旅大10-1油田含聚采出水腐蚀与结垢行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海旅大10-1油田采用注水开采方式,开采过程中产生的污水与水源井水混合处理后回注进入储层。采出水具有较高的矿化度,主要含有Ca2+、Mg2+、HCO32-、CO32-等成垢无机离子,同时还含有H2S、CO2、O2等溶解性气体。因此采出水会对污水处理流程中各种管线设备造成一定的腐蚀和结垢,影响正常生产和回注效果。同时,注聚开采使得采出水中含有一定量的残余聚合物,地面处理工艺流程中也会加入一些化学药剂,这些有机物相互作用及其与腐蚀结垢产物之间的作用都会影响水质,进而影响油田的正常生产。本文结合LD10-1现场水处理工艺状况,对油田采出水水质和腐蚀的影响因素进行分析,研究了聚合物(HPAM)对油田采出水腐蚀和结垢的影响规律,分别探究了合成的油酰胺咪唑啉缓蚀剂和现场用阻垢剂的缓蚀和阻垢机理。取得的主要研究成果如下:
     (1)分析了温度、H2S含量、C02分压、微生物、02、聚合物浓度和分子量等各种因素对采出水腐蚀及结垢的影响。结果发现,在旅大10-1水处理流程中,聚合物的存在对腐蚀和结垢存在一定的影响。
     (2)通过模拟油田采出水腐蚀和结垢状况,分别采用失重法、电化学方法、碳酸钙沉积法和软硬垢测试研究了产出聚合物分子量和浓度对采出水腐蚀和结垢的影响规律。结果发现,HPAM对金属的腐蚀起到混合抑制缓蚀的作用,并在阻抗图中出现了明显的Warburg阻抗特征;此外,聚合物的加入使得总垢和硬垢生成量明显减少,同时溶液中游离钙离子浓度总体呈增加趋势。
     (3)针对油田防腐实际需要,采用溶剂法合成了油酰胺咪唑啉型缓蚀剂,并对其进行改性和复配,研发出一种适用于油田含聚采出水的水溶性油酰胺咪唑啉季铵盐缓蚀剂。采用失重法、电化学方法等评价了该缓蚀剂及其复配物的缓蚀性能,并将其与现场缓蚀剂BHH-08进行对比,结果发现,三者在相同加药浓度下,复配缓蚀剂的缓蚀效果最好。
     (4)通过电化学测试和对腐蚀产物膜的结构成分及形貌分析,提出了咪唑啉类缓蚀剂在含聚污水中的缓蚀机理:吸附机理和成膜机理。证实了该咪唑啉类缓蚀剂属于混合吸附成膜型缓蚀剂,与采出水中聚合物产生一定的协同作用,减缓了金属设备的腐蚀。
     (5)针对油田结垢问题,运用碳酸钙沉积法研究了聚合物与现场阻垢剂的协同作用规律。并通过电化学石英微晶天平测试技术、水体中软垢和硬垢的电镜扫描、能谱和X射线衍射分析,进一步研究了聚合物与阻垢剂之间的协同作用机理。HPAM和阻垢剂BHF-04分别通过螫合增溶、晶格畸变以及静电斥力作用抑制了钙垢的生成。
The exploitation mainly depends on injection with water in Bohai LD10-1 oilfield, produced water and well water after mixing treatment ought to be re-injected into the formation. Produced water doesn't only have high salinity, mainly containing some inorganic scaling ions, such as Ca2+、Mg2+、HCO32-、CO32-,but also' contains some dissolved gases, such as H2S、CO2、O2,and so on. Therefore, produced water would lead all kinds of pipes and equipments to a certain amount of corrosion and scaling in the sewage treatment process, and affect the normal production and re-injection. Meanwhile, a certain amount of residual polymer exists in the wastewater as a result of the injection with polymer, and some organic pharmacies would be added to the wastewater in the process of wastewater treatment. These organisms perhaps produce interaction, which perhaps bring about complex physical and chemical reactions with the products of corrosion and scaling. It has impacted water quality and seriously influenced the normal production of oil field. This article analyzed the quality of produced water and impact factors of corrosion in LD10-1 oil field through going over water treatment conditions on-site. Polymer (HPAM) on the impact of corrosion and scaling law were respectively investigated. At the same time, the inhibition mechanisms of oil amide imidazoline and scale inhibitor on-site were studied. The detailed research results are shown as follows:
     (1)Temperature, the amount of H2S and O2, partial pressure of CO2, bacteria, and other factors on the impact of corrosion and scaling law were analyzed. In the process of Luda 10-1 water treatment, Polymer had impact on corrosion and scaling for produced water.
     (2)The corrosion and scaling actuality of the wastewater with polymer was surveyed using the methods of weight loss, electrochemical corrosion, calcium carbonate deposition and hard scale test, effects of polymer molecular mass and concentration on corrosion and scaling were focused on. The results showed that HPAM played a role of mixed inhibiting corrosion, and significant Warburg impedance characteristics appeared in the impedance. What is more, the addition of polymer made the amount of the total scale and hard scale reduced significantly, while the concentration of free calcium ions in solution tended to increase.
     (3)Aiming at actual anticorrosion need of the oil field, this kind of corrosion inhibitor named oil amide imidazoline was synthesized by the method of solvent-dewatering. Besides, by means of modification and complexion we have developed a efficient imidazoline quaternary ammonium corrosion inhibitor which had good water-solubility. The corrosion inhibition effects of the corrosion inhibitor and its complexion were evaluated by way of weight loss and electrochemical corrosion, compared with the corrosion inhibitor on-site. In the same concentration, corrosion inhibitor after complexion had the best anti-corrosion role.
     (4)According to the electrochemical experiments and the structure and morphology analysis of corrosion products, the corrosion mechanisms were adsorption mechanism and formation mechanism. The fact that imidazoline inhibitor is the type of mixed adsorption and formation was confirmed, and it would produce collaborating effect with polymer in produced water, slowing down the corrosion of metal equipments.
     (5)Applying the scaling problem in oilfield, the method of calcium carbonate deposition was used to test the synergetic inhibition law between polymer and scale inhibitor on-site. The synergetic inhibition mechanism were proposed between polymer and scale inhibitor, according to electrochemical quartz crystal microbalance technique and the analysis of scanning electron microscopy, energy dispersive and X-ray diffraction for the debris and hard scale in water. HPAM and the scale inhibitor BHF-04 inhibit the formation of calcium scale through chelating, lattice distortion and electrostatic repulsion.
引文
[1]毛平平.油田污水电磁防垢除垢技术研究[D].中国石油大学(华东)硕士论文,2007:1.
    [2]尹先清,郑琼等.大港南部油田回注污水结垢性与配伍性研究[J].工业水处理,2008,28(10):24-26.
    [3]张贵才.油田污水防垢与缓蚀技术研究[D].西南石油学院博士学位论文,2005:1.
    [4]韩文静,孟庆武等.腐蚀性细菌对油田注水系统金属腐蚀和结垢的影响及防治措施[J].材料研究与应用,2008,2(2):148-150.
    [5]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:352-368.
    [6]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:327.
    [7]严忠,陈玉萍等.新疆油田含聚污水处理技术应用研究[J].油气田环境保护,2009,19(2):18-21.
    [8]李家俊.咪唑啉类油田注水缓蚀剂的合成与性能研究[D].天津大学硕士学位论文,2007:2.
    [9]刘小东,谢陈鑫.油田含聚污水的处理现状与研究进展[J].科技创新导报,2009(10):136-137.
    [10]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:329-330.
    [11]陈华兴.旅大10-1油田含聚污水回注储层保护技术研究[D].西南石油大学硕士学位论文,2010:21.
    [12]段永锋,于凤昌等.缓蚀剂在油气田集输系统的应用与研究进展[J].全面腐蚀控制,2010,24(6):26-30.
    [13]NACE Standard MR0175/ISO151156. Materials for use in H2S containing environments in oil and gas production [S],2001.
    [14]包月霞.金属腐蚀的分类和防护方法[J].广东化工,2010,37(7):199,216.
    [15]孟建勋,王建等.油气集输管道的腐蚀机理与防腐蚀技术研究进展[J].,重庆科技学院学报(自然科学版),2010,12(3):21-23.
    [16]吴继勋.,金属防腐蚀技术[M].北京:冶金工业出版社,2002:71.
    [17]王彬,杜敏等.油气田中抑制C02腐蚀缓蚀剂的应用及其研究进展[J].腐蚀与防护,2010,31(7):503-507.
    [18]冯蓓,杨敏等.二氧化碳腐蚀机理及影响因素[J].辽宁化工,2010,39(9):976-979.
    [19]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:371.
    [20]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:379.
    [21]李家俊.咪唑啉类油田注水缓蚀剂的合成与性能研究[D].天津大学硕士学位论文,2007:7-8.
    [22]张建.聚环氧琥珀酸的合成及其复配物的性能研究[D].兰州交通大学硕士学位论文,2007:7-9.
    [23]郑家粲.金属电化学和缓蚀剂保护技术[M].上海:上海科学技术出版社1984:120-143.
    [24]吴继勋.金属防腐蚀技术[M].北京:冶金工业出版社,2002:86.
    [25]蒋华鹏.两性咪唑啉的合成及其缓蚀性能研究[D].湖南科技大学硕士学位论文,2007:5-6.
    [26]林海潮.缓蚀剂研究的进展[J].腐蚀科学与防护技术,1997,9(4):308-313.
    [27]王新龙,贾红兵等.有机磷缓蚀剂研究进展[J].腐蚀与防护,2000,21(8):356-369.
    [28]王霞,侯铎等.油田污水处理用复合型阻垢缓蚀剂[J].材料保护,2009,42(11):58-60.
    [29]Liu F G, Du M. Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor [J]. Corrosion Science,2009, 51:102-109.
    [30]Huang Daozhan et al.Study on synthesis a new quaternary ammonium salts and its inhibitor properties [J]. Journal of GuangXi University for Nationalities (Natural science), 2000,6(4):265-267.
    [31]Li Heping, Pei Liying et al.The synthesis of water soluble substituted imidolone and exploration of their inhibitory efficiency [J]. Journal of Changcha University of Electricpower (Natyral science),2000,15(2):74-76.
    [32]易华.新型缓蚀—阻垢剂的研究[D].哈尔滨工程大学硕士学位论文,2003:16-18.
    [33]陈大均等.油气田应用化学[M].北京:石油工业出版社,2006:381-383.
    [34]张建.聚环氧琥珀酸的合成及其复配物的性能研究[D].兰州交通大学硕士学位论文,2007:11-12.
    [35]党娟华,罗跃.油田污水阻垢剂研究进展[J].涂料涂装与电镀,2005,3(3):27-30.
    [36]陈远清.油井结垢机理研究与防治[J].内蒙古石油化工,2009,(12):18-21.
    [37]李容娟,周兴付等.川西合兴场须二气藏气井CaCO3结垢及清理技术[J].油田化学,2009,26(4):395-397.
    [38]彭中.油井结垢机理研究与防治[J].内蒙古石油化工,2009,(4):16-18.
    [39]姚培正,包秀萍等.油田水阻垢剂的阻垢机理及其研究进展[J].杭州化工,2009,39(1):16-19.
    [40]张贵才.油田污水防垢与缓蚀技术研究[D].西南石油学院博士学位论文,2005:2-4.
    [41]李本高,祁鲁梁等.石化工业水处理技术[M].北京:中国石化出版社,1999:1-50.
    [42]张洪利.国内阻垢剂研究现状及展望[J].化学工程师,2007,139(4):38-41.
    [43]李红霞.ATMP缓蚀阻垢性能[J].腐蚀科学与防护技术,2000,12(4):247-248.
    [44]崔崇威,李绍峰等.PBTCA、HEDP、ATMP缓蚀性能的理论研究[J].材料科学与工艺,2006,14(6):608-611.
    [45]高艳春,杜娟等.新型阻垢剂的合成及其性能研究[J].应用化工,2009,38(8):1146-1148.
    [46]李伟男.新型阻垢剂AVS的合成及阻垢性能研究[J].广州化工,2009,37(4):126-127
    [47]陈颖敏,崔丽.聚环氧琥珀酸及其复配物阻垢缓蚀性能的研究[J].工业水处理,2009,29(7):21-24.
    [48]高玉华,刘阵法等.聚天冬氨酸衍生物的合成及阻垢性能[J].化工学报,2009,60(8):2107-2111.
    [49]朱义吾,赵作滋等.油田开发中的结垢机理及其防治技术[M].陕西西安:陕西科学技术出版社,1995:178-183.
    [50]陆柱,郑士忠等.油田水处理技术[M].北京:石油工业出版社,1990:167-208.
    [51]Suitor J W, Marner W J,et al.The history and status of research in fouling of heat exchangers in cooling water service[J]. Can J Chen Eng,1977,55:374.
    [52]Gill J S, Anderson C D, et al.Mechanism of scale inhibition by phosphonates[A]. Pro 44th Int Water Conf[C].Pittsburgh Pa (USA),1983,4:2.
    [53]马涛,张贵才等.改性咪唑啉缓蚀剂的合成与评价[J].石油与天然气化工,2004,33(5):359-361.
    [54]蒋华鹏.两性咪唑啉的合成及其缓蚀性能研究[D].湖南科技大学硕士学位论文,2007:12.
    [55]SY5273-2000,油田注水缓蚀剂评价方法[S].
    [56]SY/T0026-1999,水腐蚀性测试方法[S].
    [57]王虎,谢娟等.酸化缓蚀剂曼尼希碱缓蚀机理的电化学研究[J].油田化学.,2010,27(1):19-21.
    [58]王虎,段明等.含聚合物油田采出水的腐蚀电化学试验[J].腐蚀与防护,2010,31(8):604-607.
    [59]SY/T5673-93,油田用防垢剂性能评价方法[S].
    [60]GB/T16632-1996,水处理剂阻垢性能的测试-碳酸钙沉淀法[S].
    [61]秦晓,韩柏平.运用石英微天平评价阻垢剂性能[J].水处理技术,2005,31(5):51-54.
    [62]段明,王虎等.油田采出水中聚合物与阻垢剂协同作用的EQCM评价[J].油田化学,2009,26(4):398-401.
    [63]王常珍.冶金物理化学研究方法[M].冶金工业出版社,1982.
    [64]张有纲,张永祥,许恒生.电子材料现代分析概论[M].电子工业出版社,1995.
    [65]唐伟忠.薄膜材料制备原理、技术及应用[M].冶金工业出版社,2003.
    [66]黄金营,魏慧芳,郑家燊等.咪唑啉油酰胺的合成及在油气井产出液中的缓蚀性能[J].油田化学,2004,3(21):230-236.
    [67]黄廷林,赵建伟,吴宗福等.陇东油田采出水系统的腐蚀与防护[J].西安建筑科技大学学报,2002,34(4):320-324.
    [68]郎序菲,邱丽娜等.微生物腐蚀及防腐技术的研究现状[J].全面腐蚀控制,2009,23(10):20-24.
    [69]陈悟.硫酸盐还原菌多相分类系统与综合防治方法研究[D].华中科技大学,2006.5-7.
    [70]Von Volzogen,Kuhr CAH,Van der Vlugt IS.The graphitization of cast iron as an electrobiochem ical process in anne robic soila[J]. Water,1934,(18):147-165.
    [71]Booth GH, Cooper AW, Cooper PM.Rates of microbial corrosion in continuous culture [J]. Chemical Industry,1967,(49):2084-2058.
    [72]宁晓飞.宋芳屯油田水质综合治理研究[D].大庆石油学院,2006:9-11.
    [73]SY/T0532-93,油田注入水细菌分析方法-绝迹稀释法[S].
    [74]赵建伟.陇东油田采出水系统腐蚀及防护研究[D].西安建筑科技大学,2003:12-14.
    [75]张智,吴优等.井下套管外腐蚀机理与防护措施[J].石油地质与工程,2007,21(3):104-106.
    [76]柳伟,赵艳亮,路民旭.SRB和C02共存环境中X60管线钢腐蚀电化学特征[J].物理化学学报,2008,24(3):393-399.
    [77]周孙选,赵景茂,郑家.铁在H2S-盐水中的腐蚀产物的穆斯堡尔的研究[J].华中理工大学学报,1993,21(3):155-158.
    [78]李湛伟,范洪远等.H2S/CO2及其共存下腐蚀研究进展[J].河南城建学院学报,2010,19(1):59-64.
    [79]赵永峰,王吉连等.在含H2S/CO2介质中油气田用钢的腐蚀研究进展[J].石油化工腐蚀与防护,2010,27(1):1-8.
    [80]Hudson R M, Warning C J.Influence of halide mixture with organic compounds on dissolution and hydrogen absorption by low-C steel in H2SO4 [J]. Corros Sci,1970, 10(3):121-134.
    [81]Rudresh H B, Mayanana S B.Synergistic effect of halide ions on the corrosion inhibition of zinc by n-decylamine [J]. Corros Sci,1979,19(6):361-370.
    [82]薛娟琴,唐长斌.电化学基础与测试技术[M].山西科学技术出版社,2007:246.
    [83]刘福国.油田钻具、管道系统腐蚀规律及缓蚀剂性能和机制研究[D].中国海洋大学,2008:1-27.
    [84]刘建平,李正奉,周晓湘.一种咪唑啉缓蚀剂在碳钢表面成膜的电化学研究[J].腐蚀科学与防护技术,2003,15(5):263-265.
    [85]徐宝军,滕洪丽,王金波,张晶等.咪唑啉衍生物缓蚀剂的研究[J].腐蚀与防护,2003,24(8):3-5.
    [86]张士博,王慧等.咪唑啉季铵盐缓蚀剂的合成及应用研究[J].当代化工,2006,35(5):8-12.
    [87]孙鹏程,任晓光等.多种缓蚀剂的复配对10号碳钢在酸性体系中的缓蚀作用研究[J].石油炼制与化工,2010,41(2):69-72.
    [88]顾仁敖,丁邦东.表面增强拉曼光谱法研究铁吡啶类缓蚀剂[J].光谱与光谱分析,1995,15(1):39-43.
    [89]王佳,曹楚南,陈家坚等.缓蚀剂阳极脱附现象[J].中国腐蚀与防护学报,1995, 8(5):11-18.
    [90]赵景茂,顾明广,左禹.碳钢在二氧化碳溶液中腐蚀影响因素的研究[J].北京化工大学学报,2005,32(5):71-74.
    [91]张学元,雷良刁.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000:98.
    [92]高文宇,陈新萍,鞠剑.咪唑啉类缓蚀剂的研究现状及展望[J].江苏化工,2008,21(8):12-15..
    [93]黄光团,甄库等.新型咪唑啉衍生物油田注水缓蚀剂的研究[J].腐蚀与防护,2004,25(2):50-52.
    [94]薛娟琴,唐长斌.电化学基础与测试技术[M].山西科学技术出版社,2007:239.
    [95]李海燕,焦英芹等.油田生产中缓蚀剂防腐技术研究及应用[J].石油化工应用,2009,28(6):53-56.
    [96]李家俊.咪唑啉类油田注水缓蚀剂的合成与性能研究[D].天津大学硕士论文,2007:27-29.
    [97]王瑞斌.咪唑啉类缓蚀剂的合成与缓蚀性能研究[D].大连理工大学硕士学位论文,2004:51-58.
    [98]彭雪飞,冯浦涌等.一种曼尼希碱季铵盐缓蚀剂的合成与性能研究[J].腐蚀与防护,2010,31(5):345-348.
    [99]SY/T0600-1997,油田水结垢趋势预测[S].
    [100]Yongming Tang,Wenzhou Yang, Xiaoshuang Yin, et al, Investigation of CaCO3 scale inhibition by PAA,ATMP and PAPEMP[J]. Desalination,2008,228:55-60.
    [101]Ganesha Achary, Y. Arthoba Naik, S.Vijay Kumar, et al, An electroactive co-polymer as corrosion inhibitor for steel in sulphuric acid Medium[J]. Applied Surface Science,2008, 254:5569-5573.
    [102]王睿,杨晓静,林昭华,沈自求.循环水系统CaCO3结垢速率的理论预测[J].石油学报,2002,18(1):72-77.
    [103]林培滋,黄世煜,初惠萍.温度对碳酸钙结垢过程的影响[J].石油与天然气化工,1999,28(2):128-130.
    [104]GB12005.1-89,聚丙烯酰胺特性粘数测定方法[S].
    [105]周利民,刘峙嵘,许文苑.聚合物对反渗透处理水系统中硅垢的控制[J].化工环保,2004,24(S1):372-374.
    [106]周利民,刘峙嵘,许文苑.聚合物对反渗透处理水系统中碳酸钙垢的控制[J].能源环境保护,2004,18(6):23-26.
    [107]张贵才.油田污水防垢与缓蚀技术研究[D].西南石油学院博士学位论文.2005:6-8.
    [108]王丽荣.聚丙烯酸缓蚀剂的合成及其性能研究[D].华中科技大学硕士学位论文,2007:36-37.
    [109]徐寿昌.工业冷却水处理技术[M].化学工业出版社,1984:89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700