不溶性催化电极与电催化反应器的制备及其对废水中有机物、菌藻和纤维素类物质的催化降解作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国的经济发展、人口增加,环境污染、能源紧缺成为当前人类面临的严重问题。电催化水处理技术由于具有清洁、无二次污染、氧化彻底等优点而受到科学工作者的关注,成为解决环境污染、能源紧缺的新的途径。电催化技术的核心在于功能电极材料的研制,高性能电极材料的研究成为电化学科学的前沿课题。目前应用最广泛、性能较高的电极材料仍然是钛基形稳阳极,但是由于钛金属较为昂贵,限制了钛基形稳阳极在氯碱工业以外的其它行业的应用。本工作采用不锈钢作为电极的基体金属,制备不锈钢基不溶性催化阳极,并将其应用于废水中有机物和菌藻的去除;并对钛基形稳阳极进行改性研究,将其应用于木质纤维素电催化降解。
     用溶胶-热分解的方法制备了不锈钢基SnO2-CeO2阳极,电极制备的优化条件为:涂刷次数20次,烘干温度100℃,热氧化气氛为空气,温度550℃,时间60min。经扫描电镜表征,所制得的电极催化涂层呈现形稳阳极特有的“泥裂”形貌。涂层无纵向贯穿的裂纹,与基体结合紧密。制备的SnO2-CeO2电极的溶胶及其热分解生成的涂层均具有致密的结构,有效阻止空气中的O2到达不锈钢基体,防止制备过程中不锈钢基体氧化腐蚀、保证了SnO2和SnO2-CeO2膜与基体紧密结合。循环伏安测试表明不锈钢基SnO2-CeO2电极具有良好的电化学稳定性,析氧电位高(1.6 V vs.SCE),具有优良的抗氧化能力。采用不锈钢基SnO2-CeO2电极作为阳极,电催化氧化处理常规化学絮凝法处理效果较差的印染工业废水,5 V电压下,电催化2 min,色度去除率达到92.8%, COD去除率达到58.2%,从而证明该电极具有优异的电催化氧化性能。
     采用不锈钢基SnO2-CeO2电极极作为阳极,不锈钢电极作为阴极,对模拟抗生素废水进行降解研究,结果表明降解效果显著。在5V电压下电催化氧化5min,COD去除率达到21.3%,氧化20min,去除率达到33.2%;确定最佳的电极间距为10mm。采用水杨酸作为羟基自由基的捕捉剂,验证了电催化过程中有羟基自由基生成,并由此可以证明电催化降解有机物主要是由于产生具有强氧化性的羟基自由基。且不锈钢基SnO2-CeO2电极对青霉素的降解过程遵循表观一级反应动力学规律。针对不锈钢电极以及不锈钢基涂层电极在电催化氧化降解有机物过程中出现的与降解效果密切相关的特征电位,开发了特征电位跟踪系统。该系统能够有效追踪特征电位,并通过信号输出控制电催化电源的工作参数输出,有效保证电催化反应始终处于最佳工作状态。
     相同条件下添加三维粒子电极提高电催化降解对模拟抗生素废水COD的去除率3.3至6.8个百分点。对作为三维粒子电极的活性炭进行饱和吸附-电催化氧化再生研究,结果表明电催化氧化对经吸附饱和的活性炭粒子再生效果显著。3V电压下仅电催化氧化3 min,活性炭再生率即达33%,电催化10min,再生率达到50%。而5V电压下仅氧化3分钟,再生率即达53%。而在5V电压下,电催化氧化15 min,对于经12次吸附饱和并电催化再生的活性炭的再生率仍然达到78%。由此得出结论,用于电催化氧化反应的粒子电极,在处理有机废水的过程中,在持续的电场作用下,粒子电极表面及内部孔道能够持续得以氧化再生。
     采用不锈钢基SnO2-Ce02电极极作为阳极,不锈钢电极作为阴极,对高浓度含菌废水进行灭菌和去除钙镁离子研究。发现电催化氧化具有优异的灭菌效果,在3V电压下,电催化5min,灭菌率已达89.65%。并且灭菌率随着电压的升高而迅速提高,当电压为5V时,电催化5min,灭菌率即达到99.17%。经过电催化灭菌的模拟循环冷却水放置2天后细菌总数仍保持在较低水平(小于原水1%),放置4天细菌数仍未超过原水细菌数。电催化处理同时具有去除水中钙镁离子的功能,在3V下对总硬度为4mmol/L的模拟废水进行电催化处理30min,总硬度去除率达到50.8%,去除效果显著。
     制备钛基SnO2-CeO2电极,并将其作为阳极和阴极材料,首次将电催化引入纤维素水解过程,利用电催化的氧化性能提高纤维素的水解产率,提高降解速率。为了便于木质纤维素的溶解,提高木质纤维素的降解效果,采用两步酸法,即先将木质纤维素进行浓酸水解,之后再稀释进行电催化稀酸水解。木质纸纤维在浓酸水解最佳的反应温度为50℃,反应时间15min,液固比2:1为最佳液固比。稀酸条件下电催化降解纤维素最佳硫酸浓度为3%,电压4V,反应时间为60mmin。在此条件下获得的还原糖得率为51.7%,已超过直接水解2h的得率。木质纤维素在水解前后的SEM和XRD测试表明电催化能够有效破坏木质纤维素的晶体结构,有效提高木质纤维素的水解速度和还原糖得率。
     设计并制作单台处理能力为40m3/d的电催化废水处理反应器,并将其应用于电催化降解印染废水中试现场处理研究,对于COD值在200mg/L以下的经过生化处理的印染废水尾水,仅处理5min,废水的COD即可达到国家一级排放标准(<100mg/L),吨水能耗仅为0.9KW·h-1.3KW·h;对于COD值大于2000mg/L的未经生化处理的印染废水原水和化工废水,处理5min,COD去除率达到35%以上,显示了较高的去处效率,能量消耗低、具有良好的经济价值和应用前景。
With economic development, population growth and environmental pollution, energy shortage has become serious problems for humanity to face in the world. Electro-catalytic oxidation technology of wastewater has been concerned by scientists due to its cleaning, no secondary pollution, oxidation and other advantages. And this technology is one of new methods to resolve environmental pollution and energy shortage. The preparation of electro-catalytic function electrode materials is the core and cutting-edge issue of electro-catalytic technology. Currently dimensionally stable anode (DSA) based on Ti is the most widely used and high performance electrode material in the world. But titanium is very expensive, which limits DSA electrode been used in the other fields except chlor-alkali industry. This work involves the preparation of insoluble anode which based on stainless steel (SS), and the modification of DSA electrode based on titanium, and electro-catalytic degradation of organic matter, bacteria,algae,and lignocellulose by using these electrodes.
     The SnO2-CeO2 on stainless steel (SS/SnO2-CeO2) was prepared by high temperature thermal decomposition. The experimental results show that the optimum conditions for preparing the electrodes as followed:the coating needs to be brushed 20 times, drying temperature is 100℃, thermal decomposition temperature and time is 550℃and 60 min in air. Characterized by scanning electron microscopy, though the prepared electrodes show the unique "mud crack" look for DSA electrodes, cracks are very shallow and coating closely attaches to the substrate. The structure of sol and coating is very compact and effectively prevents O2 to reach and oxidize stainless steel substrate in the process of thermal decomposition. CV analysis shows that the SS/SnO2-CeO2 electrode behaves high oxygen evolution potential (1.6V vs. SCE), good electrochemical stability, and excellent antioxidant. SS/ SnO2-CeO2 electrodes were used as anodes to oxidize a dying wastewater which was difficult to treat with qualified by conventional chemical flocculation, and the results showed color removal of 92.8% and COD removal of 58.32% with 5V voltage in 2 min, which proved the electrode had excellent performance of electro-catalytic oxidation.
     When SS/SnO2-CeO2 electrodes were used as anodes and SS as cathodes to oxidize activated carbon which saturated adsorption by phenol, the results showed the regeneration rate was 33% with only 3V voltage in 3min, and the recycling rate reached 53% with 5V in 3min. The regeneration rate of activated carbon which was saturated adsorption and oxidizing 12 times was activated carbon which was saturated adsorption and oxidizing 12 times was still 78%. At the same time it can be concluded that the surface and internal of particle electrode can continue to be recycled with effect of continuous electric field during electro-catalytic oxidation of organic wastewater.
     When SS/SnO2-CeO2 electrodes were used as anodes and SS as cathodes to oxidize simulated antibiotic wastewater, the results showed that COD removal of 24.1% with using particle electrode under 5V in 5min, and the COD removal reached to 38.7% for oxidation 10min. In addition, the optimal electrode spacing was 10mm. It was verified that there were hydroxyl free radicals generated in the electro-catalytic process by using salicylic acid as the capture agent. So organic was degraded mainly by hydroxyl free radicals in the electro-catalytic process.
     When SS/SnO2-CeO2 electrodes were used as anodes and SS as cathodes to oxidize high concentrations of bacterial wastewater, the results displayed that sterilization rate reached 89.65% with only 3V in 5min. The sterilization rate increased rapidly with the voltage increase, when the voltage was 5V,the sterilization rate had reached 99.17% for 5 min. The total number of bacteria remained at low levels(less than 1% of the raw water) for 2 days after electro-catalytic sterilization, and the total number of bacteria still was not more than the number of the raw water. Calcium and magnesium can be removed by electro-catalysis, too. The total hardness removal rate reached 50.8% for total hardness 4 mmol/L water with 3V in 30min.
     A system of tracking characteristic potential was developed. The characteristic potential can be found in the electro-catalytic process by using SS and coating electrodes on SS. The system can track the characteristic potential effectively, control the operating parameters of electro-catalytic power output, and ensure that catalytic reaction always in the best working condition.
     Ti/SnO2-CeO2 electrode was prepared and used as anode and cathode to degrade cellulose and increase the hydrolysis yield. Two-step acid method was used to increase the dissolution and degradation rate of lignocellulose. Lignocellulose was concentrated acid hydrolysis and then diluted to electro-catalytic degaration. The optimum condition of corrugated paper fiber concentrated acid hydrolysis is:50℃,15min, the ratio 2:1 of liquid volume to solid weight. And the optimum condition of electro-catalytic degradation cellulose in dilute acid is:3% sulfuric acid concentration,4V voltage,60min. The reducing sugar yield is 51.7% and more than the yield of direct hydrolysis for 2 hours. SEM and XRD tests of lignocellulose showed that the crystal structure of paper fiber was destroyed seriously, and electro-catalysis can improve the degradation speed of lignocellulose and reducing sugar yield.
     A electro-catalytic reactor with a single processing capacity of 40m3/d wastewater was designed and produced. And it was applied to electro-catalytic degradation of dying wastewater. The COD value of dying water with COD <200mg/L decreased to be less than 100 mg/L and meet the national discharge standard. Consumption of a ton of water was only 0.9-1.3 kWh. The COD removal rates of dying water and chemical water with COD>200mg/L were more than 35% in 5min. Consumption of a ton of water was only 1.1-1.7 kWh for electro-catalytic treatment of wastewater, so the method behaved good economic value and application prospect.
引文
[1]陈国华,王光信等.电化学方法应用[M].北京:化学工业出版社,2003.1:1.
    [2]查全性等.电极过程动力学[M].第三版,北京:科学出版社,2002.6:103-236.
    [3]Tadashi M, Mina O, Minako T, et al. Tin electrode reactor for disinfection of drinking water [J]. Wat. Res.,2000,12:3117-3122.
    [4]李敏哲,迟娟,湛蓝.微电解用于循环冷却水的实验研究[J].工业水处理,2006年2月:39-42
    [5]Dash B P, Chaudhari S. Electrochemical denitrificaton of simulated ground water[J]. Water Research,2005,39:4065-4072.
    [6]Szpyrkowicz L, Daniele S, Radaelli M, et al. Removal of NO3- from water by electrochemical reduction in different reactor configurations [J]. Applied Catalysis B:Environmental,2006,66: 40-50.
    [7]魏刚.北京科技年鉴[M].北京:北京科学技术出版社.2002:182.
    [8]魏刚,周庆,熊蓉春等.水处理中的绿色化学与绿色技术[J].现代化工,2002,22(12):43-45.
    [9]Wu Z H, Zhou M H. Partial Degradation of Phenol by Advanced Electrochemical Oxidation Process[J]. Environ. Sci. Technol.,2001,35(13):2698-2703.
    [10]Cong Y Q, Wu Z C. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride[J]. J. Phys. Chem. C,2007,111 (8):3442-3446.
    [11]冯玉杰,崔玉虹,孙丽欣等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报.2004,4:450-454.
    [12]周明华,吴祖成,汪大翚.电化学高级氧化工艺降解有毒难生化有机废水[J].化学反应工程与工艺.2001,9:263-271.
    [13]王静,冯玉杰,崔玉虹.电化学水处理技术的研究应用进展[J].环境保护.2003,12:19-22.
    [14]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-461.
    [15]Simond O, Schaller V. Comninellis Ch.Theoretical model for the anodic oxidation of organics on metal oxide electrodes, Electrochimica Acta.,1997,42(13-14):2009-2012.
    [16]Bunce N J, Merica S G., Lipkowski J. Prospects for the use of electrochemical methods for the destruction of aromatic organochlorine wastes[J], Chemosphere,1997,35(11):2719-2726.
    [17]Li Y J, Wang F, Zhou G D, et al. Aniline degradation by electrocatalytic oxidation[J]. Chemosphere,2003,53:1229-1234.
    [18]贾成瑶,张飙,陈蓉丽.电解电极对饮用水电化学法杀菌副产物三氯甲烷的影响[J].中国公共卫生.2001,17(4):295-296.
    [19]Wang W Y, YE B X, Yang L S, et al. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes[J]. Environment International.2006, 9:1-7.
    [20]朱又春,张乐华,林美强等.电解杀菌和反硝化脱氮技术发展及其在水处理中的应用[J].环境保护,2001,11:21-23.
    [21]Drees K P, Abbaszadegan M, Maier R M. Comparative electrochemical inactivation of bacteria and bacteriophage[J]. Water Research,2003,37:2291-2299.
    [22]张建刚.工业废水在循环冷却塔中的生化、腐蚀与结垢行为研究[D].北京:北京化工大学材料科学与工程学院,2007.
    [23]张乐华,朱又春,李勇.电解法在废水处理中的应用及研究进展[J].工业水处理,2001,10:5-8.
    [24]涂传青,胡勇有.镀铬废水治理、资源回用技术及进展[J].电镀与环保,1995,5:28-32.
    [25]张敬,姜斌,李鑫钢,黄国强,孙津生.一种处理含重金属离子电镀废水的新工艺[J].精细化工,2005,4:294-295.
    [26]梁轩平.电解法用于工业循环冷却水的防垢防锈蚀[J].中国给水排水.2003,10:85-86.
    [27]贾成功.OH的发生及其在水处理中的应用[D].北京:北京化工大学材料学院,2002.
    [28]吴炳智,徐卫东,陈建中,吴文卫.微电解——催化氧化处理染料废水的试验研究[J].昆明理工大学学报(理工版),2006,12:73-75.
    [29]Marinerc L, Lectz f B. Electro-oxidation of Ammonia in Wastewater[J]. J.Appl. Electrochem., 1978,8:335-345.
    [30]White G C. The Handbook of Chlorination[M].2nd edn, Van Nostrand Reunhold, New York, USA:172.
    [31]曾次元,李亮,赵心越,刘燕.电化学氧化法除氨氮的影响因素[J].复旦学报(自然科学版),2006,6:348-352.
    [32]Trasatti S. Electrocatalysis:understanding the success of DSA(?)[J]. Electrochimica Acta,2000, 45:2377-2385.
    [33]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极[J].环境污染治理技术与设备.2004,5(6):84-87.
    [34]王静,冯玉杰.电催化电极与电化学水处理技术的研究应用进展[J].黑龙江大学自然科学学报.2004(3):127-131.
    [35]丁彤,秦永宁,马智.非晶态合金发展评述[J].天津化工,2002,5:22.
    [36]张云黔,张颖,彭芬等.非晶态材料的开发和应用[J].贵州化工,2002,3(6):7-11.
    [37]张刚.Cu-Ni-NiFe2O4金属陶瓷的制备与性能研究[D].湖南长沙:中南大学硕士学位论文,2004年.
    [38]石忠宁,徐君莉,邱竹贤.金属陶瓷惰性阳极铝电解扩大实验研究[J].东北大学学报(自然科学版).2004,4(4):382-385.
    [39]李永舫.导电聚合物的电化学性质[J].复旦学报(自然科学版),2004,4(8):468-476.
    [40]何志斌,陈金华,刘登友等.甲醇燃料电池阳极电催化剂研究进展[J].电池,2004,4(8):298.300
    [41]Panizza M, Ouattara L, Baranova E, et al. DSA-type anode based on conductive porous p-silicon substrate[J]. Electrochemistry Communications 2003,5:365-368.
    [42]胡耀红,陈力格.DSA涂层钛阳极及其应用[J].电镀与涂饰,2003,10:58-59.
    [43]Mahe E, Deyilliers D, Comninellis C. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films eleetrodes[J]. Electrochimica Acta,2005 (50):2263-2277.
    [44]Maurizio D F, Paola C. On the design of electrochemical reactors for the treatment of polluted water[J]. J. Clean Prod,2004,12:159-163.
    [45]Muthukumar K, Sundaram P S, Anantharaman N, et al. Treatment of textile dye wastewater by using an electrochemical bipolar disc stack reactor[J]. J. Chem. Technol. Biotechnol,2004, 79:1135-1141.
    [46]Peidong Yao, Xueming Chen, Hao Wu, Dahui Wang. Active Ti/SnO2 anodes for pollutants oxidation prepared using chemical vapor deposition [J]. Surface & Coatings Technology,2008, 202:3850-3855.
    [47]KONG Jiang-tao, SHI Shao-yuan, ZHU Xiu-ping, NI Jin-ren. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol[J]. Journal of Environmental Sciences,2007,19:1380-1386.
    [48]Rehim S S E, Zaky A M, Mohamed N F. Electrochemical behaviour of a tin electrode in tartaric acid solutions [J]. Journal of Alloys and Compounds,2006,424:88-92.
    [49]Kong W P, Wang B, Ma H Z, Gu L. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes [J]. Journal of Hazardous Materials,2006, B137:1532-1537.
    [50]Wang B, Kong W P, Ma H Z. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode[J]. Journal of Hazardous Materials, 2007,146:295-301.
    [51]Liu W, Cao L. Electronic structure of the doped SnO2[J]. SCICENCE IN CHINA(Series B), 2001,44(1):63-67.
    [52]Vazquez-Gomez L, Horvath E, Kristof J. Achille De Battisti. Investigation of RuO2-SnO2 thin film formation by thermogravimetry-mass spectrometry and infrared emission spectroscopy[J]. Thin Solid Films,2006,515:1819-1824.
    [53]Malpass G R P, Miwa D W, Machado S A S, et al. Oxidation of the pesticide atrazine at DSA(?) electrodes[J]. Journal of Hazardous Materials,2006, B137:565-572.
    [54]Vazquez-Gomez L, Ferro S. Achille De Battisti. Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology[J]. Applied Catalysis B:Environmental,2006,67:34-40.
    [55]Makgae M E, Theron C C, Przybylowicz W J, et al. Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol [J]. Materials Chemistry and Physics,2005,92:559-564.
    [56]Wang H L, Turner J A., Li X N, et al. Process modification for coating SnO2:F on stainless steels for PEM fuel cell bipolar plates[J]. Journal of Power Sources,2008,178:238-247.
    [57]Chen X N, Chen G H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution[J]. Electrochimica Acta,2005,50:4155-4159.
    [58]Lipp L, Pletcher D. The preparation and characterization of tin dioxide coated titanium electrodes[J]. Electrochimica Acta,1997,42(7):1091-1099.
    [59]李爱武,全宝富,刘凤敏,陈丽华.So1-Ge法制备低阻SnO2薄膜[J].功能材料,2001,32(6):645-647.
    [60]Schmalz V, Dittmar T, Haaken D, et al. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes-Contribution for direct reuse of domestic wastewater[J]. Water Research,2009,43 (20) 5260-5266.
    [61]Butron E, Juarez M E, Solis M, et al. Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes[J].Electrochimica Acta,2007,52(24):6888-6894.
    [62]Zhang C Y, Gu L J, Lin Y H, et al. Degradation of X-3B dye by immobilized TiO2 photocatalysis coupling anodic oxidation on BDD electrode[J]. Journal of Photochemistry and Photobiology A: Chemistry,2009,207(1):66-72.
    [63]Mascia M, Vacca A, Polcaro A M, et al. Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes:Experimental study and mathematical model[J]. Journal of Hazardous Materials,2010,174(1-3):314-322.
    [64]Bedoui A, Ahmadi M F, Bensalah N, et al. Comparative study of Eriochrome black T treatment by BDD-anodic oxidation and Fenton process[J].Chemical Engineering Journal, 2009,146(1):98-104.
    [65]Koparal A S, Yavuz Y, Gurel C, et al. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wast ewater by using diamond anode[J]. Journal of Hazardous Materials,2007,145(1-2):100-108.
    [66]梁继然,常明,潘鹏.热丝CVD法制备金刚石膜.天津理工大学学报,2005,21(1):41-43.
    [67]Ciriaco L, Anjo C, Correia J, et al. Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes[J].Electrochimica Acta,2009,54(5):1464-1472.
    [68]Nava J L, Nunez F, Gonzalez I. Electrochemical incineration of p-cresol and o-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulfate media at pH 0[J].Electrochimica Acta,2007,52,(9):3229-3235.
    [69]Martinez-Huitle C A, Quiroz M A, Comninellis C, et al. Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes[J].Electrochimica Acta,2004, 50(4):949-956.
    [70]赵国华,肖小娥,祁源,等.金刚石膜电极电化学处理污染物的研究.工业水处理,2005,25(6):17-20.
    [71]赵国华,李明利,吴薇薇,等.金刚石膜电极对有机污染物的电催化特性.环境科学,2004,25(5):163-167.
    [72]Chen X M, Chen G H. Anodic oxidation of Orange II on Ti/BDD electrode:Variable effects[J]. Separation and Purification Technology,2006,48(1):45-49.
    [73]Hmani E, Elaoud S C, Samet Y, et al. Electrochemical degradation of waters containing O-Toluidine on PbO2 and BDD anodes[J]. Journal of Hazardous Materials,2009,170(2-3): 928-933.
    [74]Panizza M, Kapalka A, Comninellis C. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis[J]. Electrochimica Acta,2008,53(5):2289-2295.
    [75]Nasr B, Hsen T, Abdellatif G Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation[J].Journal of Environmental Management,2009,(1):523-530.
    [76]Panizza M, Cerisola G Electrochemical degradation of gallic acid on a BDD anode[J]. Chemosphere,2009,77(8):1060-1064.
    [77]Andrade L S, Tasso T T, Silva D L, et al. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16 dye[J].Electrochimica Acta,2009,54(7):2024-2030.
    [78]Morao A, Lopes A, Amorim M T P, et al. Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment[J]. Electrochimica Acta,2004,49(9-10): 1587-1595.
    [79]Fankhauser A, Ouattara L,Griesbach U, et al. Investigation of the anodic acetoxylation of p-methylanisole (p-MA) in glacial acetic acid medium using graphite (sp2) and BDD (sp3) electrodes[J].Journal of Electroanalytical Chemistry,2008,614(1-2):107-112.
    [80]Murugananthan M, Yoshihara S, Rakuma T, et al. Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode[J].Electrochimica Acta,2007,52(9): 3242-3249.
    [81]Sires I, Brillas E, Cerisola G,et al. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes [J].Journal of Electroanalytical Chemistry,2008,613(2):151-159.
    [82]Deligiorgis A, Xekoukoulotakis N P, Diamadopoulos E, et al. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes:Treatment optimization by factorial design[J].Water Research,2008,42(4-5):1229-1237.
    [83]Brillas E, Boye B, Sires I, et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode[J].Electrochimica Acta,2004,49:4487-4496.
    [84]Do J S, Chen C P. In situ oxidation degradation of formaldehyde with electrogenerated hydrogen peroxide[J]. J. Electroehem. soc.,1993,140(6):1632-1637.
    [85]Gallone P. Achievements and tasks of electrochemical engineering[J]. Electrochem. Acta.1977,(22):913-920.
    [86]周抗寒,周定.复极性固定床电解槽内电极电位的分布[J].环境化学,1994,13(4):318-322.
    [87]Xu W L. The behavior of packed bed eleetrode reaetor[J]. Chem..Engin..Sci.,1992, 47(9-11):2307-2312.
    [88]许文林.固定床电化学反应器基础研究[J].自然科学进展,1992,(5):465-468.
    [89]Kreysa G. Cylindrical three-dimensional electrodes under limitin current conditions [J]. J.Appl. Electrochem.,1993,23(7):707-714.
    [90]Sun Y P. Efficient method fox solving the model equations of a two dimensional Packed bed electrode[J], J.Appl. Eleetroehem.,1995,25(8):65-82.
    [91]Brillas E, Boye B, Sires I. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode[J]. Electrochimica Acta, 2004,49:4487-4496.
    [92]Kim S, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO/Ti anode[J]. Desalination,2003,155:49-57.
    [93]纪芳田,包义华.循环冷却水处理基础知识[M].北京:化学工业出版社,1986年8月:44.
    [94]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社,1984:4-6,92-97,198-200.
    [95]Pletcher D, Walsh F C. Industrial Electro chemistry, London:Chapman & Hall.1990,331-383.
    [96]Walsh F C. A review of some recent electrolytic cell designs[J]. Surf. Technol.,1985,24:45-77.
    [97]Ya X, Struule P J.Treatment of dye waste water containing acid orange II using a cell with three-phase three-dimensional electrode[J]. Wat. Res.,2001,35(17):4226-4230.
    [98]Ya X, Kailssonb H T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor[J]. Advances in Environmental Researeh.2002,7:139-145.
    [99]Ya X. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing Phenol[J]. Chemos Phere,2003,50:131-136.
    [100]YA X. Removal of formic acid from wastewater using three-phase three-dimensional electrode reactor[J]. Water, Air and Soil Pollution,2003,144:67-79.
    [101]何春,安太成,熊亚.三维电极电化反应器对有机废水研究[J].2002,8(3):99-109.
    [102]Mooney H A. On the road to global ecology[J]. Annu. Rev. Environ.,2004,24,189-226.
    [103]苏茂尧,张力田.纤维素的酶水解糖化[J].纤维素科学与技术,1995,3(1):13-14.
    [104]邢启明,孙启忠,高凤芹.木质纤维素类物质生产燃料乙醇的研究进展[J].中国农业科技导报,2008,10(S1):41-45.
    [105]陈艳萍等.戊糖发酵微生物及选育[J],纤维科学与技术,2001,(3):57-61.
    [106]马现刚,徐恒泳,李文钊.木质纤维素生产燃料乙醇的研究进展[J].天然气化工,2008,33(4):60-65.
    [107]黄琴,贺稚非.纤维素类物质生产乙醇研究进展[J].粮食与油脂,2008,5:8-10.
    [108]Yu S J, Gao D W, Li G J, Zhang Z H. Study on the mechanism of cellulose hydrolysis reaction enhanced by ultrasonic waves [J]. Journal of South China University of Technology(Natural Science),1998,26(11):90-95.
    [109]罗贵民.酶工程[M].北京:化学工业出版社,2003.
    [110]李艳华.纤维质原料水解工艺及其水解液发酵制备燃料乙醇的研究[D].北京:北京化工大学材料科学与工程学院,2008年. [111] Himmel M E,Baker J O, Overend R P. Enzymatic conversion of biomass for fuels production [M]. American Chemical Society Washington DC,1994:2292-2324.[112] 高凤芹,孙启忠,刑启明.木质纤维素乙醇的研究进展[J].农业科技与信息,2009,4:54-56.
    [1]宋曰海.不锈钢基不溶性催化电极的制备及其对难降解有机废水的电催化降解作用[D].北京:北京化工大学材料科学与工程学院,2007.
    [2]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报,2004,36(4):450-455.
    [3]冯玉杰,李晓岩等.电化学技术在环境工程中的应用[M].化学工业出版社.2002.
    [4]贾成功.·OH的发生及其在水处理中的应用[D].北京:北京化工大学材料学院,2002.
    [5]陈康宁.金属阳极[M],上海:华东师范大学出版社,1989年7月:5-10.
    [6]王静毅,胡熙恩.脉冲电镀制备钛基二氧化铅电极[J].过程工程学报,2003,3(6):540-543.
    [7]乔庆东,李琪,于大勇.钛基二氧化铅电极的制备及在电合成4-吡啶甲酸中的应用[J].抚顺石油学院学报,2002,22(1):1-4.
    [8]孙凤梅,潘建跃,罗启富,陶自春.PbO2阳极材料的研究进展[J].兵器材料科学与工程,2004,27(1):68-72.
    [9]Zhou M H, Dai Q H, Lei L C, et al. Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment:Electrochemical Characteristics and Degradation Mechanism[J]. Environ. Sci. Technol.,2005,39:363-370.
    [10]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极[J].环境污染治理技术与设备.2004,6:84-87.
    [11]王静,冯玉杰.制备方法对稀土Gd掺杂SnO2/Sb电催化电极性能的影响[J].吉林大学学报(理学版),2005,43(4):546-550.
    [12]Zou Z, Li J, Ding F Q, et al. Effect of Doping with Rare Earth Eu on Electrocatalysis of Metal Oxide Anode Coating [J]. The Chinese Journal of Nonferrous Metals,2001, (2):91-94.
    [13]Zhu W P, Yang H W, Yin T, et al. Effects of Rare Earth Metal Ceriuminthe Catalysts for Catalytic Wet Air Oxidation on Its Performance [J]. Environmental Chemistry,2004, (7): 361-365.
    [14]王静,冯玉杰.稀土Gd掺杂SnSb多组份涂层电极制备的实验研究[J].环境化学.2005,1:27-30.
    [15]Tanaka H, Tan I, Uenishi M,et al. LaFePdO3 Perovskite Automotive Catalyst Having a Self-Regenerative Function[J].J Alloy Compd,2006,408-412:1071-1077.
    [16]Liu J H, Yang R, Li SM. Synthesis and Photocatalytic Activity of TiO2/V2O5 Composite Catalyst Doped with Rare Earth Ions[J]. J Rare Earth,2007,25(2):173-178.
    [17]Zhou W, Zheng Y H, Wu G H. Novel Luminescent RE/TiO2(RE=Eu,Gd) Catalysts Prepared by in-Situation Sol-Gel Approach Construction of Multi-Functional Precursors and their Photo or Photocatalytic Oxidation Properties[J].Appl. Surf. Sci.,2006,253(3):1387-1392.
    [18]李善评,胡振,孙一鸣等.新型钛基PbO2电极的制备及电催化性能研究[J].山东大学学报.2007,37(3):109-113.
    [19]Feng Y J, Li X Y. Electro-catalytic Oxidation of Phenol on Several Metal-oxide Electrodes in Aqueous Solution[J].Water Res.,2003,37:2399-2407.
    [20]熊蓉春,魏刚.水处理技术的经济评价[J].给水排水,1999,25(3):44-48.
    [21]Song Y H, Wei G, Xiong R C. Structure and properties of PbO2-CeO2 anodes on stainless steel[J]. Electrochimica Acta,2007,52:7022-7027.
    [22]林殷茵,汤庭鳌,姚熹.二氧化锡薄膜的MOD法制备和表征[J].功能材料,2001,32(3):227-280.
    [23]刘书君.溶胶-凝胶法制备SnO2光学薄膜[J].硅酸盐通报,1997,5:39-42.
    [24]韩卫清.电化学氧化法处理生物难降解有机化工废水的研究[D].南京:南京理工大学环境工程学院.2007.
    [25]Wang Y D, Wu X H, Li Y F. Mesostructured SnO2 as sensing material for gas sensors[J]. Solid State Electro,2004,48 (5):627~632.
    [26]张建刚,魏刚,熊蓉春.多直线分光光度法快速测定化学需氧量[J].北京化工大学学报(自然科学版),2007,34(4):389-392.
    [27]Comninellis C. Electrocatalysis in the Electrochemical Conversion/Combussion of Organic Pollutants for Waste Water Treatment[J]. Electrochemica Acta,1994,39 (11-12):1857~1862.
    [28]徐光宪.稀土[M].北京:冶金工业出版社,1993:2426.
    [29]陈金銮.氨氮的电化学氧化技术及其应用研究[D].清华大学环境科学与工程系.2008.
    [30]Chen G H, Chen X M, Po L Y. Electrochemical Behavior of Novel Ti/IrOx-Sb2O5-SnO2 Anodes[J]. J. Phys. Chem. B,2002,106:4364-4369.
    [31]Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol[J]. Journal of Environmental Sciences,2007,19:1380-1386.
    [32]Chen X N, Chen G H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution[J]. Electrochimica Acta,2005,50:4155-4159.
    [33]Chen X M, Gao F R, Chen G H.Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation[J]. Journal of Applied Electrochemistry,2005,35:185-191.
    [34]GB8978-1996.污水综合排放标准[S].1996.
    [35]刘书君.溶胶-凝胶法制备SnO2光学薄膜[J].硅酸盐通报,1997,5:39-42.
    [1]宋日海.不锈钢基不溶性催化电极的制备及其对难降解有机废水的电催化降解作用[D].北京:北京化工大学材料科学与工程学院,2007.
    [2]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报,2004,36(4):450-455.
    [3]冯玉杰,李晓岩等.电化学技术在环境工程中的应用[M].化学工业出版社.2002.
    [4]贾成功.·OH的发生及其在水处理中的应用[D].北京:北京化工大学材料学院,2002.
    [5]陈康宁.金属阳极[M],上海:华东师范大学出版社,1989年7月:5-10.
    [6]王静毅,胡熙恩.脉冲电镀制备钛基二氧化铅电极[J].过程工程学报,2003,3(6):540-543.
    [7]乔庆东,李琪,于大勇.钛基二氧化铅电极的制备及在电合成4-吡啶甲酸中的应用[J].抚顺石油学院学报,2002,22(1):1-4.
    [8]孙凤梅,潘建跃,罗启富,陶自春.PbO2阳极材料的研究进展[J].兵器材料科学与工程,2004,27(1):68-72.
    [9]Zhou M H, Dai Q H, Lei L C, et al. Long Life Modified Lead Dioxide Anode for Organic Wastewater Treatment:Electrochemical Characteristics and Degradation Mechanism[J]. Environ. Sci. Technol.,2005,39:363-370.
    [10]崔宝臣,刘淑芝,罗洪君.有毒难降解有机物高级氧化电催化电极[J].环境污染治理技术与设备.2004,6:84-87.
    [11]王静,冯玉杰.制备方法对稀土Gd掺杂SnO2/Sb电催化电极性能的影响[J].吉林大学学报(理学版),2005,43(4):546-550.
    [12]Zou Z, Li J, Ding F Q, et al. Effect of Doping with Rare Earth Eu on Electrocatalysis of Metal Oxide Anode Coating [J]. The Chinese Journal of Nonferrous Metals,2001, (2):91-94.
    [13]Zhu W P, Yang H W, Yin T, et al. Effects of Rare Earth Metal Ceriuminthe Catalysts for Catalytic Wet Air Oxidation on Its Performance [J]. Environmental Chemistry,2004, (7): 361-365.
    [14]王静,冯玉杰.稀土Gd掺杂SnSb多组份涂层电极制备的实验研究[J].环境化学.2005,1:27-30.
    [15]Tanaka H, Tan I, Uenishi M,et al. LaFePdO3 Perovskite Automotive Catalyst Having a Self-Regenerative Function[J].J Alloy Compd,2006,408-412:1071-1077.
    [16]Liu J H, Yang R, Li SM, Synthesis and Photocatalytic Activity of TiO2/V2O5 Composite Catalyst Doped with Rare Earth Ions[J]. J Rare Earth,2007,25(2):173-178.
    [17]Zhou W, Zheng Y H, Wu G H. Novel Luminescent RE/TiO2(RE=Eu,Gd) Catalysts Prepared by in-Situation Sol-Gel Approach Construction of Multi-Functional Precursors and their Photo or Photocatalytic Oxidation Properties[J].Appl. Surf. Sci.,2006,253(3):1387-1392.
    [18]李善评,胡振,孙一鸣等.新型钛基Pb02电极的制备及电催化性能研究[J].山东大学学报.2007,37(3):109-113.
    [19]Feng Y J, Li X Y. Electro-catalytic Oxidation of Phenol on Several Metal-oxide Electrodes in Aqueous Solution[J].Water Res.,2003,37:2399-2407.
    [20]熊蓉春,魏刚.水处理技术的经济评价[J].给水排水,1999,25(3):44-48.
    [21]Song Y H, Wei G, Xiong R C. Structure and properties of PbO2-CeO2 anodes on stainless steel[J]. Electrochimica Acta,2007,52:7022-7027.
    [22]林殷茵,汤庭鳌,姚熹.二氧化锡薄膜的MOD法制备和表征[J].功能材料,2001,32(3):227-280.
    [23]刘书君.溶胶-凝胶法制备SnO2光学薄膜[J].硅酸盐通报,1997,5:39-42.
    [24]韩卫清.电化学氧化法处理生物难降解有机化工废水的研究[D].南京:南京理工大学环境工程学院.2007.
    [25]Wang Y D, Wu X H, Li Y F. Mesostructured SnO2 as sensing material for gas sensors[J]. Solid State Electro,2004,48 (5):627~632.
    [26]张建刚,魏刚,熊蓉春.多直线分光光度法快速测定化学需氧量[J].北京化工大学学报(自然科学版),2007,34(4):389-392.
    [27]Comninellis C. Electrocatalysis in the Electrochemical Conversion/Combussion of Organic Pollutants for Waste Water Treatment[J]. Electrochemica Acta,1994,39 (11-12):1857-1862.
    [28]Chen G H, Chen X M, Po L Y. Electrochemical Behavior of Novel Ti/IrOx-Sb2O5-SnO2 Anodes[J]. J. Phys. Chem. B,2002,106:4364-4369.
    [29]Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol[J]. Journal of Environmental Sciences,2007,19:1380-1386.
    [30]Chen X N, Chen G H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution[J]. Electrochimica Acta,2005,50:4155-4159.
    [31]Chen X M, Gao F R, Chen G H.Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation[J]. Journal of Applied Electrochemistry,2005,35:185-191.
    [32]GB8978-1996.污水综合排放标准.[S].1996.
    [33]刘书君.溶胶-凝胶法制备SnO2光学薄膜[J].硅酸盐通报,1997,5:39-42.
    [1]鄂学礼.水中菌藻污染与处理研究进展(提纲)[A].见:水质菌藻控制与用水安全发展研讨会论文集[C].青岛:中国化工学会,2006,23-28.
    [2]Duytn et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae)toxins in water[J]. Rev Environ Contam Toxicol,2000,163:113.186.
    [3]Gilroy D J, Kauffman K W, Hall R A,et al. Assessing potential health risks from microcystin toxins in blue-algae green dietary supplements[J]. Environ Health Perspect, 2000,108(5):435-439.
    [4]Svrcek C. Smith D W. Cyanobacteria toxins and the current state of knowledge on water treatment options:a review[J]. Journal of Environmental Engineering and Science,2004, 3(3):155-185.
    [5]Frederic E, Konstanze M, Jean-louis W. Risk of cyanobacterial toxins in Riga waters[J]. War. Res,2000,34(11):2979-2988.
    [6]纪芳田,包义华.循环冷却水处理知识[M].北京:化学工业出版社,1986214-15.
    [7]姚良雨,罗伟,孙桐泽.茵藻控制技术在焦化循环水处理的应用[J].燃科与化工,2008,39(3):61-62.
    [8]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社,1984:4-6,92-97,198-200.
    [9]任连锁.电解-浮选法处理含有污水的研究[J].净水技术,2005,24(1):9-11.
    [10]朱又春,张乐华,林美强等.电解杀菌和反硝化脱氮技术发展及其在水处理中的应用[J].环境保护,2001,11:21-23.
    [11]Drees K P, Abbaszadegan M, Maier R M. Comparative electrochemical inactivation of bacteria and bacteriophage[J]. Water Research,2003,37:2291-2299.
    [12]GB/T 14643.2-1993.工业循环冷却水中土壤菌群的测定平皿计数法[S].1993.
    [13]覃玉荣,江悦华,赖声礼.直流脉冲场作用下穿孔悬液细胞跨膜电压计算模型[J].生物医学工程学杂志.2007(1):1-4.
    [14]章恩明,杜林,黄鸿志.电解水杀菌技术及其应用.四川食品与发酵,1999,1:22-25.
    [15]Giulio D R T, Washburn P C, Wenning R J. Biochemical responses in aquatic animals:a review of determinants of oxidative stress Environmental Toxicology and Chemistry,1989, 8:1103-1123.
    [16]白敏冬,张芝涛,白希尧,等.羟基游离基杀死压载水中微生物研究[J].海洋与湖泊,2003,34(5):484-489.
    [17]GB5479-2006.生活饮用水标准[S].2006.
    [18]GB/T 15452-95.工业循环冷却水中钙、镁离子的测定EDTA滴定法[S].1995.
    [1]Mooney H A. On the road to global ecology[J]. Annu. Rev. Environ.2004,24,189-226.
    [2]刘汉玉,陈武,梅平.阻垢剂的合成及应用研究进展[J].化学与生物工程,2006,4:7-9.
    [3]陈文松,韦朝海.阻垢剂的研究[J].水处理技术,2003,2:5-7.
    [4]熊素敏,左秀凤,朱永义.稻壳中纤维素.半纤维素和木质素的测定[J].粮食与饲料工业,2005,(8):40-41
    [5]波钦诺克XH.植物生物化学分析方法[M].荆家海,丁钟荣译.北京:科学出版社,1981.
    [6]Lipp L, Pletcher D. The preparation and characterization of tin dioxide coated titanium electrodes[J]. Electrochimica Acta,1997,42(7):1091-1099.
    [7]邢启明,孙启忠,高凤芹.木质纤维素类物质生产燃料乙醇的研究进展.中国农业科技导报,2008,10(S1):41-45.
    [8]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展.微生物学通报,2002,29(3):90-93.
    [9]HALL IWELL G.Catalytic decomposition of cellulose under biological conditions [J]. Biochem J,1965,95:35-40.
    [10]王希国,杨谦,燕红.纤维素酶催化水解和氧化机制的研究进展.林产化学与工业,2005,25(3):125-130.
    [11]CHANDHOKE V, GOODELL B, JELL ISON J, et al. Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds p roduced by the wood decaying fungus Gloeophyllum irabeum [J]. FEMSMicrobiol Lett,1992,90 (3) 263-266.
    [12]王蔚,段新源,孙彩云,高培基.褐腐真菌产生的羟基自由基HO·对纤维素作用的研究.菌物系统21(3):400-405.2002.
    [13]王蔚,高培基.密粘褶菌胞外低分子量多肽在纤维素降解中作用的研究.微生物学报,2002,42(2):220-225.
    [14]张晓昱,孙永林,黄慧艳.白腐菌胞外羟自由基清除物质的产生.华中科技大学学报(自然科学版),2007,35(3):129-132.
    [1]林海波,张恒彬.电催化氧化技术处理低化学耗氧量废水的方法[P].中国专利,申请号.03133317.6.2003-11-26
    [2]周明华,雷乐成,戴启洲.有机废水的湿式电催化处理装置[P].中国专利,ZL200620105379.3.2007-10-10.
    [3]Carey, James J, Christ J. Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater[P]. USA,5399247.1995-03-21.
    [4]张怀松,李世荣.三维粒子群电化学催化水处理装置[P].中国专利,ZL 00620097876.3.2007-07-25.
    [5]王博,马红竹,张成孝.电化学催化氧化污水处理器[P].中国专利,200510042858.5.2006-01-25.
    [6]刘秀宁,丁则仁,薛军,等.多维电极电催化污水处理装置[P].中国专利,ZL200620072929.2.2007-05-16.
    [7]王国华,严青,侯惠奇.过电位三维电极电解和复合菌组合处理工业废水的方法[P].中国专利,CN1699225(A),2005-11-23.
    [8]王建洪,沈健.印染废水的处理及回用技术.能源环境保护,2005,19(4):42-44.
    [9]张海臣,刘藏者,赵建国.曝气催化铁内电解法对印染废水预处理的试验.工业水处理,2007,27(6):35-37.
    [10]薛志成.印染废水的生化和气浮处理.广西纺织科技,2005,34(1):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700