铝酸钠溶液晶种分解附聚过程及其强化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂状氧化铝由于具有较粗的粒度和较高的强度,在节能与环境保护要求日益严格的铝电解工业得到广泛的应用。要获得砂状氧化铝,必须促进氢氧化铝晶体的附聚和长大。附聚是获得粗粒氢氧化铝的重要前提,本论文着重研究了铝酸钠溶液种分附聚过程。
     应用红外光谱和拉曼光谱对铝酸钠溶液进行半定量分析,并首次探讨了结晶助剂(CGM)对铝酸钠溶液结构影响以及铝酸钠溶液微观性质与分解过程宏观指标的关联;考察了各种因素对种分附聚过程的影响并得出了有利于种分附聚的条件;研究了含有C=C键的长链十八碳羧酸表面活性剂和结晶助剂对种分附聚过程的影响,并通过对种分附聚工艺的改善得到了粒度较粗和强度较高的氢氧化铝产品。本论文的研究成果将对砂状氧化铝生产提供一定的技术支持和理论依据,其主要研究结果如下:
     1.建立了铝酸钠溶液拉曼光谱结构分析方法和确定了优化的操作条件。发明了以盖玻片为内标物的铝酸钠溶液拉曼光谱半定量分析方法。根据拉曼光谱图中铝酸钠溶液特征峰位置可以确定铝酸根离子的类型,根据铝酸钠溶液特征峰的强度或面积与盖玻片内标物荧光特征峰(920cm-1)强度或面积的比值可以半定量分析铝酸根离子含量。
     2.通过对铝酸钠溶液结构分析发现:溶液分子比1.4-3.2、苛性碱浓度120-260g/L的铝酸钠溶液,其主体铝酸根离子均为[Al(OH)4]-。在相同苛性碱浓度下,主体铝酸根离子[Al(OH)4]-和铝酸根二聚离子[Al2O(OH)6]2-浓度均随溶液分子比升高而逐渐下降。苛性碱浓度在120-220g/L时,同苛性碱浓度下低分子比铝酸钠溶液R值(620cm-1和535cm-1处特征峰强度之比)高,分解趋势大。超高苛性碱浓度(260g/L)铝酸钠溶液的R值随溶液分子比变化幅度较小,其值相对较高,相对于苛性碱浓度稍低的溶液(比如220g/L),该类溶液具有相对较高的分解趋势。在相同溶液分子比下,低苛性碱浓度铝酸钠溶液R值高,溶液分解趋势大。但中等浓度苛性碱(157-174g/L)和超高浓度苛性碱(260g/L)具有相对较高R值,其溶液分解趋势也相对较大。通过计算对比函数,发现添加剂可能通过改变溶液中主体铝酸根离子[Al(OH)4]-的浓度,从而对铝酸钠溶液结构产生微小影响。
     3.随着温度的增加,铝酸钠溶液分解率下降,氢氧化铝附聚效率增加,高温有利于-25μm粒级颗粒的附聚。随着铝酸钠溶液起始分子比的增加,溶液分解率下降,分解反应8h的氢氧化铝附聚效率先增加后降低。溶液起始分子比过低或过高时,附聚产物中均含有较多的-45μm粒级颗粒。随着铝酸钠溶液苛性碱浓度的增加,溶液分解率逐渐下降,附聚产物的粒度和氢氧化铝附聚效率也随之降低。随着晶种系数的增加,铝酸钠溶液分解率增加,氢氧化铝附聚效率先增加后降低。晶种系数过高或过低时,附聚产物中均含有较多的中小粒径颗粒。随着初始晶种粒度的增加,铝酸钠溶液分解率和氢氧化铝附聚效率减小。铝酸钠溶液分解率随搅拌速度的增加而增加。在适中的搅拌速度下,氢氧化铝附聚效率最高,附聚产物具有最好的粒度分布。高温78℃、较低溶液起始分子比1.45、低苛性碱浓度、晶种系数0.25和搅拌速度100r/min等条件有利于铝酸钠溶液的种分附聚过程。
     4.通过对一段法与二段法分解工艺所得产品形貌和粒度分布的比较,发现在铝酸钠溶液晶种分解过程中加强附聚就可以得到粒度较大和强度较高的氧化铝产品。并且对附聚机理进行了探讨,在附聚过程中,氢氧化铝晶种中细小颗粒优先附聚。
     5.当硬脂酸、油酸和亚油酸三种表面活性剂添加量较少,为10ppm时,不含有C=C键的饱和硬脂酸降低了铝酸钠溶液的分解率;当添加量大于20ppm时,表面活性剂中有无C=C键都能提高铝酸钠溶液分解率,且添加三种表面活性剂的铝酸钠溶液分解率基本接近。在温度较低(65℃)或溶液过饱和度较高的情况下,表面活性剂的加入可以对二次成核有一定的抑制作用;在温度较高(85℃)或溶液过饱和度较低的情况下,表面活性剂的加入可以促进附聚。晶种系数较低或较高时,添加表面活性剂增强附聚的效果都不是很明显。低搅拌速度和较细的初始晶种粒度有利于添加剂对附聚的增强效果。添加表面活性剂对附聚过程的增强作用主要体现在细粒子上。不管是抑制二次成核还是促进附聚,添加亚油酸的效果最好,油酸次之,硬脂酸最差,这与表面活性剂长链十八碳羧酸分子中C=C键有着紧密的关系。添加含有两个C=C键的亚油酸时,铝酸钠溶液的表面张力降低的幅度最大,油酸次之,不含有C=C键的饱和硬脂酸溶液表面张力降低的幅度最小。
     6.在铝酸钠溶液中添加CGM可以明显地增强氢氧化铝颗粒的附聚和粗化,从而有效地抑制二次成核,但是却降低了铝酸钠溶液的分解率。然而将其与可以提高铝酸钠溶液分解率但是对附聚的促进作用较小的表面活性剂混合添加则可以取长补短,既可增加溶液分解率,又使产品的粒度增加。通过对种分附聚工艺的改善有使粉状氧化铝变成砂状氧化铝的可能性。
With the increasingly strict requirement of energy saving and environmental protection, sandy alumina is used widely in the industry of aluminum electrolysis, because of its coarse particle size and high strength. Agglomeration and crystal growth must be promoted for producing sandy alumina. Agglomeration is the important precondition for producing coarse aluminium hydroxide, this paper especially focuses on agglomeration process.
     In this paper, infrared and raman spectrum are applied in semi-quantitative analysis of sodium aluminate solution. It is investigated the effect of crystal growth modifier (CGM) on structure of sodium aluminate solution and the relationship between microscopic properties of sodium aluminate solution and macroscopic indices of precipitation process. Effect of operation factors on the agglomeration process is investigated and favorable conditions are attained. Effect of surfactant and CGM on the agglomeration process is investigated and coarse aluminum hydroxide products with high strength are attained by improvement of agglomeration process. The results in the paper may be a technical support and theoretical guidance for alumina production. Main conclusions are drawn as follows:
     1. The determination method for structure of sodium aluminate solution is developed and suitable operation conditions are obtained. Using cover-glass as internal standard, a semi-quantitative method of raman spectrum for the analysis of sodium aluminate solution is invented, the type of aluminate ion can be determined according to the position of characteristic peak of sodium aluminate solution in raman spectrum and the content of aluminate ion can be analyzed by semi-quantitative method according to the ratio of intensity and area of characteristic peak of sodium aluminate solution to that (920cm-1) of the cover-glass.
     2. Through the analysis of structure of sodium aluminate solution, it is found that main aluminium-containing ion is [Al(OH)4]- when molecular k) of liquor is 1.4-3.2 and caustic alkali concentration (Nk) of liquor is 120-260g/L. At the same Nk, the concentration of [Al(OH)4]- and [Al2O(OH)6]2- decreases gradually with increasing ak of the liquor. When Nkis 120-220g/L, the R value (Ratio of intensity of characteristic peak of 620cm-1 to that of 535cm-1) is high and the tendency of precipitation is strong at the same Nk when ak of the liquor is low. The change of R is small with the change of ak when the Nk of sodium aluminate solution is very high (260g/L), but the R is high relative to that of the liquor of lower Nk (220g/L), the liquor of high R has stronger precipitation tendency. At the same ak of the liquor, the R is high and the precipitation tendency is strong when the Nk of sodium aluminate solution is low, but the R of liquor of moderate Nk(157-174g/L) and very high Nk (260g/L) is higher and the precipitation tendency is relatively strong. Through calculating contrast function, it is found that additive has limited effect on the structure of sodium aluminate solution by changing the concentration of [Al(OH)4]-.
     3. The precipitation yield of sodium aluminate solution decreases and the agglomeration efficiency of gibbsite particles increases with the increasing liquor temperature, high temperature is advantageous for agglomeration of particles less than 25μm. The precipitation yield decreases and the agglomeration efficiency at 8h increases firstly and then decreases with the increasing ak of liquor, the agglomerates contain much more particles less than 45μm when ak is too high or low. The precipitation yield, the particle size of agglomerates and the agglomeration efficiency all decrease with the increasing Nk of the liquor. The precipitation yield increases and the agglomeration efficiency increases first and then decreases with the increasing mass ratio Ks of crystal seeds, the agglomerates contain much more median and small particles when Ks is too high or low. The precipitation yield and the agglomeration efficiency all decrease with the increasing particle size of initial seeds. The precipitation yield increases with the increasing agitation rate, the agglomeration efficiency of gibbsite products is highest and particle size distribution of agglomerates is best at a moderate agitation rate. High temperature (78℃), lower initialαk(1.45), low Nk, Ks 0.25 and agitation rate 100r/min are favorable for the agglomeration process.
     4. By comparing with morphology and particle size distribution of products from one-stage process and two-stage process, it is found that alumina products with bigger particle size and higher strength can be attained by enhancing agglomeration in seeded precipitation process of sodium aluminate solution. The agglomeration mechanism is also discussed, the agglomeration begins from the smallest particles.
     5. The precipitation yield of sodium alumiante solution decreases by adding saturated stearic acid without C=C bond when the dosage of stearic acid, oleic acid and linoleic acid surfactants is less(10ppm). The precipitation yield increase and they are close by adding three different surfactants when the dosage is above 20ppm. The secondary nucleation can be controlled by adding surfactants when temperature is lower(65℃) and degree of supersaturation is higher. The agglomeration can be promoted by adding surfactants when temperature is higher(85℃) and supersaturation degree is lower. The strengthening effect of agglomeration is not remarkable by adding surfactants when Ks is too high or low. The low agitation rate and fine initial seed are advantageous for strengthening effect of surfactants on agglomeration. The strengthening effect of surfactants on agglomeration is mainly reflected on fine particles. Whether the secondary nucleation is controlled or agglomeration is promoted, the best effect can be attained by adding linoleic acid, oleic acid and stearic acid. Among linoleic acid, oleic acid and stearic acid, stearic acid is the worst one. It has a close relation with C=C bond of surfactants. The surface tension decrease extent of sodium alumiante solution is the greatest by adding linoleic acid with C=C bond and it is the smallest by adding stearic acid without C=C bond.
     6. When CGM is added into sodium aluminate solution, both agglomeration and coarsening of particles are markedly enhanced and also allow for secondary nucleation control, but the precipitation yield of the liquor decreases. The precipitation yield of liquor can be increased, but the promotion of agglomeration is weak when surfactant is added into sodium aluminate solution. However, both precipitation yield of liquor and particle size of aluminum hydroxide product increase at the same time when adding CGM with anionic surfactant. It is possible for powdery aluminum hydroxide to become sandy aluminum hydroxide by improvement of agglomeration process.
引文
[1]Watling H. Spectroscopy of concentrated sodium aluminate solution. Applied Spectroscopy,1998,52(2):250-258.
    [2]柳妙修,曹益林,陈念贻,等.高苛性比铝酸钠溶液的Raman光谱研究.金属学报,1991,27(6):443-445.
    [3]孙素琴,洪梅,陈念贻.NIR FT—Raman研究铝酸钠溶液的碳酸化过程.光谱学与光谱分析,1994,14(5):35-37.
    [4]邱国芳,陈念贻,阎立诚,等.高浓度铝酸钠溶液的光谱.中国有色金属学报,1996,6(1):53-56.
    [5]Liu M X, Chen N Y. Influence of preparative history on structure and properties of sodium aluminate solution. Trans. Nonferrous Met. Soc. China.,1992,2(2):28-31.
    [6]陈念贻.铝酸钠溶液的光谱研究.轻金属,1992,2:23-26.
    [7]Chen N Y, Liu M X. Studies on the anionic species of sodium aluminate solutions. Science in china (Series B),1993,36:32-38.
    [8]张声俊,陈念贻.铝酸钠溶液碳酸化过程的红外光谱研究.光谱学与光谱分析,1996,16(4):21-23.
    [9]孙素琴,陈念贻.铝酸钠溶液碳酸化过程的Raman光谱研究.光谱学与光谱分析,1994,14(5):35-37.
    [10]Addai M J, Ralston J. The influence of interfacial structuring on gibbsite interactions in synthetic Bayer liquors. J. Colloid and Interface Science,1999,215: 124-130.
    [11]Addai M J, Dawe J. The unusual colloid stability of gibbsite at high pH. J. Colloid and Interface Science,1998,203:115-121.
    [12]Addai M J, Gerson A and Prestidge C A, et al. Interactions between gibbsite crystals in supersaturated caustic aluminate solutions. Light Metals,1998:159-166.
    [13]Tamas R, Peter M. Structure of aqueous sodium aluminate solutions:a solution X-ray diffraction study. J. Phy. Chem. A,1998,102:7841-7850.
    [14]Lanaspese P, Eyrand C. Bulletin de la Societe Chimique de France,1960,2: 313-321.
    [15]Mal M, Malinin G V. The structure of aluminate solutions. Russian J. Structural Chemistry,1965,6:359-362.
    [16]下里纯一郎.铝酸钠溶液的特性,工业化学杂志,1962,65(11):1779-1782.
    [17]Mironov V E, Pavlov L V. On the structure of aluminate ions. Tsvetnye Metally, 1969,42(7):56-57.
    [18]Khodukovsky I L. Thermodynamic properties of compounds in the Al2O3-H2O system and their equilibrium relations in the range 25-300℃. Geokhimica,1980,11: 1606-1624.
    [19]Moolenaar R J. The structure of the aluminate ion in solutions at high pH. J. Physcal Chemistry,1970,74:3629-3636.
    [20]刘洪霜,陈念贻等.铝酸钠溶液的紫外吸收峰.物理化学学报,1992,8(4):441.
    [21]Chen N Y, Liu M X. Activity of NaOH in sodium aluminate solutions. Chin. J. Met. Sci. Technol.,1992,8:376.
    [22]Chen N Y, Liu M X. Influence of preparative history on structure and properties of sodium aluminate solution. Trans. Nonferrous Met. Soc. China.,1992,2(2):28.
    [23]Chen N Y, Liu M X. Influence of preparative history on physico-chemical properties of sodium aluminate solutions. Chin. J. Met. Sci. Technol.,1992,8:135.
    [24]陈念贻.铝酸钠溶液中NaOH活度的测定.轻金属,1993,2:22.
    [25]洪梅,曹益林,柳妙修等.铝酸钠溶液的27A1核磁共振谱研究.轻金属,1994,5:26-27.
    [26]Lippincol E R, Psellos J E. The Raman spectra and structures of aluminate and zincate ions. J. Chemical Physics,1952,20:536.
    [27]Carreira L A. Raman and infrared spectra and structures of the aluminate ions. J. Chemical Phy..1966,45:2216-2220.
    [28]Pavlov L N. Raman spectra of aqueous solutions of lithium, sodium and potassium aluminates. Tsventnye Metally,1969,8:56-58.
    [29]Plumb R C. Oxide-coated electrodes. Ⅱ aluminium in alkaline solutions and the aluminate ion. J. Phy. Chem.1964,68:2057-2064.
    [30]Mal M, Malinin G V. Thermodynamic properties and H" and Na23 NMR spectra of sodium hydroxide solutions. Russian J. Structural Chemistry,1965,6:353-358.
    [31]Pearson T G. The chemical background of the aluminum industry. Monograph, 1955, (3):27.
    [32]李洁.过饱和铝酸钠溶液结构及分解机理的研究:[博士学位论文].长沙:中南大学,2002.
    [33]库兹涅佐夫.对铝酸钠溶液性质的新看法.国外轻金属,1964,5:7-12.
    [34]高进升.对我国砂状氧化铝生产技术的初步探讨.轻金属,1989,6:21-24.
    [35]Brown N. A quantitative study of new crystal formation in seeded caustic aluminate solution. Journal of Crystal Growth,1975,29(3):309-315.
    [36]Brown N. Crystal growth and nucleation of aluminum trihydroxide from seeded caustic aluminate solution. Journals of Crystal Growth,1972,12(1):39-45.
    [37]Brown N. Effect of calciumions on agglomeration of Bayer alumina trihydroxide. Journals of Crystal Growth,1988,92(1):26-32.
    [38]张樵青.对拜耳法高浓度铝酸钠溶液两段分解细晶种附聚的研究.1994,4:5-9.
    [39]John Ralston. Particle-particle interactions and their relevance to the bayer process. Fourth International Alumina Quality Workshop. Darwin 2-7, June,1996, 141-147.
    [40]#12
    [41]Seyssieq I, Veesler S and Boistelle R, et al. Agglomeration of gibbsite Al(OH)3 crystals in Bayer liquors:Influence of the process parameters. Chemical Engineering Science,1998,53(12):2177-2185.
    [42]Seyssiecq I, Veesler S and Mangin D, et al. Modelling gibbsite agglomeration in a constant supersaturation crystallizer. Chemical Engineering Science,2000,55: 5565-5578.
    [43]Scott J. Extractive metallurgy of alumina. Interscience,1963,1:203-218.
    [44]Misa C. The precipitation of Bayer aluminium trihydroxide:[Ph. D. thesis]. Australia: University of Queensland,1970.
    [45]Misa C, White E T. Kinetics of crystallization of aluminium trihydroxide from seeds caustic aluminate solution. Chem. Eng. Progr. Sympos. Ser.,1970,110:53-65.
    [46]Misa C, White E T. Crystallization of Bayer aluminum trihydroxide. J. Crystal Growth,1971,8:172-178.
    [47]Low G C. Agglomeration effects in aluminium trihydroxide precipitation:[Ph. D. thesis]. Australia: University of Queensland,1975.
    [48]Halfon A, Kaliaguine S. Aluminina trihydrate crystallization. Part Ⅱ:a model of agglomeration. Can. J. Chem. Engng,1976,54:168-172.
    [49]Remillard M, Cloutier L and Methot J C. Crystallisation du trihydrate d'alumiine: effect des conditions d'agitation. Can. J. Chem. Engng.,1980,58:348-356.
    [50]Sakamoto K, Kanehara M. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Chem. Engng Soc. Japan,1971, 35:481-487.
    [51]Marchal P, David R and Klein J P, et al. Crystallization and precipitation engineering I. An efficient method for solving population balance in crystallization with agglomeration. Chemical Engineering Science,1988,43(1):59-67.
    [52]Iievski D. Modelling Al(OH)3 agglomeration during batch and continuous precipitation in supersaturated caustic aluminate solutions:[Ph. D. thesis]. Australia: University of Queensland,1991.
    [53]Steemson M L, White E T and Marshall R J. Mathmatical model for the precipitation section of a Bayer plant. Light Metals,1984:237.
    [54]周辉放,杨重愚,等.铝酸钠溶液中晶体附聚机理的研究.有色金属,1994,46(6):54-58.
    [55]张俊,张平民,陈金清.粒度分布信息在铝酸钠溶液加晶种分解动力学的研究中的应用.广东有色金属学报,2003,13(1):21-26.
    [56]Ilievski D. Development and application of a constant supersaturation,semi-batch crystallizer for investigating gibbsite agglomeration. Journal of Crystal Growth,2001, 233:846-862.
    [57]Hounslow M J. A discretized population balance for nucleation, growth and aggregation:[Ph. D. thesis]. Australia: University of Adelaide,1989.
    [58]Hounslow M J, Ryall R L and Marshall V R. A discretized population balance for nucleation, growth and aggregation. A. I. Ch. E. J.,1990,34:1821-1832.
    [59]Beckman J R, Farmer R W. Bi- model CSD barite due to agglomeration in an MSMPR crystallizer. A. I. Ch. E. Symp. Ser.,1987,83(253):85-94.
    [60]Hartel R W, Randolph A D. Mechanisms and kinetics modeling of calcium oxalate crystal aggregation in urine-like liquors, Part Ⅱ:Kinetic model. A. I. Ch. E. J.,1986,32:1186-1195.
    [61]Muralidar R, Ramkrishna D. An inverse problem in agglomeration kinetic. J. Colloid Interface Sci.,1985,112:348-361.
    [62]Addai-Mensah J, Prestidge C A and Ralston J. Interparticle forces, interfacial structure development and agglomeration of gibbsite particles in synthetic Bayer liquors. Minerals Engineering,1999,12(6):655-669.
    [63]#12
    [64]#12
    [65]李旺兴,尹建国,陈启元.铝酸钠溶液附聚过程中的粒度信息分析.中国稀土学报,2004,22(专辑):227-230.
    [66]周辉放,杨重愚,陈光渊,等.铝酸钠溶液中不同粒度晶种的附聚行为.镁铝通讯,1992,2(4):12-15.
    [67]Landi M F, Bacchiege R. ICSOBA Alumina production unit. Tihamy,1981, 127-149.
    [68]Xie Y L, Zhao Q and Bi S W. Effect of temperature on the agglomeration of hydrate. Light Metals,2003:61-64.
    [69]Scott J. Effect of seed and temperature on the particle size of bayer hydroxide alumina. Extractive Metallurgy of Aluminum,1963,1:202.
    [70]Sakamoto K, Kanahara M. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Light Metals,1976:149-156.
    [71]Sang J V, Gagnon R Y and Bernier J L, et al. Fines digestion and agglomeration at high ratio in Bayer precipitation. Light Metals,1989:33-39.
    [72]Sang J V. Factor affecting the attrition strength of alumina products. Light Metals, 1987:121-127.
    [73]White E T. The effect of precipitation conditions on alumina quality. Alumina quality workshop Australia,1988,15-23.
    [74]Veesler S, Roure S and Boistelle R. General concepts of hydrargillite Al(OH)3, agglomeration. Journal of Crystal Growth,1994,135(3-4),505-512.
    [75]程立,陈肖虎.高浓度拜耳精液制取砂状氧化铝的最佳条件研究.贵州工学院学报,1990,19(2):12-17.
    [76]Eduardo L J, Quintero I. Evaluation of agglomeration stage conditions to control alumina and hydrate particle breakage. Light Metals,1992:199-202.
    [77]陈肖虎,程立,赵莉.砂状氧化铝生产分解过程实验研究.贵州工学院学报.1994,23(6):65-69.
    [78]刘丕旺,裴昱.种子分解降温方式的理论和技术方案.轻金属,1999,2:19-23.
    [79]赵清杰,杨巧芳,晏唯真,等.提高拜耳法种分分解率的研究.轻金属,2000,7:20-21.
    [80]上官正.高活性氢氧化铝晶种的制备.轻金属,1995,8:12-14.
    [81]薛红,毕诗文,谢雁丽,等.晶种对拜耳法铝酸钠溶液分解的影响.有色金属(冶炼部分),1998,2:26-28.
    [82]Paramzin S M, Pankratev Y D and Turkov V M. Study of the nature of product of mechnochemical activation of hydragillite, Izu. Sib. Otd. Akad. Nank SSR, Ser. Khim. Nauk,1988,2:47.
    [83]Hideo M. Crystal size change with elapsed time of aluminium hydroxide in industrial. Crystallization,1994,20(3):346.
    [84]Li D F, Bi S W and Yang Y H, et al. A kind of activity seed used for the precipitation of the sodium-aluminate liquor. Light Metals,1997:97.
    [85]Brown N. Effect of calcium ions on agglomeration of Bayer aluminium trihydroxide. Journal of Crystal Growth,1988,92:26.
    [86]Brown N. Production of coarse mosaic aluminium trihydroxide from ball—milled seed. Light Metals,1990:131-137.
    [87]下里纯一郎.国外轻金属.1964,3:1-8.
    [88]Janos P. Improvement of the efficienciency of decomposition of aluminate liquors by using aluminium sulfate. Janos. Kohasz.Lapok.Kohasz,1985,118(5):228.
    [89]Moody G M. Production of Alumina. EP631985,1995-01-04.
    [90]Roe, William J. Alumina crystal growth additive. US5106599,1992-04-21.
    [91]Johannes H D, Reinhard B D and Juergen F D, et al. Using polyglycerines in the Bayer process to increase crystal size of the product. US5312603,1994-05-17.
    [92]Roe, William J. Use of polymers in alumina precipitation in the Bayer process of bauxite beneficiation. US4608237,1986-08-26.
    [93]越振国,等.界面化学基础.北京:化学工业出版社,1996:61-68.
    [94]毕诗文,等.水溶性表面活性剂强化铝酸钠溶液分解过程的研究.铝—21世纪基础研究与技术发展研讨会论文集,2002.196-212.
    [95]赵继华.超声场强化拜耳法种分过程的研究:[博士学位论文].长沙:中南大学,2001.
    [96]陈国辉.超声波强化铝酸钠溶液分解成核与分形动力学研究:[博士学位论文].长沙:中南大学,2002.
    [97]韩颜卿,姚静武,张学英.磁场对铝酸钠溶液种分分解的影响.矿产保护与利用,1999,2:26-28.
    [98]Keil R H. A new method of separating sodium carbonate. Light Metals,1976:89.
    [99]Davydov I V, Lyapunov A N and Varzina A G, et al. Method of prepare aluminium hydroxide. CN1032650,1989-05-03.
    [100]有色金属工业分析丛书—轻金属冶金分析.北京:冶金工业出版社,1990:54.
    [101]杨重愚.氧化铝生产工艺.北京:冶金工业出版社,1993:116.
    [102]Misra C, White E T. Kinetics of crystallization of aluminium trihydroxide from seeded caustic aluminate solutions. Chemical engineering programming symposium series,1970:53.
    [103]吕卫君.铝酸钠溶液结构研究.中国科技信息,2009,1:108-110.
    [104]贺福.用拉曼光谱研究碳纤维的结构.高科技纤维与应用,2005,30(6):20-25.
    [105]张延会,吴良平,孙真荣.拉曼光谱技术应用进展.2006,(4):32-35.
    [106]房春晖,房艳.溶液结构研究发展策略浅议.盐湖研究,2006,14(3):52-57.
    [107]H. R. Walting, P. M. Sipos, Spectroscopy of concentrated sodium aluminate solution[J]. Applied Spectroscopy,1998,52(2):250-258.
    [108]刘文涵,张丹,吴小琼,等,外界光对ZnCl2激光拉曼光谱的影响.光谱学与光谱分析,2006,26(11):2043-2045.
    [109]张俊.超声波对铝酸钠溶液分解影响的探索.中南大学硕士学位论文,2003.
    [110]Kumar S. Study of growth kinetics and mechanism of precipitation by Bayer process. Light Metals,1994:47-51.
    [111]Gristol B, Garner B and Soirat A. Precipitation particle size control. Light Metals, 1999:71-76.
    [112]Li W X. Influence of decomposition temperature on resolution ratio of crystal seed. Light Metals,1998:14-18.
    [113]Clive A, Prestidge I A. Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallization conditions. Journal of Crystal Growth,2000,209:924-933.
    [114]下里纯一郎.工业化学杂志.1962,65(11):1979.
    [115]Sakamoto K, Kanahara M. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Light Metals,1976:149-161.
    [116]Steemson M L, White E T and Marshall R J. Mathmatical model for the precipitation section of a Bayer plant. Light Metals,1984:237.
    [117]高进升.对我国砂状氧化铝生产技术的初步探讨.轻金属.1989,6:21-24.
    [118]Pearson T G. The chemical background to the aluminium industry. Mongraph, 1955,3:26.
    [119]曾奇才译.氢氧化铝的附聚.氧化铝译文集,1993,(2):13-14.
    [120]舒晖.亚油酸及醇胺对铝酸钠溶液种分过程的影响.[硕士学位论文].长沙:中南大学,2009.
    [121]张斌.添加剂强化拜耳法种分工艺与理论研究.[博士学位论文].长沙:中南大学,2003.
    [122]尹建国.过饱和铝酸钠溶液种分附聚过程及其强化.[博士学位论文].长沙:中南大学,2007.
    [123]赵苏,毕诗文,杨毅红,等.阴离子表面活性剂对铝酸钠溶液种分过程的影响.东北大学报(自然科学版),2004,25(2):139-141.
    [124]Liu J J, Dmitri K and James C, et al. Performance of new crystal growth modifiers in bayer liquor. Light Metals,2007:139-143.
    [125]Dmitri K, Liu J J and Kevin O, et al. New crystal growth modifiers for the bayer process. Light Metals,2008:121-125.
    [126]陈文泪,杨征会,张利,杨征保.结晶添加剂强化铝酸钠溶液种分过程的研究.湖南有色金属,2002,16(8):23-26.
    [127]LI J, Prestidge C A, and Addai M J. Secondary Nucleation of Gibbsite Crystals from Synthetic Bayer Liquors:Effect of Alkali Metal Ions. Journal of Crystal Growth, 2000,219(4),451-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700