金属表面超细颗粒自组装改性及抗结垢性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对碳纳米管和聚四氟乙烯超细颗粒进行活化处理,用分子自组装技术在金属表面制备复合粗糙表面,然后检测改性后表面的憎液性及抗结垢性能。
     首先,用酸洗法纯化碳纳米管,然后用高温酸氧化法活化碳纳米管。用透射电镜和X射线光电子能谱分析仪表征纯化、活化两种状态下的颗粒表面结构形貌和价键状态。实验结果表明,高温酸氧化法能有效活化并切短碳纳米管,使碳纳米管颗粒表面生成羧基等活性官能团。
     将表面抛光处理后的金属基片(银、铜)放在十六烷溶液中进行氨基十一酸分子连接,用扫描电镜和X射线光电子能谱分析仪对分子接枝后的金属表面形貌和价键状态进行表征,并选择连接性能较好的金属铜做进一步实验测试。
     在铜表面进行碳纳米管及PTFE超细颗粒的自组装,然后用扫描电镜和X射线光电子能谱分析仪表征自组装后表面的形貌和价键状态。实验结果表明,碳纳米管和聚四氟乙烯超细颗粒通过携带的羧基官能团与铜元素以配位化学键结合,强烈的吸附在基片表面。
     最后,用接触角测量仪检测基片表面在连接颗粒前后的润湿性变化,分析其原因;用扫描电镜表征自组装前后基片表面的结垢变化,研究其机理。实验结果表明:金属表面进行颗粒自组装后,其憎液性及抗结垢性能都有一定提高。自组装表面形成的低表面能薄膜和表面微/纳米结构,有效提高了基片表面的表面接触角,并且增大了在基片表面形成垢粒所需的自由能,减弱结垢倾向。
     改性后的表面有望应用于金属抗垢及强化传热等领域。
Ultrafine polytetrafluoroethylene (PTFE) particles and carbon nanotubes (CNTs) were activated successfully and then were self-assembled on the metal surface. Both the anti-wetting and anti-fouling capability of modified material surface were characterized.
     First, the raw CNTs were purified by diluted nitric acid solution. Then, the purified CNTs had been activated by seething dense nitric acid solution for 4 hours. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were employed to characterize the purified and activated CNTs. The results indicate:the seething dense nitric acid solution could effectively break CNT particles and activate their surface. The carbonyl and carboxyl groups were formed on the CNT particles’surface after activated in the seething dense nitric acid solution.
     The 11-Aminoundecanoic acid [NH2(CH2)10COOH] molecules were grafted on the polished and activated metal surface in the cetane. Scanning electron microscopy (SEM) and XPS were employed to characterize the grafted metal surface. The most active metal surface was chosen for particles-grafting experiments.
     CNTs and PTFE particles were self-assembled on the copper surface which was characterized by SEM and XPS. The results indicate:CNTs and PTFE particles could combine with copper atom by the carboxyl groups and then adsorb on the copper surface intensively.
     In the end, the contact-angle measurement was employed to characterize the difference of wetting between the raw copper surface and the treated one; SEM was used to detect the change of anti-fouling capability before and after self-assembling treatment. The mechanism was then analyzed. The results indicate:After having been self-assembled, the anti-wetting and anti-fouling capabilities of copper surface were improved greatly. The self-assembled process could improve the contact-angle of the surface effectively, and debase the tendency of being fouling.
     Modified material surface can be used in many fields such as anti-fouling, anti-contamination and heat transfer enhancement.
引文
[1] 吴敏,张征林等,碳纳米管的研究及应用,化工时刊,2001,15(12):1~4
    [2] 木士春,唐浩林,钱胜浩,潘牧,袁润章,Performance of hydrogen storage of carbon nanotubes decorated with palladium,Transactions of Nonferrous Metals Society of China,2004,14(5):996~999
    [3] Kuo Deshan,Chen Polin,The Pattern Growth of Carbon Nanotubes by Self-assembled Monolayers Techniques,材料导报,2004,18(8):79~83
    [4] 钟俊,宋礼,买买提依明·阿巴斯,单壁碳纳米管的纯化过程研究,核技术,2004,27(12):935~938
    [5] 刘强,张晓宇,碳纳米管力学性质的理论研究进展,江苏航空,2005,3:12~14
    [6] 周亮,刘吉平等,碳纳米管的纯化,化学通报,2004,67(2):96~103
    [7] Xiaolin Nan,Zhennan Gu,Zhongfan Liu,Immobilizing Shortened Single-Walled Carbon Nanotubes (SWNTs) on Gold Using a Surface Condensation Method,Journal of Colloid and Interface Science,2002,245:311~318
    [8] 姜靖雯,彭峰,碳纳米管的性质和制备方法,广州化工,2003,31(2):1~3
    [9] 李权龙,袁东星,林庆梅,多壁碳纳米管的制备,化学学报,2003,61(6):931~936
    [10] 凌晨,陈理,刘唐,魏飞,汪展文,铁基催化剂裂解乙烯制备高纯度碳纳米管,石油化工,2005,34(6):569~572
    [11] 王宗花,罗国安,碳纳米管在分析化学领域的研究进展,分析化学,2003,31(8):1004~1009
    [12] 江奇,赵勇,卢晓英,碳纳米管的活化处理及对其电化学容量影响的研究, 化学学报,2004,62(8):829~832
    [13] 康诗钊,崔泽一,穆劲,碳纳米管的制备、修饰及其应用,光电子技术,2005,25(1):56~62
    [14] 孙颖,王华平,张玉梅,碳纳米管的化学修饰,材料导报,2004,18(F10):106~108
    [15] 晋卫军,孙旭峰,王煜,碳纳米管溶解性及其化学修饰,新型炭材料,2004,19(4):312~318
    [16] 余荣清,程大典,詹梦熊等,液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究,化学通报,1996,(4):25~26
    [17] 陈小华,陈传盛,孙磊,李文华,杨植,碳纳米管的表面修饰及其在水中的分散性能研究,湖南大学学报:自然科学版,2004,31(5):18~21
    [18] 陈长伦,何建波,刘锦淮,羧基化多壁碳纳米管修饰微铂电极对 CO 的电催化作用,化学通报,2004,67(8):631~631
    [19] 曹茂盛,邱成军,朱静,碳纳米管表面修饰的研究进展,航空材料学报,2003,23(4):59~62
    [20] 王垚,黄巍,魏飞,罗国华,余皓,艾合麦提江,碳纳米管的高温处理及表征,高等学校化学学报,2003,24(6):953~957
    [21] 曹清,陈召勇,李言荣,邓新武,蔡帝,碳纳米管纯化的研究进展,电子元件与材料,2004,23(9):37~40
    [22] 谢苏江,聚四氟乙烯的改性及应用,化工新型材料,2002,30(11):26~30
    [23] 周成飞,高分子辐射材料的研究进展,化工新型材料,2003,31(9):19~21
    [24] 许观藩,罗云霞,杨弘,聚四氟乙烯微粉辐照接枝苯乙烯的 XPS 研究,高分子学报,1994,(2):226
    [25] 卢婷利,梁国正,杨洁颖等,聚四氟乙烯膜辐射接技反应条件的研究,辐射研究与辐射工艺学报,2003,21(4):251~255
    [26] 余红伟,赵秋光,王源升,高分子材料表面接枝的方法及应用,胶体与聚合物,2003,21(3):34~38
    [27] 周茂堂,王世才,陈捷,辉光放电处理聚四氟乙烯 Ⅱ. PTFE表面结构的 XPS表征,应有化学,1990,7(6):82~84
    [28] 姚文清,朱永法,曹立礼,聚四氟乙烯薄膜表等离子体表面改性的研究,材料工程,1997,12:25~28
    [29] 陈晓东,胡元洁,孙瑞焕,利用乙醇等离子体对 PTFE 进行表面改性,辐射研究与辐射工艺学报,1998,16(4):209~212
    [30] 陈晓东,孙瑞焕,王建祺,聚四氟乙烯的 CH4/O2 混和气体等离子体表面亲水改性研究,辐射研究与辐射工艺学报,2000,18(1):25~29
    [31] 方志,邱毓昌,罗毅,用大气压下空气辉光放电对聚四氨乙烯进行表面改性,西安交通大学学报,2004,38(2):190~194
    [32] 方志,罗毅,邱毓昌等,空气中大气压下低温等离子体对聚四氟乙烯进行表面改性的研究,真空科学与技术,2003,23(6):408~412
    [33] 刘际伟,高晓敏,冯敏,聚四氟乙烯射频等离子体表面改性研究,表面技术,2004,33(1):65~67
    [34] 陈江红,陈阳,李爱成,离子注入技术的发展及其应用,电子工业专用设备,2004,33(5):64~66
    [35] 满宝元,吕国华,张运海等,离子束注入对聚四氨乙烯表面改性研究,原子与分子物理学报,2004,4(增刊),304~306
    [36] 郭金彦,张军营,孙明明等,熔融法处理聚四氟乙烯表面的改进,中国胶粘剂,2000,9(3):21~23
    [37] 韦亚兵,钱翼清,聚四氟乙烯薄膜表面光接枝改性的 ESCA 研究,南京化工大学学报,1999,21(2):65~67
    [38] 李子东,王素英,于敏,钠-萘处理液的制备及其对聚四氟乙烯的处理,化学与粘合,1995,(3):139
    [39] 黄绍钧,甘爱群,聚四氟乙烯表面力化学处理及表面形态研究,表面技术,1993,22(5):209~213
    [40] 周洪庆,杨南如,凌志达,PTFE 基复合材料表面改性研究,功能材料,1998,29(3):330~332
    [41] S. Shibuichi,T. Yamamoto,T. Onda et al. Water- and oil-repellent surfaces resulting from fractal structure,Journal of Colloid and Intersurface Science,1998,208:287~294
    [42] Satoshi Shibuichi,Tomohiro Onda,Naoki Satoh et al. Super water-repellent surface resulting from fractal structure,Journal of Physical Chemistry,1996,100:19512~19517
    [43] Kiyoharu Tadanaga,Noriko Katata,Tsutomu Minami,Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,Journal of American Ceramic Society,1997,80(12):3213~3216
    [44] Wei chen,Alexenander Y. fadeev,Meng Che Hsieh et al. Ultrahydrophobic and ultralyophobic surface :some comments and examples,Langmuir,1999,15:3395~3399
    [45] 岳丹婷,李品芳,李青等,滚动脱落实现滴状冷凝的分析,大连海事大学学报,1999,25(1):95~98
    [46] José Bico,Uwe Thiele,David Quéré,Wetting of textured surfaces,Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,206:41~46
    [47] 李书宏,冯琳,李欢军等,柱状结构阵列碳纳米管膜的超疏水性研究,高等学校化学学报,2003,24:340~342
    [48] Jeffrey P. Youngblood,Thomas J. McCarthy,Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma,Macromolecules,1999,32:6800~6806
    [49] I. Woodward,W. C. E. Shofield,V. Roucoules,Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films,Langmuir,2003,19:3432~3438
    [50] D.Richard,D.Quéré,Bouncing water drops,Europhysics Letters,2000,50(6):769~775
    [51] W.Barthlott,C. Neinhuis,Purity of the sacred lotus escape from contamination in biological surfaces,Planta,1997,202:1~8
    [52] 翟锦,李欢军,李英顺等,碳纳米管阵列超双疏性质的发现,物理,2002,31(8):483~486
    [53] 李欢军,王贤宝,宋延林等,超疏水多孔阵列碳纳米管膜,高等学校化学学报,2001,22:759~761
    [54] Je-deok Kim, Kyoung-hwang Lee, Lyu-yong Kim et al. Characteristics and high water-repellency of a-C:H films deposited by PECVD,Surfaces and Coating Technology,2003,162:135~139
    [55] J. Jansta,Water capture by a desert beetle,Nature,2001,414:33~34
    [56] C. Neinhuis,W. Barthlott,Characterization and distribution of water-repellent,self-cleaning plant surfaces,Annals of Botany,1997,79:667~677
    [57] S. Veeramasuneni,J.Drelich,J. D. Miller et al. Hydro-phobicity of ion-plated PTFE coatings,Progress in Organic Coatings,1997,31:265~270
    [58] Atsushi Hozum,Osamu Takai,Preparation of ultra water-repellent films by microwave plasma-enhanced CVD,Thin Solid Films,1997,303:222~229
    [59] C.W. Extrand,Y. Kumagai,An experimental study of contact angle hysteresis,Journal of Colloid and Interface Science,1997,191:378~383
    [60] S.Pilotek,H.K.Schmidt,Wettability of microstructured hydrophobic sol-gel coatings,Journal of Sol-Gel Science and Technology,2003,26:789~792
    [61] J.Kijilstra,K.Reihs,A.Klamt,Roughness and topology of ultra hydrophobic surfaces,Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,206:521~529
    [62] 李文彬,物理化学,天津:天津大学,1995:56~58
    [63] Zen Yoshimitsu,Akira Nakajima,Toshiya Watanabe et al. Effect of surface structure on the hydrophobicity and sliding behavior of water droplets,Langmuir,2002,18:5818~5822
    [64] C. W. Extrand,Model for contact angles and hysteresis on rough and ultraphobic surfaces,Langmuir,2002,18:7991~7999
    [65] Th. Uelzen,J. Müller,Wettability enhancement by rough surfaces generated by thin film technology,Thin Solid Films,2003,434:311~315
    [66] J. Bico,C. Marzolin,D. Quéré,Pearl drops,Europhysics Letters,1999,47:220~226
    [67] Akira Nakajima,Kazuhite Hashimoto and Toshiya Watanabe,Transparent superhydrophobic thin films with self-cleaning properties,Langmuir,2000,16:7044~7047
    [68] S. Herminghaus,Roughness-induced non-wetting,Europhics Letters,2000,52:165~170
    [69] Masashi Miwa,Akira Nakajima,Akira Fujishima et al. Effects of the surface roughness on sliding angles of water droplets on superhydropobic surfaces,Langmuir,2000,16:5754~5760
    [70] Charles W. Exrand,Y. Kumagai,Liquid drops on an inclined plane: the relation between contact angles,drop shape,and retentive force,Journal of Colloid and Interface Science,1995,170:515~521
    [71] Didem ?ner,Thomas,J. McCarthy,Effect of topography length scales on wettability,Langmuir,2000,16:7777~7782
    [72] P. Roura,J. Fort,Comment on “Effect of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces”,Langmuir,2002,18:566~569
    [73] C. W. Extrand,A thermodynamic model for wetting free energies from contact angles,Langmuir,2003,19:646~649
    [74] Sabahudin Hrapovic,Yali Liu,Cary Enright et al. New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,Langmuir,2003,19:3958~3965
    [75] B. S. Hong,J. H. Han,S. T. Kim et al. Endurable water-repellent glass forautomobiles,Thin Solid Films,1999,351:274~278
    [76] J. D. Miller,S. Veeramasuneni,J. Drelich et al. Effect of roughness as determines by atomic force microscopy on the wetting properties of PTFE thin films,Polymer Engineering and Science,1996,36:1849~1855
    [77] Hideo Nakae,Ryuichi,Yosuke Hirata,Effect of surface roughness on wettability,Acta Mater,1998,46:2313~2318
    [78] M. Izumi,M. Oh-uchi,S. Takahashi et al. Effect of obliquely scratched surface-roughness on heat transfer during condensation,International Chemical Engineering,1990,30(2):289~296
    [79] Goro Yamauchi,Jan D. Miller,Hiroyuki Saito et al. The wetting characteristics of PTFE particulate composites,Materials Transaction(JIM),1996,37(4):721~728
    [80] G.Yamaauchi,J. D. Miller,H. Saito et al. Wetting characteristics of newly developed water-repellent material,Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,116:125~134
    [81] S. J. Hitchcock,N. T. Carroll,M. G. Nicholas,Some effects of substrate roughness on wettability,Journal of Materials Science,1981,16:714~732
    [82] T. Onda,S. Shibuichi,N. Satoh et al. Super-water-repellent fractal surfaces,Langmuir,1996,12(9):2125~2127
    [83] Yoshihito Kunugi,Toshio Fuchigami,Tsutomu Nonaku,Electrolysis using composite-plated electrodes,Journal of Electro Chemistry,1990,287:385~388
    [84] Yoshihito Kunugi,Tsutomu Nonaku,Electro-organic reaction on organic electrodes,Journal of Electro Chemistry,1993,353:209~215
    [85] David Quéré,Rough ideas on wetting,Physica A,2002,313:32~46
    [86] 左理胜,姜建平等,脱硫装置污水汽提系统结垢原因分析,石油化工腐蚀与防护,2003,20(1):55~57
    [87] 陆永祺,姜山,朱天乐氧化镁脱硫结垢研究,环境污染治理技术与设备,2003,4(5):19~22
    [88] 赛俊聪,吴少华,汪洪涛,秦裕琨,一种湿法烟气脱硫方式的试验研究,热能动力工程,2003,18(5):467~470
    [89] 陈绍敏,湿式石灰石—石膏法脱硫运行中存在的问题分析与研究,重庆电力高等专科学校学报,2002,,7(2):19~23
    [90] 徐永军,李仁波,空分设备冷却器的酸洗除垢及维护,深冷技术,2005,1,54~55
    [91] 纪永亮,防止垢附着的方法,水处理信息报导,2005,3,34~36
    [92] 刘世宏,王当憨,潘承璜,X 射线光电子能谱分析,北京:科学出版社,1988:67~77
    [93] 徐保国,聚四氟乙烯的表面活化与接枝,化学与粘合,1996,4:206~208
    [94] 杨祖荣,Yoon woon—Young.Frederick W J 蒸发器中结垢速率研究 [J]. 化工学报,1992,43(2):154~159
    [95] 邸军,杨富华,浅谈循环冷却水系统中的水处理,低温与特气,2001,19(3): 2~3
    [96] 王新祥,换热设备结垢机理的研究进展,现代化工,2002,22(4):22~25
    [97] 程立新,杨杰辉,换热设备防结垢技术进展,石油化工设备,2000,29(4):22~25
    [98] S. M. Barlow,K. J. Kitching,S. Haq. A study of glycine on Cu surface using reflection absorption infrared spectroscopy,Surface Science,2003,401: 322~335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700