聚丙烯/乙烯-1-辛烯共聚物共混过程瞬态的在线分析及共混物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用啮合同向双螺杆挤出机在不同加工条件下制备了不同共混组成的等规聚丙烯/聚乙烯-1-辛烯(PP/POE)共混物,利用在线小角激光背散射系统(in-line SALS)和扫描电子显微镜(SEM)研究了PP/POE在共混过程中的相分散和相归并过程,并研究了共混物的结晶性能和流变性能。
     使用in-line SALS和SEM对共混过程的瞬态分析表明PP/POE共混物在沿螺杆经加料斗-压缩输送-加热塑化-混合均质的挤出过程中,分散相粒子经历由最初的熔融混合,粒子尺寸较大,混合不均匀到分散混合细化,尺寸减小,分散均匀的过程。在共混过程中存在一个临界粒径尺寸,当粒径小于临界粒径尺寸时,会发生相的聚集,反之是相的分散过程。在本文所使用的原料及加工条件下,临界粒径尺寸为0.25μm(POE含量大于25wt-%时或POE含量20wt-%,转速小于84rpm时)。在沿螺杆距进料口1.33m的位置和口模处,随着分散相含量的增大,粒子间的碰撞聚集作用使分散相尺寸增大,分布宽度变大,分散呈不均匀状态;且当螺杆转速84rpm和共混温度范围210-220℃时,POE在PP中处于最佳分散状态。
     此外,对共混物的相归并过程进行了深入研究。实验结果表明在密炼机中当转子停止转动并降低PP/POE共混物温度时,在共混物发生结晶之前,没有相归并发生,在结晶过程中,有相归并行为;同时在结晶完善时相归并行为终止。且in-line SALS可以比较准确的反映本体系的共混过程。对于PP/POE(20/80),in-line SALS方法可灵敏的检测到PP的受限结晶,结晶温度较PP本体状态低30℃;广角X光衍射(WAXD)测试表明此时PP结晶形态仍为α晶。剪切诱导相归并时,认为PP/POE共混物形态演变应该是分成三段,这三段可以用不同的标度函数来刻画。
     研究了PP/POE共混物的结晶性能,探讨了共混组分对共混物热力学性能的影响。研究了POE的加入对PP等温结晶动力学的影响,结果表明Avrami方程能够较准确地描述共混物等温结晶初期过程;当POE作为分散相时,PP/POE共混物具有两个相对独立的结晶峰和熔融峰;等温结晶、熔融曲线及WAXD谱图分析表明POE的加入对PP的结晶起到了诱导结晶的作用,使得PP的晶粒尺寸变大。观察到当PP以小颗粒分散在POE中时会发生的受限结晶现象。通过TEM直接观察到了PP分散在POE中的形态,且随着PP含量的提高,颗粒形态粗化;相应的DSC及偏光分析表明以小颗粒分散在POE中的PP粒子发生了受限结晶。
     PP/POE体系的流变测试结果表明:温度是影响共混体系粘度的主要因素,温度越高,粘度越低;POE含量越高,体系粘度对温度的敏感性越弱;动态测试条件下,随着温度升高及POE含量的增加,体系的粘度降低,模量值也降低(POE含量10wt-%和20wt-%的组分例外)。动态频率扫描测试中,体系的动态剪切模量G '和动态损耗模量G"随频率的升高而升高,复数粘度η*随频率的升高而降低。不同频率下模量和粘度与POE含量的关系都表明:当POE含量为10wt-%和20wt-%时,共混物的G '和G "具有最高值;当温度为210℃和220℃时,POE含量10wt-%的共混物松弛时间最长。以上结果都说明POE含量为10wt-%或20wt-%的共混物分子链段的相互作用都强于其他组分的共混物,这一结果和PP/POE体系相形态有关。
Isotactic polypropylene/ Poly(ethylene-1-octene) (PP/POE) blends with various blend ratios were prepared in an intermeshing co-rotating twin-screw extruder under different mixing conditions. The morphology development,thermal properties and rheology properties of PP/POE blends were investigated in details by Scanning Electron Microscopy (SEM), In-line Small Angle Laser Scattering (in-line SALS), Differential scanning calorimetry (DSC) and Rotational rheometer.
     The influences of blend composition and processing conditions (mixing time,rotor speed and mixing temperature) on phase morphology development of the blends were investigated by SEM. The experiment result showed the rule of phase morphology evolution of the blends, and the effect of viscoelastic rheological and thermodynamic properties on the rule are given.There are exist an critical particle size below which the phase colascene will be observed. Under the mixing conditions we chose, the critical particle size is 0.25μm. With the dipersed content incresing, the dispersed phase dimension is increased. The optimum mixing conditions is that 84rpm and 210-220℃.
     The solidification process of the blends in intrim mixer is investigated by SEM and in-line SALS. The result shows phase coalescence occurs in the normal cooling process and analysis the reason of it. The confinment crystallization behaviors of PP which the crystallization temperature is lowered than the bulk polymer was first obseverd during the solidification process. WAXD graph incidated that the crystallization structure is not chang. The syudy of shear induce phase coalescence of blends incidates that the morphology development should be composed of three parts. The three parts can be described by various scaling function.
     DSC was used to get the thermodynamic properties of PP/EOC blends. Melting, crystallization behaviors showed that the two components are partly miscible. When the POE dispersed as particles, melting curve and WAXD graph represents that the addition of POE do not affect the crystallizaiton structure of PP. The Avrami equation can be used to describe the isothermal crystallization of PP exactly. When the PP dispersed as particles in POE martix, the morphology of PP was obsevered by TEM in the solution directly. The corresponding DSC analysis indicates that the confinement crystallization is occur in the PP particles.
     The results of rheological measurement on PP/POE blends were list as follow. Temperature was a key factor in viscosity of the pure polymers and blends. The higher temperature the lower activation energy. It showed that viscosities of the blends were less sensitive to temperature. Under the condition of dynamic rheological measurements, viscosities and modulus decreased as temperature and addition of POE increased, except the blends with 10% and 20% POE. Under the condition of dynamic rheological measurement, the dynamic storage modulus, G’, and the dynamic loss modulus, G”increased as the frequency increased. The complex viscosity,η*decreased as the frequency increased. The relation between modulus , viscosity and addition of POE showed that blends with 10% or 20% POE had the highest value. The blends with 10% POE had the longest relaxation time,τx at the temperature 220℃and 230℃. The results all above showed that interaction between molecular chain in blends with 10% or 20% POE were stronger than other blends. This may be related to the brittle-tough transition.
引文
[1]Taylor G I. The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A. 1932, 138: 41~48
    [2]Taylor G I. The formation of emulsions in definable fields of flow. Proc R Soc Lond A. 1934, 146: 501~523
    [3]Cox R G. The deformation of a drop in a general time~dependent fluid flow. J. Fluid. Mech. 1969, 37: 601~623
    [4]Elmendorp J.J, Van Der Vegt A.K. A study on polymer blend microrheology: part IV. The influence of coalescence on blend morphology origination. Polym Eng Sci. 1986, 26(19): 1332~1338
    [5]Sundararajs U, Macosko C.W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules. 1995, 28(8): 2647~2657
    [6]Roland C.M, Bohm G.G.A. Shear-induced coalescence in two-phase polymeric systems. I. Determination from small-angle neutron scattering measurements .J. Polym. Sci. Polym. Phys. Ed. 1984, 22: 79~93
    [8]Scott C.S, Macosko C.W. Morphology development during the initial stages of polymer~polymer blending. Polymer. 1995, 36(3): 461~470
    [9]Plochcki A.P, Dagli S.S, Andrews R.D. The interface in binary mixtures of polymers containing corresponding block copolymer: effects of industrial mixing processes and of coalescence. Polym Eng Sci. 1990, 30: 741~752
    [10]Willemse R.C, Ramaker E.J.J, van Dam J.,et al. Morphology development in immiscible polymer blends: initial blend morphology and phase dimensions. Polymer. 1999, 40(24): 6651~6659
    [11]Sundararaj U, Macosko C.W, Shih C.K. Evidence for inversion of phase continuity during morphology development in polymer blending. Polym Eng Sci. 1996, 36(13): 1769~1781
    [12]Elmendorp J.J, Maalcke R.J. A study on polymer blending microrheology. Polym. Eng. Sci. 1985, 25(16): 1041~1047
    [13]De Bruijn R.A. PhD. Thesis, Eindhoven Uni. Tech. The Netherlands, 1989
    [14]Flumerfelt R.W. Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. Chem. Fundam. 1972, 11: 312~318
    [15]VanOene H. Modes of dispersion of viscosity fluids in flow. J. Colloid Interface Sci. 1972, 40: 448~467
    [16]Han C.D, Funatsu K. An experimental study of droplet deformation and breakup in pressure-driven flows through converging and uniform channels. J. Rheol. 1978, 22: 113~133
    [17]Varanasi P.P, Ryan M.E, Stroeve P. Experimental study on the breakup of model viscoelastic drops in uniform shear flow. Ind. Eng. Chem. Res. 1994, 33: 1858~1866
    [18]Levitt L., Macosko C.W., Pearson S.D. Influence of normal stress difference on polymer drop deformation. Polym. Eng. Sci. 1996, 36(12): 1647~1655
    [19]Wu S. Formation of dispersed phase in incompatible polymer blends: interfacial and theological effects. Polym. Eng. Sci. 1987, 27(5): 335~343
    [20]Lee J.K, Han C.D. Evolution of polymer blend morphology during compounding in an internal mixer. Polymer. 1999, 40(23): 6277~6296
    [21]Lee J.K, Han C.D. Evolution of polymer blend morphology during compounding in a twin~screw extruder. Polymer. 2000, 41(5): 1799~1815
    [22]Shih C.K., Mixing and morphological transformations in the compounding process for polymer blends: The phase inversion mechanism. Polym.Eng.Sci. 1995, 35:1688~1694
    [23] Long Y, Shanks R.A, Stachurski Z H. Kinetics of polymer crystallization. Prog. Polym. Sci. 1995, 20: 651~701
    [24]Song M, Huang Y.H, Sun Z.H,et al. Fractal behavior of spinodal decomposition in polymer blends.Polym.Bull. 1991, 25:515~519
    [25]Izumitani T., Takenaka M, Hashimoto T., Slow spinodal decomposition in binary liquid mixtures of polymers. III. Scaling analyses of later-stage unmixing.J.ChemPhys. 1990, 92:3213~3221
    [26]Takeji Hashimoto, et al. J Chem Phys.1986, 8:123~126
    [27]Vorobyova O. Winnik M.A., In-Line Monitoring of Immiscible Polymer Blends in a Rheometer with a Fiber-Optics-Assisted Fluorescence Detection System.. J Polym Sci Polym Phys. 2001, 39: 2302~2316
    [28]Serral C, Schlatter G, Bouquey M, et al. Online Light Scattering Measurements as a Means to Assess Influence of Extrusion Parameters on Non-reactive Polymer Blend Morphology: Experimental Procedure and Preliminary Results. Can J Chem Eng, 2002, 80:1036~1043
    [29]Coatesa P.D, Barnesa S.E, Sibleya M.G, et al. In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer. 2003, 44: 5937~5949
    [30]Alig I, Fischer D, Lellinger D, et al. Combination of NIR, Ramanm, Ultrasonic and Dielectric Spectroscopy for In-Line Monitoring of the Extrusion Process. Macromol. Symp. 2005, 230:51~53
    [31]Mélo T.J.A, Canevarolo S.V. In-Line Optical Detection in the Transient State of Extrusion Polymer Blending and Reactive Processing. Polym Eng Sci. 2005,45(1) :15~19
    [32]Pinheiro L.A., Hu G.H., Pessan L.A., et al. In-Line Measurements of the Morphological Parameters of PP/PA6 Blends During Extrusion in the Transient Mode. Polym.Eng.Sci. 2008, 48(4):806~814
    [33]Pinheiro L.A., Bitencourt C.S., Pessan L.A., et al. Morphological Parameters of PP/PA6 Blend Measured In-Line During Extrusion. Macromol. Symp. 2006, 245~246
    [34]Zhou J.M, Sheng J. Small angle light backscattering of polymer blends: Multiple scattering. Polymer. 1997, 38: 3727~3731
    [35]Sun H, Gong C.H., Sun X.H, et al. Development of Crystalline Morphology, Structure, and Impact Property of Isotactic Polypropylene and Poly(cis-Butadiene) Rubber Blends During Mixing. Polym-Plast Technol. 2006, 45: 1175~1179
    [36] Torte F.J, Cortázar M.M, Gómez M.A, et al. Isothermal Crystallization of iPP/Vectra Blends by DSC and Simultaneous SAXS and WAXS Measurements Employing Synchrotron Radiation. Polymer. 2003, 44: 5209~5217
    [37] Campoy I, Gómez M.A, Marco C. Struture and thermma properties of blends of nylon6 and a liquid crystal Copolyeester. Polymer. 1998,39:6279~6283
    [38] Campoy I., Gómez M.A., Marco C. Isothermal crystallization of nylon 6/liquid crystal copolyester blends.Polymer. 1999,40:4259~4265.
    [39]Razavi-Nouri M., Hay J.N. Evaluation of the Crystallization Kinetics and Melting of Polypropylene and Metallocene-Prepared Polyethylene Blends.J Appl Polym Sci. 2007,104: 634~640
    [40]Pig?owskia J., Gancarza I., Wla?laka M.,et al. Crystallization in modified blends of polyamide and polypropylene.Polymer 2000,41:6813~6824
    [41]Campoy I., Arribas J.M., Zaporta M.A.M.,et al. Crystallization kinetics of polypropylene-polyamide compatibilized blends. Eur. Polym. J. 1995,3(5): 475~480
    [42]Shieh Y.T.,Li M.S.,Chen S.A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer. 2001,42: 4439~4448.
    [43] Li J., Shanks A.R., Olley R.H.,et al. Miscibility and Isothermal Crystallisation of Polypropylene in Polyethylene Melts. Polymer. 2001,42:7685~7694
    [44]Li J., Shanks A.R., Long Y. Miscibility and crystallisation of polypropylene-linear low density polyethylene blends. Polymer. 2001,42: 1941~1951.
    [45]Chen H,L., Wang S.F., Crystallization induced microstructure of polymer blends consisting of two crystalline constituents.Polymer. 2000,41:5157~5164
    [46]Zheng L., Wang Y.Z., Yang K.K., et al. Effect of PEG on the crystallization of PPDO/PEG blends. Eur. Polym. J. 2005,41:1243~1250
    [47]Dangseeyun N, Supaphol P, Nithitanakul M. Thermal crystallization and rheological characteristics of poly(trimethylene terephthalate)/poly(butyleneterephthalate) blends.Polym Test. 2004,23:187~194
    [48] Saito M.,Inoue Y.,Yoshie N. Cocrystallization and phase segregation of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate -co-3-hydroxyvalerate).Polymer 2001,42:5573~5580.
    [49]Yoshie N.,Fujiwara M.,Ohmori M.,et al. Temperature dependence of cocrystallization and phase segregation in blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate).Polymer. 2001,42:8557~8563.
    [50]Patcheak T.D.,Jabarin S.A. Structure and morphology of PET/PEN blends. Polymer. 2001,42:8975~8985
    [51]Ikehara T, Kimura, Qiu ZB.Penetrating spherulitic growth in poly(butylene adipate-co-butylene succinate)/poly(ethylene oxide) blends.Macromolecules.2005,38: 5104~5108
    [52]程宝家,部分相容聚合物共混体系的相行为与流变学研究,博士学位论文,上海交通大学,2001
    [53]周持兴,聚合物流变实验与应用,上海:上海交通大学出版社,2003
    [54]高俊刚,王东,刘悦有等,mPE弹性体/PP共混物的流变行为与力学性能,塑料工业, 2003,3:31-37
    [55]李剑,程宝家,周持兴,低等规聚丙烯流变性能研究,塑料工业,2001,4:29-35
    [56]徐僖,蔡燎原,聚合物加工流变学研究新动向,现代塑料加工应用,1994,6:46-51
    [57] Gao J.G., Li D.L., Wang D.Y., et al. Rheological behavior and mechanical properties of blends of chlorinated polyethylene with poly (acrylonitrile-styrene-methyl methacrylnate). European Polymer Journal. 2000, 36: 2517~2522
    [58] Shucai L., J?rvel? P.K., J?rvel? P.A., Comparison Between Apparent Viscosity and Dynamic Complex Viscosity for Poly propylene /Maleated Polypropylene Blends, Polymer Engineering and science. 1997, 37(1): 18~23
    [59] Da Silva A.L.N., Evaluation of rheological and mechanical behavior of blends based on polypropylene and metallocene elastomers. Polymer Testing. 2002, 21: 647~652
    [60]Souza A.M.C., Demarquette N.R, Influence of compositon on the linear viscoelastic behavior and morphology of PP/HDPE blends. Polymer. 2002, 43: 1313~1321
    [61]McNally T, McShane P. Rheology, phase morphology, mechanical,impact and thermal properties of polypropylene/metalloene catalysed ethylene 1-octene copolymer blends. Polymer. 2002, 43: 3785~3793
    [62]郑强,赵铁军,多相/多组分聚合物动态流变行为与相分离的关系,材料研究学报,1998,12(3):225~232
    [63]姜苏俊,贾向明,李光宪等,多组分聚合物体系的动态流变行为与其相行为的关系,高分子通报,2004,1:57~64
    [64] Han C D.聚合物加工流变学.徐僖,吴大诚,徐闻,等译.科学出版社,1985.
    [65]郑强,杨碧波,吴刚等,多组分高分子体系动态流变学研究,高等学校化学学报, 1999,20(9):1483~1490
    [66]姜苏俊,李光宪,贾向明等,聚合物共混体系相行为的动态流变学研究进展,高分子材料科学与工程,2003,19(6):27~31
    [67] Lovisi H, Mechanical, Rheological, Thermal and Morphological Properties of Blends Based on Poly(propylene)/ Poly(propylene-co-1-octene)/ Poly(ethylene-co-1-octene). Journal of Applied Polymer Science. 2003, 89: 1690~1695
    [68]Palierne, J.F. Linear rheology of viscoelastic emulsions with interfacial tension .Rheo1.Acta,1990,29:204~214
    [69] Shi D., Ke Z., Yang J.H., et al. Rheology and Morphology of Reactively Compatibilized PP/PA6 Blends. Macromolecules. 2002, 35: 8005~8012
    [70]Huang L., Pei Q.W., Yuan Q. Brittle–ductile transition in PP/EPDM blends: effect of notch radius. Polymer. 2004, 45:6427~6430
    [71]Jiang W., Yu D.H, An L.J., et al. Brittle-ductile transition of polypropylene/ethylene-propylene-diene monomer blends induced by size, temperature, and time. Journal of Polymer Science: Part B: Polymer Physics. 2004, 42: 1433~1440
    [72]Da Silva A.L.N., Tavares M.I.B., Politano D.P., et al. Polymer blends based on polyolefin elastomer and polypropylene. J Appl Polym Sci. 1997, 66(10): 2005~2014
    [73] Paul S., Kale D.D. Rheological study of polypropylene copolymer/polyolefinic elastomer blends. J Appl Polym Sci. 2002, 84(3): 665~671
    [74]Paul S, Kale D.D. Impact modification of polypropylene copolymer with a polyolefinic elastomer. J Appl Polym Sci. 2000, 76(9): 1480~1484
    [75] Yang J, Zhang Y, Zhang Y. Brittle~ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer. 2003, 44(17): 5047~5052
    [76]Kontopoulou M, Wang W, Gopakumar T. G., et al. Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer. 2003, 44(24): 7495~7504
    [77]Zhang L, Huang R, Li L.B., et al. Effect of fibrillar morphology on elastomer-modified polypropylene. J Appl Polym Sci. 2002, 83 (9): 1870~1874
    [78]Zhang L, Wang Z.H., Huang R., et al. PP/elastomer/calcium carbonate composites: Effect of elastomer and calcium carbonate contents on the deformation and impact behavior. Journal of Materials Science. 2002, 37(13): 2615~2621
    [79]Carriere C. J., Silvis H. C., The effects of short chain branching and comonomer type on the interfacial tension of polypropylene/polyolefin elastomer blends. J Appl Polym Sci. 1997, 66(6): 1175~1181
    [80]Crrrada M.L. Blends of isotactic polypropylenes and a plastomer: Crystallization and viscoelastic behavior. Macromol. symp. 2003, 198: 91~102
    [81]Meng K, Dong X, Zhang X.H Zhang C.G., Han C.C., Shear-Induced Crystallization in a Blend of Isotactic Poly(propylene) and Poly(ethylene-co-octene). Macromol Rapid Comm. 2006, 27: 1677~1683
    [82]Meng K, Dong X, Hong S, et al. Shear-induced crystallization in phase-separated blend of isotactic polypropylene and poly ethylene-co-octene). J Chem Phy. 2008, (128), 024906,DOI: DOI:10.1063/1.2812927
    [83]Hashimoto T, Takenaks M, Lzumitani T. Spontaneous pinning of domain growth during spinodal decomposition of off-critical polymer mixturesJ.Chem.Phys 1992,97;679~689.
    [84]张丁浩.聚丙烯/尼龙1010体系共混过程中的在线分析及其结构与性能的研究.硕士学位论文,天津大学,2001
    [85]方开泰,许建伦.统计分布.北京:科学出版社1987
    [86]Akemi Nakai et al. Process and mechanism of phase separation in polymer mixtures with a thermotropic liquid crystalline copolyester as one component. Macromolecules. 1996, 29: 5990~6001
    [87]Elemans P.H.M, Bos H. L, Janssen J.M.H., Transient phenomena in dispersive mixing. Chem. Eng. Sci. 1993, 48(2): 267~276
    [88]燕立唐,多相聚合物相结构形成过程的图像分析.硕士学位论文,天津大学,2004
    [89]Avgeropoulos G.N., Weissert F.C, Biddison P.H. Heterogeneous blends of polymer, rheology and morphology. Rubber Chem.Tech. 1976, 49:93~97
    [90] Smoluwchowski M. Z Physic Chem. 1917, 92:129~137
    [91] Tokita N. Analysis of morphology formation in elastormer blends. Rubber Chem. Tech, 1977, 50: 292~298
    [92] Izumitani T. Slow spinodal decomposition in binary liquid mixtures of polymers.Ⅲ. scaling analyses of later-stage unmixing. J. Chem. Phys. 1990, 92: 3213
    [93] Okada M, Han C.C. Experimental study of thermal fluctuation in spinodal decomposition of a binary polymer mixture. J. Chem. Phys., 1986, 85: 5317~5327
    [94] khambatta FB, Waner F, Russell T,et al. Small-angle X-ray and light xcattering studies of the morphology of blends of poly(ε-caprolactone) with poly(cinvl Chloride).J Polym Sci:Poly Phys Ed.,1976;14:1391
    [95]Kratky. Possibilities of X-ray small angle analysis in the investigation of dissolved and solid high polymer substances .Pure Appl.Chem. 1966, 12:483~495
    [96]李加深,聚合物共混过程中的相结构与形态研究.博士学位论文,天津大学,2001
    [97]Favis B.D., Factors influencing the morphology of immiscible polymer blends in melt processing. In: Paul DR,Bucknall C.B. Polymer blends:Formation and Performance
    [98]Xu X.H., Yan X.L., Zhu T. B., et al. Phase morphology development of polypropylene/ethylene-octene copolymer blends: effects of blend composition and processing conditions. Polym. Bull. 2007,58: 465~478.
    [99]Yao Y H. Ph.D. thesis, Institute of Chemistry, Chinese Academy of Sciences; 2006.
    [100]Sarazin P, Favis B D. Influence of temperature-induced coalescence effects on co-continuous morphology in poly(ε-caprolactone)/polystyrene blends.Polymer 2005; 46: 5966~5978
    [101]Yan XL, Xu XH, Zhu TB, et al, Phase morphological evolution and rheological properties of polypropylene/ethylene-octene copolymer blends.Mater. Sci. Eng. A: Struct. Mater. 2008. 494: 449~455
    [102]Joseph S, Thomas S. Morphology, morphology development and mechanical properties of polystyrene/polybutadiene blends. Eur Polym J 2003,39(1):115~125
    [103]Burns J. R., Turnbull D., Kinetics of Crystal Nucleation in Molten Isotactic PolypropyleneJ. Appl. Phys. 1966, 37:4021~4026.
    [104]Koutsky J. A., Walton Baer A.G.E., Nucleation of Polymer Droplets. J. Appl. Phys. 1967,38:1832~1842.
    [105]Ghijsels A., Groesbeek N.,Yip C. W., Multiple crystallization behaviour of polypropylene/thermoplastic rubber blends and its use in assessing blend morphology.Polymer 1982, 23:1913~1916.
    [106]Pukánszky B., Tüd?s F., KallóA., et al. Multiple morphology in polypropylene/ethylene-propylene-diene terpolymer blends. Polymer, 1989, 30: 1399~1404.
    [107]Santana O.O., Müller A.J., Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends. Polym. Bull. 1994, 32:471~485.
    [108]Arnal M.L., Matos M.E., Morales R.A.,et al., Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix Macromol. Chem. Phys. 1998, 199: 2275~2288.
    [109] Long Y., Stachursky Z. H., Shanks R. A., Crystallization behaviour of isotactic polypropylene/linear low density polyethylene blends Polym. Int. 1991,26: 143~146.
    [110]Ikkala O. T., Holsti-Miettinen R.M., Sepp?l? H. J., Effects of compatibilization on fractionated crystallization of PA6/PP blends J. Appl.Polym. Sci. 1993, 49: 1165~1174.
    [111]Morales R. A., Arnal M. L., Müller A. J., The evaluation of the state of dispersion in immiscible blends where the minor phase exhibits fractionated crystallization Polym. Bull.(Berlin) 1995, 35:379~386.
    [112]Manaure A. C., Morales R. A., Sánchez J. J., et al, Rheological and calorimetric evidences of the fractionated crystallization of iPP dispersed in ethylene/ -olefin copolymersJ. Appl. Polym. Sci. 1997, 66:2481~2493.
    [113]Manaure A. C., Müller A. J., Nucleation and crystallization of blends of poly(propylene) and ethylene/ -olefin copolymers. Macromol. Chem. Phys.2000, 201: 958~972.
    [114]Tol R.T., Mathot V.B.F., Groeninckx G., Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 drople ts, part 1: uncompatibilized PS/PA6, (PPE/PS)/PA6 and PPE/PA6 blends Polymer 2005,46: 369~382.
    [115]Tol R.T., Mathot V.B.F., Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 2: reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends. Polymer 2005,46: 383~396.
    [116]Tol RT, Mathot VBF, Groeninckx G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro- and nanometer sized PA6 droplets, part 3: crystallization kinetics and crystallinity of micro- and nanometer sized PA6 droplets crystallizing at high supercoolings. Polymer. 2005,46: 2955~2965.
    [117]Tol RT, Mathot VBF, Reynaers H,et al. Confined crystallization phenomena in immiscible polymer blends with dispersed micro-and nanometer sized PA6 droplets part 4: polymorphous structure and (meta)-stability of PA6 crystals formed in different temperature regions. Polymer 2005,46: 2966~2977.
    [118] Barham P. J., Jarvis D. A., Keller A., A new look at the crystallization of polyethylene. III. Crystallization from the melt at high supercoolings J. Polym. Sci., Polym.Phys. Ed. 1982, 20: 1733~1748.
    [119]Avrami M. Kinetics of phase change I general theory, J Chem Phys, 1939, 7: 1103~1112.
    [120]Avrami M. Kinetics of phase change II transformation-time relations for random distribution of nuclei, J Chem Phys, 1940, 8: 212~224.
    [121]Avrami M. Granulation, phase change, and microstructure kinetics of phase changeIII, J Chem Phys, 1941, 9: 177~184.
    [122]Zuidema H. Flow induced crystallization of polymer, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2000.
    [123]Vleeshouwers S, Meijer H.E.H., A rheological study of shear induce crystallization, Rheol. Acta. 1996, 35: 391~399.
    [124]Ito H, Kikutani T, Toada K,et al. Modelling and numerical simulation of polymer crystallization in injection moulding process, In Proceedings regional PPS meetings, Goteborg Sweden, 1998.
    [125]Hadinata C, Gabriel C, Ruellman M, et al. Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution, J. Rheol., 2005, 49: 327~349
    [126]Lagasse RR, Maxwell B. An experimental study of the kinetics of polymer crystallization during shear flow, Polym Eng Sci, 1976, 16: 189~199
    [127]Nieh J, Lee LJ. Hot plate welding of polypropylene, Part I: Crystallization kinetics, Polym Eng Sci, 1998, 38: 1121~1132
    [128]Teh JW, Blom HP, Rudin A. A study on the crystallization behavior ofpolypropylene, polyethylene and their blends by dynamic mechanical and thermal methods, Polymer, 1994, 35: 1608~1680
    [129]Chen Q, Fan Y R, Zheng Q. A novel approach to rheological characterization for the gelation in polymer crystallization, Chinese Journal of Polymer Science, 2005, 23: 423~434
    [130]Fan Y R, Chen Q, Zheng Q. Characterization of physical gelation in the isothermal polymer crystallization, Proc. XIVth Int. Congr. on Rheol. 2004,
    [131]陈青,范毓润,李文春等. HDPE等温结晶中液-固转变的流变特性,高等学校化学学报,2006, 2: 365~368
    [132]Koscher E, Fulchiron R. Influence of shear on polypropylene crystallization: morphology development and kinetics, Polymer, 2002, 43: 6931~6942
    [133]Wassner E, Maier R D. Shear-induced crystallization of polypropylene melts, the XIIIth international congress on rheology, Cambridge, UK, 2000: 1-183-1-185
    [134]张洪斌,周持兴,流场中高分子共混物分散相的形态变化,高分子材料科学与工程,1999,15(4):4~7
    [135]张洪斌,周持兴,流场中聚合物共混体系液滴形变的理论模型,力学进展,1998,28(3):402~413
    [136]梁基照,聚合物熔体注模流变学,高分子通报,1990,2:111~116
    [137]周南桥,占国荣,茂金属聚烯烃加工技术的研究,工程塑料应用, 2003,31(4):13~16
    [138]吴其晔,巫静安.高分子材料流变学,北京:高等教育出版社, 2002
    [139] Han C. D. Rheology in polymer processing.Academic press , London, 1976
    [140]Graessley W.W., Molecular Entanglement Theory of Flow Behavior in Amorphous Polymers.J.Chem.Phys. 1965,43:2696~2703
    [141]Graessley W.W., Viscosity of Entangling Polydisperse Polymers. J.Chem.Phys.1967,47:1942~1953
    [142]Uy W. C. , Graessley W.W., Viscosity and Normal Stresses in Poly(vinyl acetate) Systems.Macromolecules. 1971,4:458~463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700