降低换热表面自由能的镀层制备和阻垢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污垢是换热器设计和运行中经常遇到的问题,低表面自由能的换热面可以有效抑制污垢的产生。
     本文在紫铜基体上制备了Ni-P和Ni-W-P镀层,X射线衍射结果表明两种镀层均为非晶态。研究了铜试样、Ni-P镀层和Ni-W-P镀层的表面自由能,三种材料表面的自由能分别为52.4 mN/m、35.5 mN/m和23.4 mN/m,化学镀层的表面自由能显著降低。
     在CaSO4溶液中进行了污垢沉积实验和池沸腾阻垢实验,结果表明,与铜表面相比两种低表面自由能镀层上的污垢沉积速度分别降低了46%和54%,镀层表面的污垢热阻的渐近值显著降低,说明化学镀层由于表面能低,有较好的阻垢性能。用高速摄影仪观察了沸腾表面的气泡行为,由于传热方式的差别,在加热面上形成了两种不同结构的硫酸钙污垢形貌,铜表面为针状垢,而镀层表面是粒状垢。
Fouling is a widespread problem in the design and operation of heat exchanger. Heat transfer surface with lower surface free energy may greatly inhibit fouling.
     Electroless Ni-P and Ni-W-P coatings were prepared on copper substrates in this paper. X-ray diffraction results showed both the coatings are amorphous. The values of surface free energy for copper sample, Ni-P coating sample, Ni-W-P coating sample were 52.4mN/m, 35.5mN/m,23.4 mN/m respectively. The surface free energy for electroless plating surface dropped obviously.
     Fouling adhesion test and pool boiling anti-fouling experiments were carried out in calcium sulphate solution. Compared with the copper surface, the scale adhesion speed on the electroless coatings with lower surface free energy were reduced by 46 percent for Ni-P coating and 54 percent for Ni-W-P coating respectively. Asymptotic value of fouling resistance for Ni-P coating surface and Ni-W-P coating surface were reduced sharply. The bubble behavior on heat transfer surface was captured by a high speed camera. Depending on the heat transfer mechanism, two different types of deposits were observed on the heat transfer surface. A needle-like structure was the characteristic of scale formed on a plain copper surface, while a granular structure corresponded to the scale formed on the electroless plating surface.
引文
[1]杨善让,徐忠明,孙灵芳.换热设备的污垢与对策(第二版)[M].科学出版社,2004:1-13.
    [2]Cho.S.M. Uncertainty Analysis of Heat Exchanger Thermal-Hydraulic Designs[J]. Heat Transfer Engineering,1987,8(2):63-74.
    [3]Steinhagen R., Steinhagan H.M., Maani K. Problems and Costs due to Heat Exchanger Fouling in New Zealand Industries[J]. Heat Transfer Engineering.1983,14(1).
    [4]Muller-Steinhagen H., Zhao Q. Investigation of low fouling surface alloys made by ion implantation technology[J]. Chemical Engineering Science.1997,52(19):3321-3332.
    [5]Foerster M., Augustin W., Bohnet M. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J]. Chemical Engineering and Processing. 1999,38(4-6):449-461.
    [6]Q. Zhao, Y. Liu. Investigation of graded Ni-Cu-PTFE composite coatings and their antiscaling properties[J]. Applied Surface Science.2004,229:56-62.
    [7]Leidenfrost, J.G., On the Fixation of Water in Diverse Fire[J], Int. J. Heat Mass Transfer, 1966,9:1153-1166.
    [8]E.F.C.Somerscales. Fouling of Heat Transfer Equipment: An Hisorical Review[J]. Heat Transfer Engineering,1990,11(1):82-86.
    [9]E.N.Sieder. Application of Fouling Factors in the Design of Heat Exchangers[M]. Heat Transfer.New York:ASME,1935:82-86.
    [10]D.Q.Kern,R.E.Seaton. A Theoretical Analysis of Thermal Surface Fouling[J]. British Chemical Engineering.1959,4(5):258-262.
    [11]Taborek J, Aoki T. Fouling: The Major Unresolved Problem in Heat Transfer[J]. Chem.Eng.Prog.,1972,68(7):69-78.
    [12]Beal S.K. Deposition of Particles in Turbulent Flow on Channel or Pipe Walls. Nucl.Sci.Eng..1970,40:1-11.
    [13]M.Jamialahmadi, R.Blochl, Muller-Steinhagen. Bubble Dynamics and Scale Formation during Boiling of Aqueous Calcium Sulphate Solutions[J]. Chem.Eng. Process., 1989,26:15-26.
    [14]张少峰,刘燕.换热设备防除垢技术[M].北京,化学工业出版社,2003:50.
    [15]E.F.C.Somerscales, J.G.Knudsen. Fouling of Heat Transfer Equipment[M]. Washington: Hemisphere Publishing Corporation,1981:1-25,701-734.
    [16]全贞花.碳酸钙于换热表面结垢与物理抗垢的实验及机理研究[D].北京工业大2007:6-7.
    [17]周晓慧,孙永红.循环冷却水阻垢剂的研究现状及展望[J].辽宁化工,2003,32(12):521-524.
    [18]何俊,赵宗泽,李跃华等.物理方法除垢阻垢技术的研究现状及进展[J].工业水处理,2010,30(9):5-9.
    [19]胡晓花.电、磁、超声复合作用于水处理方面的应用研究[D].山东大学,2006:64-65.
    [20]徐志明,杨善让,孙灵芳等.波纹管污垢特性的试验研究[J].工程热物理学报,2001,22(4):477-480.
    [21]陈克平,张锁龙,王少城.波纹管污垢性能试验研究[J].石油化工设备,2008,37(4):8-10.
    [22]张仲彬,徐志明,邵天成.波纹管传热与污垢特性的实验研究[J].华北电力大学学报,2007,34(5):68-70.
    [23]宋景东,徐志明,甘云华等.波纹管传热与污垢性能的实验研究[J].东北电力学院学报,2003,23(1):6-9.
    [24]Zeng Li-ding, Zhu Dong-sheng, Qian Song-wen, WU Zhi-jiang. Characteristics of Fouling in Spirally Indented and Experimental Investigation of Fouling Prevention陕西科技大学学报[J],2008,26(2):12-15.
    [25]Juin Chen,Hans Muller-Steinhagen,Geoffrey G.Duffy. Heat transfer enha-ncement in dimpled tubes. Applied Thermal Engineering[J].2001,(21):535-547.
    [26]徐志明,杨善让,甘云华.螺旋槽管传热与污垢性能的实验研究[J].热科学与技术2003,2(2):136-139.
    [27]朱冬生,曾力丁,钱颂文.轧槽管的污垢特性及其防垢性能实验研究[J].流体机械,2007,35(4):9-11.
    [28]帅志明,冯海仙.螺旋槽管结垢试验研究[J].中国电机工程学报.1994,14(02).7-12.
    [29]王建国,徐志明,周立群等.缩放管污垢性能的实验研究[J].工程热物理学报,2005,26(4):686-688.
    [30]詹海波,张仲彬,邵天成等.缩放管流动阻力与传热性能的实验研究[J].东北电力大学学报,2007,27(1):42-44.
    [31]徐志明,张仲彬,詹海波等.缩放管混合污垢特性的实验研究[J].工程热物理学报,2008,29(2):320-322.
    [32]谭昌瑶,三钧石.实用表面工程技术[M].北京:新时代出版社,1998:l-8.
    [33]王燕.磁控溅射纳米表面池沸腾传热与防垢[D].天津:天津大学,2006:34-35.
    [34]Steinhagen H.M, Zhao Q. Reduction of scale formation under pool boiling conditions by ion implantation and magnetron sputtering on heat transfer surface[J]. Heat Transfer Engineering,1999,20(2):6-14.
    [35]Scholz J,Nocke G, Hollistein F,etal. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties[J]. Surface and Coatings Technology.2005,192(3):252-256.
    [36]Lee J.,Kim T.J.,Kim M.H. Experimental Study on the Heat and Mass of Teflon-Coated Tubes for the Latent Heat Recovery[J]. Heat Transfer Engineering.2005.26(2):28-37.
    [37]任晓光.在池沸腾和流动沸腾装置中处理表面上硫酸钙结垢过程研究[D],大连,大连理工大学,1999.
    [38]任晓光,刘长厚,赵起.传热表面对电解质溶液孛CaSO4结垢过程约影响[J].化工学报,2001,52(7):65-56.
    [39]任晓光,李翠清,刘长厚,赵起等.在过冷流动沸腾期间硫酸钙污垢形成过程研究[J].化学工程,2002,30(5):20-24.
    [40]任晓光,李铁凤,赵起等.池式沸腾条件下CaSO4污垢生成的实验研究[J].化学工程,2006,34(3):13-16.
    [41]A.Al-Janabi,M.R.Malayeri,H.Muller-Steinhagen. Experimental fouling investigation with electroless Ni-P coatings[J]. International Journal of Thermal Science,49 (2010): 1063-1071.
    [42]程延海,邹勇,程林等.磷含量对化学镀Ni-P层抗垢性能与抗蚀性能的影响[J].人工晶体学报,2008,10:1210-1214.
    [43]高明,孙奉仲,曲超,史月涛,王妮妮.不同换热管表面抗垢性能的试验[J].山东大学学报,2005,10(5):33-36.
    [44]王兴海,刘天庆.碳酸钙在加热铜基表面结垢诱导期实验研究[J].化学工程,2000,28(2): 31-33.
    [45]Q. Zhao, Y. Liu. Electroless Ni-Cu-P-PTFE composite coatings and their anticorrosion properties[J]. Surface & Coatings Technology,200(2005):2510-2514.
    [46]Q.Zhao, Y Liu, E.W.Abel. Effect of Cu content in electroless Ni-Cu-P-PTFE Composite coatings on their anti-corrosion properties[J]. Materials Chemistry and Physics,87 (2004) 332-335.
    [47]Q.Zhao, Y.Liu, C.Wang. Effect of Surface Free Energy on the Adhesion of Biofouling and Crystalline Fouling[J]. Chemical Engineering Science,60(2005):4858-4865.
    [48]杨庆峰,顾安忠,丁洁等.换热面上碳酸钙的结垢行为及垢形[J].化工学报,2002,53(9):924-929.
    [49]李娟,葛圣松.自组装技术在金属防护中的应用研究进展[J].当代化工,2011,40:180-182.
    [50]闫洪.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999:208.
    [51]李宁,袁国伟,黎德育等.化学镀镍基合金理论与技术[M].哈尔滨工业大学出版社2000:12-45.
    [52]高岩.化学镀纳米晶 Ni-M-P合金镀层的制备、微观结构和耐蚀性能[D].华南理工大学,2005.
    [53]Graham A Ⅱ. The Structure and Mechanical Properties of Flectroless Nickel [J]. Journal of the Electrochemical Society,1965,112(4):401-412.
    [54]Kazuyuki S, Ueno N. Composition and Crystallinity of Electroless Nickel [J]. Plating,1984,131 (1):111-116.
    [55]Baskaran I, Sankara Narayanan T S N, Stephen A. Effect of Accelerators and Stabilizers on the Formation and Characteristics of Electroless Ni-P Deposits[J]. Materials Chemistry and Physics,2006,99(1):117-126.
    [56]任晓光,刘嘉敏,刘长厚等.表面离子注入降低池式沸腾条件下CaSO4污垢生成[J].高校化学工程学报,2001,15(5):415-419.
    [57]YanHai Cheng, Yong Zou, Lin Cheng. Effect of the microstructure on the anti-fouling property of the electroless Ni-P coating[J]. Materials Letters,2008,62:4283-4285.
    [58]Gao Y,Zheng ZJ.Zhu M,et al. Corrosion resisitance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures [J]. Materials Science and Engineering, 2004,381:98-103.
    [59]冯婧.高温热泵换热器表而化学复合镀Ni-P-PTFE的防垢研究[D].广东工业大学2010:48.
    [60]Melia, T. P. Crystal nucleation from aqueous solution[J]. Journal of applied Chemistry, 1965,15:345-357.
    [61]周剑平.精通Matlab7.0[M].北京:北京航空航天大学出版社,2004:212.
    [62]王丰,冀守礼,周筠清等译.传热学[M].北京:高等教育出版社,1987,399.
    [63]H.M. Kurihara, J.E.Myers. The effects of superheat and surface roughness on boiling coefficients [J]. AIChE J.1960:83-91.
    [64]T. Hinrichs, E. Hennecke, H. Yasuda. The effect of plasma-deposited polymers on the nucleate boiling behavior of copper heat transfer surfaces[J]. Int. J. Heat Mass Transfer, 24(8)(1981):1359-1368.
    [65]Malayeri M R,Muller-Steinhagen H,Bartlett T H. Fouling of tube bundles under pool boiling conditions[J]. Chemical Engineering Science.2005,60:1503-1513.
    [66]杨善让,徐志明.换热设备的污垢与对策[M].北京:科学出版社,1995: 32-33.
    [67]Jamialhmadi M, Blochl R, Muller-Steinhagen H. Bubble dynamics and scale Formation during boiling of aqueous calcium sulphate solutions[J]. Chem. Eng. Process,1989,26: 15-26.
    [68]Gill J S, Nancollas G H. Kinetics of growth of calcium sulphate crystals at heated metal surface[J]. Crystal Growth,1980,48:34-40.
    [69]Johnson J R,de la Pena J. Mesle R B. Bubble shapes in nucleate boiling[J]. J. Am. Inst. Chem. Eng. Sci.,1966,10:344-348.
    [70]Palen J W, Westwater W. Heat transfer and fouling rates during poolboiling of calcium sulphate solutions. Chem.Engng Prog.Symp. Ser,1977,62:77-86.
    [71]Bohnet,M. Fouling of Heat Transfer Surface[J]. Chem.Eng.Tech.1987,10:113-125.
    [72]Konak A R. A new model for surface reaction-controlled growth of crystals from solution[J].Chemical Engineering Science.1974,29:1537一1543.
    [73]Bohnet.M..Fouling von Warmebertragungs-flachen(Fouling of heat transfer Surfac)[J]. VDI-Berichte.1985.567:1043-1071.
    [74]任晓光.在池沸腾和流动沸腾装置中处理表面上硫酸钙结垢过程研究[D].大连理工大学,1999:81-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700