Weber, Rainer Alzinger. Ulrich maschke optimization potential for power plants generating electricity measures at the cold end. VGB Power Tech, 2005, 85(9): 84~87.
    [8] Steinhagen R, Steinhagen H M, Maani K. Problems and costs due to heat exchanger fouling in new zealand industries. Heat Transfer Engineering, 1993, 14(1):19~30.
    [9] Choi Dongjin, Jae Seung. Development of an environmentally safe corrosion, scale, and microorganism inhibitor for circulating cooling systems. Materials Science and Engineering, 2002,335:228~236.
    [10] Robert J.Ross,Kim C.Low,James E.Shannon.Polyaspartate scale inhibitors biodegradable alternatives to polyacrylate.Materials Performance, 1997,75(4): 52~57.
    [11]中华人民共和国化工行业标准. HG/T 2160-1991冷却水动态模拟试验方法.北京:中国标准出版社,1997.
    [12]张少峰,刘燕.换热设备防除垢技术.化学工业出版社,2003,6.
    [13] Knudsen J G. Fouling in heat exchangers. Heat Exchanger Design Handbook, Sec.3.17, Hemisphere, Washington D C, 1984.
    [14] Chenowth J M. Final report of the HTRI/TEMA joint committee to review the fouling section of the TEMA standards. Heat Transfer Engineering, 1990, 11(1):73~107.
    [15] Epstein N. Thinking about heat transfer fouling: A5×5 matrix. Heat Transfer Engr, 1983, 4(1):43~56.
    [16] Rohsenow W M.传热学手册.北京:科学出版社,1987. 402.
    [17] Stephan E Scholl. Use of operation data in fouling investigations. Understanding Heat Exchanger Fouling and Its Mitigation. New York, Begell House, Inc., 1997. 377~383.
    [18] Garrett-Price B A, Smith S A, Watts R L, et al. Fouling of heat exchangers,characteristics, cost, prevention, control and removal. New Jersey, Noyes Publications, Park Ridge 1985.
    [19] Bott T R. Fouling notebook. Institute of Chemical Engineers, 1990.
    [20] Euan F C. Somerscales. Mitigation of corrosion fouling. New York: Understanding Heat Exchanger Fouling and Its Mitigation,1999, 23~53.
    [21]赵本兴.换热器结垢原因分析及阻垢防腐蚀措施的设计.全面腐蚀控制, 2001, 11(1):34~39.
    [22] Klaren D G, Sullivan D W. Self-cleaning heat exchangers in foul water steam generators. proceedings of NHTC’00: 34th national heat transfer conference. Pittsburgh, 2000, NHTC2000-12020.
    [23] Muller-Steinhagen H,Malayeri M R,Watkinson A. Fouling of heat exchangers–new approaches to solve an old problem. Heat Transfer Engineering, 2005, 26(1):1~4.
    [24]杨邦朝,陈金菊.纳米技术在表面处理中的应用.表面技术,2003,32(3):60~61.
    [25]刘明言,Malayeri M.,Steinhagen Hans等.传热表面修饰防垢研究进展.中国工程热物理学会传热传质学会议论文集,2008.11.
    [26]刘明言,王红,王燕.表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展.化工进展,2007,26(3):442~447.
    [27] Santos Olga, Nylander Tommy, Rosmaninho Roxane, et al. Modified stainless steel surfaces targeted to reduce fouling-surface characterization. Journal of Food Engineering, 2004, 64(1): 63~79.
    [28] Rosmaninho Roxane, Santos Olga, Nylander Tommy, et al. Modified stainless steel surfaces targeted to reduce fouling-evaluation of fouling by milk components. Journal of Food Engineering, 2007, 80:1176~1187.
    [29] Santos Olga, Nylander Tommy, Schillén Karin, et al. Effect of surface and bulk solution properties on the adsorption of whey protein onto steel surfaces at high temperature. Journal of Food Engineering, 2006,73(2):174~189.
    [30] Rosmaninho Roxane, Melo Luis F. Calcium phosphate deposition from simulated milk ultrafiltrate on different stainless steel-based surfaces. International Dairy Journal, 2006,16:81~87.
    [31] Rosmaninho R., Melo L.F. Effect of proteins on calcium phosphate deposition in turbulent flow as a function of surface properties. Experimental Thermal and Fluid Science,2007,32: 375~386.
    [32] Rosmaninho R., Rocha F., Rizzo G. et al. Calcium phosphate fouling on TiN-coated stainless steel surfaces: role of ions and particles. Chemical Engineering Science, 2007, 62:3821~3831.
    [33] Rosmaninho R., Rizzo, G., Muller-Steinhagen H. et al. Deposition from a milk mineral solution on novel heat transfer surfaces under turbulent flow conditions. Journal of Food Engineering, 2008, 85(1):29~41.
    [34] Rosmaninho Roxane and Melo Luis F. Protein-calcium phosphate interactions in fouling of modified stainless-steel surfaces by simulated milk. International Dairy Journal, 2008,18(1): 72~80.
    [35] Saikhwan P., Geddert T., Augustin W., et al. Effect of surface treatment on cleaning of a model food soil. Surface & Coatings Technology, 2006, 201: 943~951.
    [36] Liu, W. Fryer, P.J. Zhang Z. et al. Identification of cohesive and adhesive effects in the cleaning of food fouling deposits. Innovative Food Science & Emerging Technologies, 2006, 7(4): 263~269.
    [37] Premathilaka1, S.S. Hyland1, M.M. Chen X.D. et al. Interaction of whet protein with modified stainless steel surfaces. Proceedings of ECI Fouling conference, 2007.
    [38] Ornhorst Antje, Mueller-Steinhagen Hans, Zhao Qi. Reduction of scale formation under pool boiling conditions by ion implantation and magnetron sputtering on heat transfer surfaces. Heat Transfer Engineering, 1999, 20(2):6~14.
    [39] Muller-Steinhagen Hans, Zhao Qi, Helali-Zadeh Abbas, et al. Effect of surface properties on CaSO4 scale formation during convective heat transfer and subcooled flow boiling. Canadian Journal of Chemical Engineering, 2000, 78(1):12~20.
    [40] Bohnet, M. Influence of the transport properties of the crystal/heat transfer surface interfacial on fouling behavior. Chemical Engineering and Technology, 2003, 26(10):1055~1060.
    [41] Markus F?rster, Matthias Bohnet. Modification of molecular interactions at the interface crystal/heat transfer surface to minimize eeat exchanger fouling. Int. J. Therm. Sci. 2000, 39, 697~708.
    [42] Zhao Q., Liu Y. and Wang S. Surface modification of water treatment equipment for reducing CaSO4 scale formation. Desalination, 2005, 180(1-3): 133~138.
    [43] Zhao Q., Liu Y. Investigation of graded Ni-Cu-P-PTFE composite coatings with antiscaling properties. Applied Surface Science, 2004,229(1-4):56~62.
    [44] Zhao, Q., Liu, Y., Wang, C. et al. Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Chemical Engineering Science, 2005, 60(17): 4858~4865.
    [45] Zhao Q. and Wang X. Heat transfer surfaces coated with fluorinated diamond-like carbon films to minimize scale formation. Surface and Coatings Technology, 2005,192(1): 77~80.
    [46] Ren Xiaoguang, Li Tiefeng, Zhao Qi. Effect of surface treatment on flow boiling heat transfer coefficient in CaSO4 containing water. Chinese J Chem Eng, 2006,14(1): 122~126.
    [47] Geddert T. Extending the induction period of crystallization fouling by surface coating. Proceedings of ECI Fouling conference, 2007.
    [48] Benzinger,W. Influence of surface materials on fouling process in microstructured heat exchanger. Proceedings of ECI Fouling conference, 2007.
    [49] Liu Ming-Yan, Wang Hong, Wang Yan. Enhancing flow boiling and antifouling with nanometer titanium dioxide coating surfaces. AIChE J., 2007, 53(5):1075~1085.
    [50] Liu Ming-Yan, Wang Yan, Wang Hong. Antifouling and enhancing pool boiling by TiO2 cating surface in nanometer scale thickness. AIChE J., 2007,53(12):3062~ 3076.
    [51]高明,孙奉仲,曲超,等.不同换热管表面抗垢性能的试验.山东大学学报(工学版), 2005, 35(5):33~36.
    [52] Cho Young I, Fan Chunfu. Use of electronic anti-fouling technology with filtration to prevent fouling in a heat exchanger. International Journal of Heat and Mass Transfer, 1998, 41:2961~2966.
    [53] Suitor J W, Mnnaer W J, Rtter R B. The history and status of research in fouling of heat exchangers in cooling water service. Canadian Journal of Chemical Engineering,1977,55:374.
    [54] Gill J S, Anderson C D, Varsanik R C. Mechanism of scale inhibitor by phosphonates. Proc. 44th int. Water Conf., Pittaburgh, PA(USA), 1983,4:26.
    [55] Mann S, Didymus J M. Morphological influence of functionalized and Non- functionalizedα,ω-dicarboxylates on calcite crystallization. Journal of Chemical Society, Faraday Transanction, 1990, 86(10):1873~1880.
    [56]陆柱,蔡兰坤,陈中兴,等.水处理药剂.北京:化学工业出版社, 2001:284~300.
    [57] Drew. Principle of water treatment new jersey. New York: Drew Chemical Corporation, 1979: 72~84.
    [58] Mark A N, Shamania A N, Vover V L. Biocial activity of steel by hacter. Neft Khoz, 1994 (1): 65~68.
    [59] Nikos S., Petros G.K. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, 1998,19:783~790.
    [60] Apostolis K., Nikos S. Effect of inorganic phosphate ions on the spontaneousprecip- itation of vaterite and on the transformation of vaterite to calcite. Journal of Crystal Growth, 1999,204:183~190.
    [61] Ogino T., Suzuki T., Sawada K. The rate and mechanism of polymorphic transform- ation of calcium carbonate in water. Journal of Crystal Growth,1990, 100:159~167.
    [62] Jeremy E.L., Jihui G., Steven J.S. Role of adsorption fractionation in determining the CaCO3 scale inhibition performance of polydisperse sodium polyacrylate. American Chemical Society, 2004, 54(9):128~135.
    [63] Amjad Z., Pugh J. In water soluble polymers: solution properties and applications. Plenum Press: New York, 1998:131~146.
    [64] Doherty W O S, Fellows C M, et al. Inhibition of calcium oxalate monohydrate by poly (acrylic acid) s with different end groups. Journal of applied Polymer Science, 2004, 91:2035~2041.
    [65] Akio Yuchi, Yasumasa Gotoh, Shinsuke Itoh. Potentiometry of effective concentration of polyacrylate as scale inhibitor. Analytica Chimica Acta. 2007, 547:199~203.
    [66] Masler, William F, Amjad, et al. Scale inhibition in water system. US, 4566973. 1986-01-28.
    [67]叶文玉,马新起,刘伟.磺化苯乙烯-顺丁烯二酸酐共聚物(SS/MA)的合成及其阻垢性能.精细化工, 1998,15(4):21~23.
    [68] Levi Y, Albeck S, et al. Evaluation of SHMP and advanced scale inhibitors for control of CaSO4, SrSO4 and CaCO3 scales in RO desalination. Journal of Europe Chemistry,1998, 4:389~396.
    [69] Hua T., Wentao M., Leilei W. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials, 2004, 25:3925~3929.
    [70] Malkaj P., Dalas E. Calcium carbonate crystallization in the presence of aspartic acid. Crystal Growth & Design, 2004,4(4):721~723.
    [71]韶晦,冷一欣.聚天冬氨酸及其复配物对硫酸钙的阻垢性能.工业水处理, 2003, 23 (7):30~33.
    [72]高书峰,黄勇,周涛,等.绿色阻垢剂环氧琥珀酸(钠)的合成工艺.高分子材料科学与工程, 2006,22(6) : 67~70.
    [73]孙海梅,郭崇洁,曾昭辉.一种天然阻垢剂阻垢及缓蚀性能的研究.工业水处理, 2000,20(5): 21~24.
    [74]解振华.加强环境保护增强可持续发展能力. http://news.xinhuanet.com/politics/ 2005-11/29/content_3850888.htm. 2005.
    [75] Cho Y I, Lane J, Kim W T. Pulsed-power treatment for physical water treatment. International Communications in Heat and Mass Transfer, 2005,32: 861~871.
    [76] Cho Y I, Lee S H. Reduction in the surface tension of water due to physical watertreatment for fouling control in heat exchangers. International Communications in Heat and Mass Transfer, 2005,32:1~9.
    [77]周本省.工业冷却水处理的物理方法及工程应用.化学工业出版社, 2008.
    [78]李鹰,郭虹.电子水处理器处理循环冷却水的原理和应用.同济大学学报,2000,28(1): 70~73.
    [79]全贞花,陈永昌,邢晓凯,等.高压静电抗垢强化传热实验研究.工程热物理学报, 2006, 27(6): 1035~1037.
    [80]孙晶辉,刘滨强.高压静电除垢技术在发电厂汽轮机凝汽器中的应用.电站系统工程, 2003,19(5):35.
    [81]宋卫锋,朱又春,肖云开,等.低压脉冲阻垢技术的试验研究.工业水处理,2003, 23(5):21~23.
    [82]刘运洁,王春明,全贞花,等.低压电子水处理方法的阻垢特性.工程热物理学报, 2009, 30(1):153~155.
    [83]许立国,贠吉玉.电子-化学法协同处理提高循环水浓缩倍率.工业水处理, 2009, 29(1): 46~48.
    [84] Nishida I. Precipitation of calcium carbonate by ultrasonic irradiation. Ultrasonics Sonochemistry, 2004, 11(6):423~428.
    [85] Dalas E. The effect of ultrasonic field on calcium carbonate scale formation. Journal of Crystal Growth, 2001,222(122):287~292.
    [86] Gogate P R, Aniruddha B. Sonochemical reactors: scale up aspects. Ultrasonics Sonochemistry, 2004,11(3~4).
    [87]丘泰球,向英,陆海勤,等.换热设备的超声防垢机理.华南理工大学学报(自然科学版), 2006, 34(3):23~28.
    [88] Hyun S J, Lee D R, et al. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic bibrations. Int. J. Heat Mass Transfer, 2005, 48: 703~718.
    [89]任晓光,李铁凤,宋永吉,等.传热系数法评定超声波的抗垢作用.过程工程学报, 2006,6(4):527~ 530.
    [90]黄玲,曹钢.超声波管道防垢器在空气压缩机级间冷却器中的应用.中外能源, 2008,13(2): 89~92.
    [91] Kim W T, Cho Y I. Experimental study of the crystal growth behavior of CaCO3 fouling using a microscope. Experimental Heat Transfer, 2000,13(2):153~161.
    [92] Sung H Lee. A study of physical water treatment technology to mitigate the mineral fouling in a heat exchanger. Michigan USA:Drexel University,2002.
    [93]克拉辛.水系统的磁处理.北京:宇行出版社,1988. 35~45.
    [94] Pach L. Duncans R R. Effects of a magnetic field on the precipitation of calcium carbonate. Journal of Materials Science Letters, 1996,15:613~615.
    [95] Deren E. Le tratitement des depots calcaires dans I, eau par leprocede CEPI L industrie. Les Nuisances, 1985,(91):49~52.
    [96] Wang Y, Babchin A J, Chernyi L T, et al. Rapid onset of calcium carbonate crystallization under the influence of a magnetic field. Water Research, 1997, 29(3):993~940.
    [97] Donaldson J D, Grimes S. Lifting the scales from our pipes. New Scientist, 1988, 117(18):43~46.
    [98] Sergej K, Ciril P. The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. Journal of Colloid and Interface Science, 2005, 281(1):377~388.
    [99] Botello-Zubiate M E, Alvarez A, et al. Influence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon Steel. Journal of Alloys and Compounds, 2004, 369(1-2):256~259.
    [100] Josep R, Judit M, Marius V S, et al. Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and mytilus edulis acidic organic proteins aqueous solutions. Journal of Crystal Growth, 2004, 262(1-2):543~553.
    [101]姜德宁,Sintayehu Zewdu1,曹继华,等.交变磁场对换热器阻垢效果的研究.中国给水排水, 2008, 24(7):57~59.
    [102]齐云格.电磁阻垢新技术研究.包钢科技,2008,34(3):17~19.
    [103]李梅,徐锐,曲久辉.直流脉冲电磁技术的抑垢效应.水处理技术,2006,32(1):58~61.
    [104]孙灵芳.新型污垢热阻在线监测装置的研发与应用研究:[博士学位论文].河北:华北电力大学, 2003.5:3~5.
    [105]中国石油化工总公司.冷却水分析和试验方法.北京.石油出版社.1989.371~374.
    [106]中华人民共和国化工行业标准. HG/T 2024-91水处理药剂阻垢性能测定方法-鼓泡法.北京:中国标准出版社,1997.
    [107] Drela I, Falewicz P, et al. New rapid test for evaluation of scale inhibitors. Wat Res, 1998, 32(10): 3188~3191.
    [108]张曙光,雷武,王金祥,等.电导法评定阻垢剂的阻垢性能.理化检验-化学分册, 2004,40(1):27~32.
    [109]张小霓,于萍,朱镭,等.溶液电导率法快速评定阻垢剂性能的试验研究.工业水处理,2003,23(8): 29~32
    [110]曹生现,杨善让,祝国强,等.一种智能型阻垢剂性能快速评定装置,分析化学,2007. 35(6):920~924.
    [111] Nancollas G H, Thomas F K. A controlled composition study of calcium carbonate crystal growth: the influence of scale inhibitors. Corrosion, 1981, 37(2):76~88.
    [112] Neville A., Morizot A.P. A combined bulk chemistry electrochemical approach to study the precipitation, deposition and inhibition of CaCO3. Chemical Engineering Science, 2000, 55: 4737.
    [113]雷武,赵志仁,夏明珠,等. pH位移法评定阻垢剂的阻垢性能.理化检验-化学分册. 2002, 38(3):125~ 127.
    [114]丁桓如,吴春华,龚云峰,等.工业用水处理工程.北京:清华大学出版社,2005.
    [115] Dalton T, Annunziata U, et al. Membrane autopsy helps to provide solutions to operational problems. Desalination, 2004,167:239~245.
    [116] Pahiadaki T, Tzotzi Ch, et al. An experimental study of CaCO3 scaling of RO and NF membranes. The IDA Conference on Desalination and Water Reuse, Singapore, 2005:11~16.
    [117]中华人民共和国化工行业标准.HG/T2160-1991冷却水动态模拟实验方法.北京:中国标准出版社,1997.
    [118]杨善让,孙灵芳,王中秋,等.冷却水处理技术阻垢效果的评价方法研究与实施.工业水处理,2000,20:137~139.
    [119] Ownes W L. A simple device for measuring fouling in a heat exchanger tube. Solar Energy Engineering, 1986,108(2):135.
    [120] Howarth J H, Glen N F, Jenkins A M. The use of fouling monitoring techniques. In: Bott T R, et al, eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc., 1999.309~314.
    [121] Hays GF, Knudsen J G. A description of three fouling monitors. In: Bott T R, et al, eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc., 1999.315~ 322.
    [122] Chandy R P, Scully P J, Piers E, et al. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(5):762~764.
    [123] Mairal A P, Greenberg A R. Real-Time Measurement of Inorganic Fouling of RO Desalination Membranes Using Ultrasonic Time-Domain Reflectometry. Journal of Membrane Science, 1999, 159:185~196.
    [124] Baughn J W, Yan X J. An insertion technique using the transient method with liquid crystals for heat transfer measurements in ducts. In: Rabas T J, Chenoweth J M, eds. Fouling and Enhancement Interaction ASME 1991, 164:77~83.
    [125] Glen F , Howarth J H, Jenkin A M. The use of fouling monitoring techniques. In: Bott T R, et al, eds. Understanding Heat Exchanger Fouling and Its Mitigation. New York:Begell House Inc., 1999.309~314.
    [126] Afgan N H, Carvalho M G. Expert system for fouling assessment of industrial heat exchanger. In: Panchal C B, et al, eds. Fouling Mitigation of Industrial Heat Exchanger Equipment. New York: Begell House Inc., 1995. 113~130.
    [127]林宗虎.强化传热及其工程应用.北京:机械工业出版社,1987.
    [128] Cho S M. Uncertainty analysis of heat exchanger thermal-hydraulic designs. Heat Transfer Engineering, 1987,8(2),63~74.
    [129] Crittenden B D, Khather E H. Economic fouling resistance selection// somerscales E F C, knusden J G fouling of heat transfer equipment. Washington D C: Hemisphere, 1981: 645~652.
    [130] Kern D Q, Seaton R E. A theoretical analysis of thermal surface fouling. Chem. Eng. Prog., 1959. 4:258~262.
    [131] Kern D Q, Seaton R E. Surface fouling: how to limit. Br Chem Eng., 1959, 55(6): 71~73.
    [132] Zubair SM, Sheikh A K, BudairM O et al. A maintenance strategy for heat-transfer subject to fouling a probalistic approach . ASME J Heat Transfer, 1997,119 (3):575~580.
    [133] Bott T R, Melo L F, et al. Understanding heat exchanger fouling and its mitigation. New York: Begell House, 1999. 393~400.
    [134] Zubair S M, Sheikh A K, et al. A risk based heat exchanger analysis subject to fouling part1: performance evaluation. Energy, 2000, 25(5):427~443.
    [135] Sylvain Lalot, Stéphane L. Online fouling detection in electrical circulation heaters using neural networks. Int J Heat and Mass Transfer, 2003,46(13):2445~2457.
    [136] PrietoM M, Montańés E, et al. Power plant condenser performance forecasting using a non-fully connected artificial neural network. Energy, 2001,26(1):65~79.
    [137] Markowski M, Urbaniec K. Optimal cleaning schedule for heat exchangers in a heat exchanger network. Applied Thermal Engineering, 2005,25:1019~1032.
    [138] Enrique Teruel, Cristobal Cortes, et al. Monitoring and prediction of fouling in coal-fired utility boilers using neural networks. Chemical Engineering Science, 2000,60:5053~5048.
    [139]徐志明,郭淑青,杨善让,等.基于概率分析的污垢模型.工程热物理学报,2003,24(2):322~324.
    [140]全贞花,陈永昌,马重芳.碳酸钙于换热表面结垢的传热与传质模型.中国科学E辑:技术科学, 2008,38(5):773~780.
    [141]樊绍胜.冷凝器污垢的灰色预测.电力科学与技术学报, 2007,22(2):12~15.
    [142]张巍,李冠球,张政江,等.基于普朗特类比的螺纹管内污垢分析模型.中国电机工程学报,2008, 28(35):66~70.
    [143]王雷,徐治皋,司风琪,等.基于支持向量回归的凝汽器清洁系数时间序列预测.中国电机工程学报, 2007,27(14):62~66.
    [144]侯迪波,杨丽明,周泽魁.基于模糊神经网络的周期性结垢预测方法研究.浙江大学学报, 2004,38(3):307~311.
    [145]冷学礼,田茂诚,潘继红,等.渐近线型污垢生长的参数特性及测量方法.热能动力工程, 2008,23(3): 278~280.
    [146]吴双应,苏畅,李友荣,等.基于热力学第二定律的换热器最佳清洗周期的确定.化工学报, 2009, 60(2):279~286.
    [147] Smith G C. Heterogeneous nucleation of CaSO4 : [Ph. D. Dissertation]. Michigan: University of Michigan, 1965.
    [148] Banchero J T, Gordon K F. Nucleation of calcium carbonate in solution at different velocity. Amer Chem Soc Adv Chem Ser, 1960, 27:105.
    [149] Rogues H, Girou A. Nucleate time of calcium carbonate on different materials. Water Res,1974,8:907.
    [150] Troup D H, Richardsong A. Induction period of calcium carbonate on different materials. Werkstofle und Korrosion, 1978,29:312.
    [151] Pankin B H, Adamsonw L. Adhesion of fouling on surfaces with different finishes. Desalination, 1973,13:63.
    [152] Lzumi K, Tabahashi S, Sawa T. Deposits of calcium carbonate on surfaces with different finishes. Proceedings of 6th International Symposium Fresh Water from the Sea. Las Palmas: Athens, 1978,201.
    [153] F?erster M., Augustin W., Bohnet M. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chemical Engineering and Processing, 1999, 38(4-6): 449~461.
    [154] Zhao Q. Effect of surface free energy of graded NI-P-PTFE coatings on bacterial adhesion. Surface &Coatings Technology. 2004, 185:199~204.
    [155] Liu Y, Zhao Q. Influence of surface energy of modified surfaces on bacterial adhesion. Biophysical Chemistry, 2005,117:39~45.
    [156]张仲彬,徐志明,张兵强,等.影响换热面结垢诱导期的表面特性研究.节能技术,2008,26(1): 15~18.
    [157]徐志明,邱振波,张仲彬,等.钛管CaCO3污垢特性的实验研究.热能动力工程, 2008,23(5): 523~526.
    [158]鲍其鼎.估量冷却水成垢的新模式.化工学报,1985,(1):78~84.
    [159]刘天庆,王兴海.碳酸钙在铜基加热表面上结垢诱导期的研究.大连理工大学学报,1999, 39(3):400~404.
    [160]杨庆峰,顾安忠,丁洁,等.换热面上碳酸钙的结垢行为及垢形.化工学报,2002,53(9):924~930.
    [161]昝成,史琳,欧鸿飞,等.温度及流速对板式换热器内城镇二级出水结垢特性的影响.清华大学学报(自然科学版),2009,49(2):240~243.
    [162]邢晓凯,马重芳,陈永昌,等.溶液pH值对碳酸钙结垢的影响.石油化工设备, 2004, 33(5):11~14.
    [163]承慰才,王中甲,孙墨杰.电厂化学仪表.北京:中国电力出版社, 1998.
    [164]王大珩,丁先华.现代仪器仪表技术与设计.北京:科学出版社, 2002:181~182.
    [165]曹生现.高灵敏激光传感器及电厂痕量硅分析法的研究:[硕士学位论文].吉林:东北电力学院,2002: 1~3.
    [166] Gregory J, Nelson D M. A new optical method for flocculation monitoring. Solid-liquid Separation. Chichester: Eillis Horwood, 1984:172~182.
    [167]李圭白.高浊度水透光率脉动单因子絮凝投药控制方法研究.给水排水,1992,(6): 4~7.
    [168]张青,吴文辉.临界pH在阻垢剂研究中的应用.工业水处理, 1997, 17(1):33~35.
    [169]徐寿昌.工业冷却水处理技术.北京:化学工业出版社, 1984.
    [170]周柏青,夏桓桓,姬晓慧,等.表面活性剂对HPMA阻垢分散性能的影响.水处理技术,2006, 32(9):73~75.
    [171]周柏青,徐厚道,李芹,等.反渗透系统专用阻垢剂的评价方法.华北电力技术, 2005, (4):43~46.
    [172]刘栋良,杨庆峰,苏浩,等.部分排水法快速评价阻垢剂的CaSO4阻垢性能.环境科学与技术, 2008,31(7):82~85.
    [173]陆杰,王静康.普鲁卡因青霉素的结晶动力学.高校化学工程学报, 1999,13(5): 403~407.
    [174] Randolph A D, larson M A. Theory of particulate process. New York: Academic Press, 1971.
    [175]刘秉文,王静康,张纲,等.诱导期法对溶液初级成核的研究.天津大学学报,2003, 36(5): 553~556.
    [176]丁绪维,谈遒.工业结晶.北京:清华大学出版社,1985. 122~125.
    [177]陆九芳.分离过程化学.北京:清华大学出社,1993. 232.
    [178]龙荷云.循环冷却水处理.南京:江苏科学技术出版社,1984. 205~208.
    [179] Xyla A. The mechanisms of crystallization and transformation of calcium carbonate, colloid and surfaces,1991,53(5):241
    [180] G H.Nancollas. A controlled composition study of calcium carbonate crystal growth: theinfluence of scale inhibitors. Corrosion NAC, 1981,37(2):76~81.
    [181]周利民.添加剂对硫酸钙结晶过程的影响.天津轻工业学院,2000,12:11~18.
    [182]张克从,张乐惠.晶体生长.北京:科学出版社,1981.
    [183]叶文玉.水处理化学品.北京:化学工业出版社,2002. 47~48.
    [184] A Neville, A P Morizot. A combined bulk chemistry/electrochemical approach to study the precipitation deposition and inhibition of CaCO3. Chemical Engineering Science, 2000,55:4737~ 4743.
    [185]姚连增.晶体生长基础.合肥:中国科学技术大学出版社.1995.
    [186]张俐.均一文石相碳酸钙晶须的制备与生长机理研究.四川大学,2002,4:13~16.
    [187] John L .Wray, Farrington Daniels. Precipitation of calcite and aragonite. Journal of the American Chemical Society. 1997,79(7):2031~2034.
    [188] Kinsman David J. Holland Heinrich D. Coprecipitation of cations with calcium carbonate coprecipitation of strontium(Ⅱ) with aragonite between 16 and 96℃. Geochim Acta, 1996,33(l):l~17.
    [189]翟祥华.评定阻垢剂性能的电化学方法.水处理技术, 2004,30(6):375~377.
    [190]王正烈,周亚平.物理化学.北京:高等教育出版社(下册,第四版),2001.,256.
    [191] Gouyet J F. Physics and fractal structures. MASSON, Springer, 1996.
    [192]宋世谟,王正烈,李文斌,等.物理化学.北京:高等教育出版社(下册,第三版),1994. 342.
    [193]林培滋,黄世煜,初惠萍,等.碳酸钙结垢及聚合物的影响研究.石油与天然气化工, 1997,26:232~239.
    [194]林培滋,黄世煜,初惠萍,等.温度对碳酸钙结垢过程的影响.石油与天然气化工,1999,28:128~129.
    [195] Taborek J, et al. Fouling: The major unresolved problem in heat transfer. Chem Eng Progress, 1972,68(2):59~68.
    [196] Garside J, et al. Measurement of crystal growth rates. European Federation of Chemical Engineering-Working Party on Crystallization Germany. 1990,12(1):136~143.
    [197] Tavare N S. Batch crystallizers. Rev Chem Engng, 1991,7:312~355.
    [198] Aoun M, et al. A simultaneous determination of nucleation and growth rates from batch spontaneous precipitation. Chemical Engineering Science, 1999,54:1161~1180.
    [199]李广兵,方键,徐敬,等.水垢成垢诱导期机理研究.同济大学学报, 2000,28(5):555~ 559.
    [200]方健.电导率监测在研究碳酸钙水溶液析晶过程中的应用.工科物理, 2000,10(4):41~45.
    [201]辛厚文.非线性化学.合肥:中国科学技术大学出版社,1999.212~213.
    [202]中国电力企业联合会标准化部.水质监测规范SD 127~84.北京:中国电力出版社,1998.90 ~128.
    [203]国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社(第四版).1998.90~128.
    [204]火力发电厂水汽试验方法标准汇编编写组.火力发电厂水汽试验方法标准汇编.北京:中国标准出版社.2006.
    [205] Skillman H F, McDonald J P Jr, et al. A simple accurate fast method for calculating calcium sulfate solubility in oilfield brine. API Lubbock Texas, 1969,3:12~141.
    [206] Jacques D F, Bourland B I. A study of solubility of strontium sulfate. SPE, 1983, 123(2):292~300.
    [207] Oddo J E, Tomson M B. Why scale forms and how predict it. SPE 2170, 1994:4753.
    [208] Oddo J E, Tomson M B. Simplified CaCO3 saturation at high temperatures and pressure in brine solution. JPT, 1982:77~80.
    [209]南开大学分析化学教研组.离子平衡及其数学.天津:南开大学出版社, 1989.301~303.
    [210]王睿,杨晓静,林昭华,等.循环水系统CaCO3结垢速率的理论预测.石油学报,2002,18(1): 72~77.
    [211]张家骅,齐连惠.火电厂干灰湿排系统结垢影响因素与结垢预测的人工神经网络方法研究.电力环境保护,1995,11(4):37~43.
    [212]付亚荣,王开炳,王敬缺,等.神经网络用于油田地面集输管道结垢预测.西南石油学院学报, 1999,21(2):68~69.
    [213] Schen,Billings S A,et al. Non-linear system identification using neural networks. Int J Control,1990,51(6):1191~1214.
    [214]袁曾任.人工神经元网络及其应用.北京:清华大学出版社,2000.
    [215]曹楚南.腐蚀电化学原理.北京:化学工业出版社,1985.172~185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700