种分母液蒸发过程中的结垢与防垢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在种分母液蒸发过程中,受平衡浓度的影响,碳酸钠等杂质容易在加热器壁上生成结垢,从而严重影响传热和物料流动,甚至阻塞管道,影响生产的正常进行。研究种分母液蒸发过程中结垢的形成规律以及防垢添加剂对减缓结垢的影响,寻找适宜的防垢措施,对氧化铝工业具有十分重要的实际应用价值。
     论文在对国内外氧化铝生产系统结垢现状和研究动态做了全面了解的基础上,采用对比实验法,研究了种分母液蒸发过程中加热面结垢的形成规律以及防垢添加剂对减缓蒸发过程加热面结垢的影响,结果表明添加GR-4、GR-5等阻垢剂效果明显,可降低结垢量60%~70%,有效减缓加热面结垢的形成速度,并且可以抑制溶液中硅的析出。同时,添加阻垢剂GR-4、GR-5等可使加热面结垢松散,易于清洗。实验确定了阻垢剂GR-4的添加量和添加工艺,研究结果为阻垢剂的工业应用提供了详细准确的工艺参数和理论指导。
     对种分母液蒸发过程中添加阻垢剂的阻垢机理进行了研究和讨论,结果表明:GR-4阻垢剂能大幅度降低蒸发溶液的表面张力,产生凝聚-分散作用,起到阻垢效果。
     根据实验室研究结果,某氧化铝厂蒸发生产上应用GR-4阻垢剂,生产运行情况表明:添加GR-4阻垢剂可有效减缓蒸发器的结垢速率,延长设备运行时间和清理周期,有利于提高蒸发效率和降低生产成本。
Impurities such as Na_2CO_3 etc easily precipitate to result in the formation of scale on the wall of heater during the evaporation process of spent liquor from seeded precipitation process, which badly influences the heat diffusion and material flow of this process, even block pipe. This is harmful to the production process. Therefore, investigation on the formation law of scale in the evaporation process of spent liquor from seeded precipitation process, study on the influence of anti-scale addictives on the retarding scaling and adoption of proper anti-scale measure are to regard as have a great applying prospect for alumina industry.
     The formation law of scale on the heating surface and the effect of various anti-scale addictives on the retarding scaling of heating surface during the evaporation process of spent liquor were studied in this paper. Results indicate that addictive type GR-4 and GR-5 etc can effectively retard the formation rate of scaling on the heating surface, restrain SiO_2 from precipitation and decrease the scale yield by 60~70%. Meanwhile, scale occurred on the heating surface can be easily cleaned because it becomes unconsolidated after adding addictive type GR-4, GR-5 etc in the evaporation process. The addition content and addition technology of anti-scale addictive type GR-4 are also determined through experimentation. Results of research on anti-scale addictive type GR-4 can provide a favorable reference for industrial application of scale inhibitor.
     Subsequently, the anti-scale mechanism of addictive during the evaporation process of spent liquor was investigated and discussed. Results show that scale inhibitor type GR-4 can greatly reduce the interfacial force of evaporating liquor and has flocculation and dispersion effect on the system, which contributes to anti-scale action.
     Industrial experimentation was performed in some alumina refinery of CHALCO according to the laboratory results. The result demonstrates that scale inhibitor type GR-4 can effectively retard the formation rate of scaling on the evaporator, prolong the run time of equipment and cleaning period. It is propitious to improve the efficiency of evaporation and decrease the production cost.
引文
[1] Satpathy B K, Mohanty R C. Development of special grade hydrate and alumina[C]. Light Metals, 1996: 11~16
    [2] 申慧.世界铝土矿和氧化铝的发展趋势[J].有色金属工业,2003,(8):24~28
    [3] 姚育弘,关西安,王俐,等.氧化铝工业可持续发展战略研究[J].世界有色金属,1999,11:4~7
    [4] 周国宝.略论发展我国氧化铝工业战略取向[J].世界有色金属,2004,1:25
    [5] 赵清杰,陈建华.中国氧化铝工业发展战略措施探讨[J].镁铝通讯,2001,3:1~4
    [6] 杨巧芳,赵清杰.我国氧化铝工业现状及世纪初发展战略探讨[J].世界有色金属,2001,3:24~26
    [7] 陶英君,杨玉华.我国氧化铝发展现状与发展建议[J].轻金属,1998,7:3~9
    [8] 黄国智,方启学.铝土矿脱硅技术研究进展[J].轻金属,1999,3:41~43
    [9] 陈咸章.当前我国氧化铝生产中的几个问题[J].有色金属,1999,3:26~28
    [10] 方启学,钮因健,黄国智.我国铝土矿资源综合分析[J].世界有色金属.2000,2:9~12
    [11] 王福兴.我国氧化铝工业发展战略.我国氧化铝工业发展战略研讨会第七届全国氧化铝学术会议论文集.四川峨眉.1992:35~50
    [12] 何波.我国氧化铝工业发展方向.第八届全国氧化铝学术会议暨第九届氧化铝技术信息交流会论文集.山西.1996:18~22
    [13] 曹异生,唐健.氧化铝工业现状和前景分析[J].世界有色金属,2003,12:11~14
    [14] 杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991.32~46
    [15] 顾青松.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2004,14(5):94~96
    [16] 邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状与分析[J].采矿技术,2001,6:53~55
    [17] 邵志博.中国氧化铝工业的发展方向[J].世界有色金属,1999,3:8~12
    [18] Shuren Guan. Measures for saving energy in alumina production[C]. Light Metals, 1990:1011~1014
    [19] Zheng S G. Improvements of hydrometallurgical flowsheet in soda-lime sintering process[C]. Light Metals, 1999:77~83
    [20] Yan D O, Li H L. Discussion on heat consumption in the manufacture of alumina by soda-lime sintering process[C]. Light Metals, 1990:157~160
    [21] 梁大伟.氧化铝生产中结疤的形成与防治:[硕士学位论文].长沙:中南大学,2005
    [22] Adamson A N,Bloore E J,Carr A R.Basic principles of bayer process design[J].J Extr Met of Aluminum,1963, (1):23~27
    [23] Murakami M.Aspect of desilication kinetics with recycled seed[A].Light Metals[C].Warrendale:TMS, 1992.113.
    [24] 杨桂丽,娄世彬.拜耳法种分母液蒸发过程中钠盐析出规律的试验研究[J].轻金属,2006,(9):18~21
    [25] Jamialah madi M,Muller-Steinhagen h.Determining silica solubility in bayer process liquor[J].JOM, 1998, (11):44~49.
    [26] 梁春来.溶出自蒸发和种分母液的Na_2CO_3、Na_2SO_4平衡溶解度试验研究[J].世界有色金属,1999,(6):25~28
    [27] 毕诗文.氧化铝生产工艺[M].化学工业出版社.2006.202~210
    [28] 中南大学氧化铝研究所.种分母液蒸发研究报告.2006
    [29] Yamada K.拜耳法生产中结疤的性质.国外氧化铝新技术文集.1986,(2):17~18
    [30] PAN3AH Β.Л.氧化铝生产中热交换器加热表面结疤的动力学分析.国外氧化铝新技术论文集.1987,(4):3~6
    [31] 聂洛斯拉夫斯卡娅.氧化铝厂设备结垢的防治.冶金工业出社.1982
    [32] 杨重愚.氧化铝生产工艺学[M].冶金工业出版社.1992.160~165
    [33] 陈振兴.氧化铝原液蒸发器的结垢与阻垢[J].湿法冶金,1996,59(3):31~35
    [34] 李小斌,彭志宏,刘桂华,等.铝酸钠溶液中二氧化硅的平衡浓度[J].东北大学学报,2002,23(3):251~254.
    [35] 李小斌,刘祥民,刘桂华,等.强化烧结法生产氧化铝新工艺的研究与实践[J].中国有色金属学报,2004,14(6):1031~1036
    [36] 吴若琼,湛雪辉,刘今.防止氧化铝厂结垢的新方法[J].中南工业大学学 报,1992,30(1):45~48.
    [37] 沈钟,王国庭编著.胶体与表面化学.北京:化学工业出版社,1997
    [38] 赵国玺编著.表面活性剂物理化学.北京:北京大学出版社,1984
    [39] 杨金龙.陶瓷粉末颗粒尺寸测试、表征和分散.硅酸盐通报,1995(5):67~77
    [40] Lester A.D chin, Chemical additives in bayer process[C] .Light Metals, 1991,155~158
    [41] T K Hunter, G M Moody.Advances with chemical additives for the alumina industry[C]. Light Metals, 1991,159~165
    [42] A.S. Rothenberg,D.P. Spitzer.New reagents for alumina processing[C]. Light Metals,1989,91~96
    [43] M.S.Wainwright, A.C.Fane. The role of surfactant adsorption in the improved dewatering of alumina trihydrate. Light Metals, 1986,91~96
    [44] 杨志华.聚丙烯酸钠对提高碳母蒸发浓度的作用[J].有色冶金节能,2005,22(2):24~26
    [45] SUITOR J W, MARNER WJ, RITTER R B. The history and status of research in fouling of heat exchangers in cooling water service[J]. Can J Chem Eng, 1977, 55:374~379.
    [46] 郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理[J].油田化学,1984.
    [47] 汪祖模.水质稳定剂[M].上海:华东化工学院出版社,1991.
    [48] SHAHEEN EI, DIXIT N S. Scale reduction insaline water conversion [J]. Desalination, 1973, (13): 187~190.
    [49] 郑邦乾,朱清泉.顺丁烯二酐共聚物的阻垢作用[J].工业水处理,1987,7(3):29~31
    [50] 胡忠诚,肖人卓等.高岭土悬浮液的流变性质.化工学报,1992,13(2):242~245
    [51] R. Blanc, C. Camoin, J.C. Casanova. Characterisation and control of theological properities in engineering ceramics. Key Eng. Mater. 1991,56:227~242
    [52] 方图南,吴湘萍.浓悬浮体的屈服应力和最大填充率.力学学报,1996,28(4):400~405
    [53] 张辉,方图南等.剪切稀化悬浮体流变性的唯象模型.化工学报,1996,47(3):352~356
    [54] S.H. Chang, M.E.Ryan. The effect of PH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheol. Acta ,1993,32:263~269
    [55] 沈一丁.高分子表面活性剂[M].化学工业出版社.2002.181~184.
    [56] 李虎霞,李谦定.聚合物阻垢分散剂研究进展[J].化工时刊.2005,19(9):50~53
    [57] 曹英霞,杨坚,李杰.阻垢剂HEDP和PBTCA阻垢机理探讨[J].同济大学学报.2004,32(4):556-560
    [58] 李裕芳.阻垢剂分散剂控制沉积机理探讨[J].工业水处理.1986,6(4):6~10
    [59] Michael M R, George H N.The crystallization of calcium carbonate[J].Crystal Growth,1971,36(2):166~172
    [60] Xyla A G,Mikroyannidis J,Koutsoukos P G.The inhibition of calcium carbonate recipitation in aqueous media by organophosphorus compounds[J].Colloid and Interface Science,1992,(13):537~551
    [61] Gratz A J,Hillner P E.Poisioning of calcite growth viewed in the atomic force microscope(AFM)[J].Journal of Crystal Growth. 1993,(29):789~793
    [62] 朱志良,张冰如,李继文,等.不同阻垢剂对硫酸钙结晶生长诱导期影响的动力学探讨[J].应用化学.2001,18(3):192~195
    [63] 朱志良,张冰如,苏耀东,等.聚丙烯酸及马丙共聚物对硫酸钙垢阻垢机理的结晶动力学研究[J].工业水处理.2000,20(12):17~21
    [64] 赵彦生.异丙烯膦酸-丙烯酸共聚物的阻垢效果[J]水处理技术,1998,24(1):43~46
    [65] 王永丽,黄少斌.聚天冬氨酸的阻垢机理[J].广东化工.2006,33(8):17~19
    [66] 吴群明.阻垢剂对碳酸钙垢的抑制机理[J].福建轻纺.2006,(8):4~7
    [67] 王成立,顾明,夏明珠.聚合物阻垢剂阻垢机理的分子动力学研究[J].精细化工.2004,21(10):146~149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700