含羧基结晶助剂对过饱和铝酸钠溶液种分过程的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝生产过程中过饱和铝酸钠溶液种分过程是重要工序之一。种分分解速率过低,氢氧化铝产品粒度分布不均等问题严重制约着氧化铝工业的发展。众多强化方法中,结晶助剂强化法具有明显的优越性。但目前对结晶助剂的遴选一直处于经验水平。
     本文采用分子拆分法、QSPR模型构建法,结合量子化学计算、PSD、FT-IR、27Al-NMR、Raman、SEM等分析测试手段,分别研究了丙氨酸、Na4EDTA及EDTA、单羧基芳香族羧酸、21种L型氨基酸等多种有代表性的含羧基结晶助剂对铝酸钠溶液种分过程的影响及其作用机理,总结了含羧基结晶助剂分子设计的一般性规则,可望为工业结晶助剂的分子设计及遴选提供理论基础。具体结论如下:
     1.系统研究了丙氨酸及其拆分分子对铝酸钠溶液种分过程的影响。发现α-丙氨酸的抑制作用源于其分子中氨基或羧基对氢氧化铝表面“活性点”的封闭;促进作用源于其分子中氨基和羧基的共同作用。α-丙氨酸使铝酸钠溶液种分分解率改变的本质可能源于溶液中铝酸根离子之间平衡的打破,也可能源于溶液中新的含铝组元的产生。丙氨酸对种分分解率大小、氢氧化铝附聚大小及附聚周期的影响与其分子中氨基和羧基的相对位置有关;丙氨酸对种分分解率及氢氧化铝附聚随种分时间变化趋势、氢氧化铝附聚随丙氨酸浓度变化趋势的影响则与其分子中氨基和羧基的相对位置无关。α-丙氨酸的吸附改变了氢氧化铝(001)面及(100)面的电子结构,表现为“电子给体”。
     2.系统研究了Na4EDr队和EDTA对铝酸钠溶液种分过程的影响。对比研究发现EDTA阴离子或者直接作用于铝酸根离子,或者通过水分子间接作用于铝酸根离子,或者通过两种方式同时作用于铝酸根离子,促进了新的含铝组元的生成,改变了铝酸钠溶液结构,强化了种分分解;H+通过中和反应促进了种分分解;Na+可能通过其与铝酸根离子形成Na(H2O)4+·Al(OH)4-离子中间体促进了种分分解。Na4EDTA和EDTA对氢氧化铝附聚随结晶助剂浓度变化趋势及氢氧化铝附聚周期影响的不同与Na+和H+有关。
     3.系统研究了单羧基芳香族羧酸对铝酸钠溶液种分过程的影响。发现单羧基芳香族羧酸对铝酸钠溶液种分分解的抑制作用源于其对氢氧化铝表面“活性点”的封闭,抑制顺序与其分子中氧原子所带净电荷数呈对应关系;对氢氧化铝附聚的抑制作用可能与其偶极矩及附加偶极矩有关;对氢氧化铝长大方式的影响与苯环上烷基和结晶助剂浓度有关。单羧基芳香族羧酸的吸附改变了氢氧化铝(001)面和(100)面的电子结构,’表现为“电子给体”。
     4.构建了氢氧化铝中位粒径变化与21种L型氨基酸结晶助剂分子描述符之间的QSPR模型,最佳模型表达式如下:△d50=0.4188(R3p)+2.1181(C-006)-0.8283(Mor04v)+2.4709(Mor07u) +1.0809(Mor10e)-1.3492 (n=21,RMSECV=1.6558,q2=0.6908,R2=0.7654)
     5.总结了结晶助剂分子设计的一般性规则,即:
     (1)氨基和羧基相距较近的的脂肪族类结晶助剂有利于强化铝酸钠溶液种分分解;氨基和羧基相距较远的脂肪族类结晶助剂有利于强化氢氧化铝附聚。
     (2)分子中同时含有多个羧基和氨基的脂肪族类结晶助剂有利于强化铝酸钠溶液种分分解。
     (3)分子中含有单羧基的芳香族类结晶助剂不利于强化铝酸钠溶液种分分解和氢氧化铝附聚。
     (4)分子中原子间距较小且含有较多的同时连有烷基和杂原子的亚甲基的L型氨基酸类结晶助剂,有利于强化氢氧化铝附聚。
The crystallization of Al(OH)3 from seeded supersaturated sodium aluminate solutions is one of the most important processes in alumina production. But the development of alumina industry is seriously restricted by many problems such as the slow seeded precipitation rate and too broad distribution of the particle size of Al(OH)3 product. Among all the enhancing methods, the advantage of crystallization additive is obvious. But the selection of crystallization additive keeps on the empirical level at present.
     The effects of many representative crystallization additives with carboxyl group on the seeded precipitation process of sodium aluminate solutions and the interaction mechanisms in sodium aluminate solutions were investigated by the molecular separation and a QSPR model in combined with the quantum chemistry calculation, PSD, FT-IR, 27Al-NMR, Raman, SEM, et al, respectively. These crystallization additives involve alanine, Na4EDTA, EDTA, monosubstituted aromatic carboxylic acid, and twenty one kinds of L-amino acids. The general rules of the molecular design of the crystallization additive with carboxyl group were obtained, which could offer a theoretical basis for the molecular design and the selection of the crystallization additive in alumina industry. The inclusions were drawn as follows:
     1. Effects of alanine and its separation molecular on the seeded precipitation process of sodium aluminate solutions were investigated systematically. It was found that the inhibitory effect of a-alanine was derived from the occupied active sites on the surface of Al(OH)3 by amino group or carboxyl group in a-alanine; the positive effect resulted from the combined action between amino group and carboxyl group in a-alanine. The essence of the change of the seeded precipitation ratio of sodium aluminate solution caused by a-alanine could originate from the imbalance among aluminate ions present in solution, and might also be derived from the formation of the new component containing Al element in solution. The effects of a-alanine on the amount of the seeded precipitation ratio, the amount of the agglomeration of Al(OH)3 and the agglomeration period of Al(OH)3 were correlative with the relative position of amino group and carboxyl group in a-alanine. The effects of a-alanine on the tendency of the change of the seeded precipitation ratio and the agglomeration of Al(OH)3 with the seeded time, and on the tendency of the change of the agglomeration of Al(OH)3 with the concentration of alanine were independent on the relative position of amino group and carboxyl group in a-alanine. The change of the electron structure of (001) and (100) surface of Al(OH)3 took place in the existence of a-alanine. a-alanine was shown as "electron donor".
     2. Effects of Na4EDTA, EDTA on the seeded precipitation process of sodium aluminate solutions were investigated systematically. It was comparatively found that the generation of the new component containing Al element was derived from the direct interaction or the indirect interaction via water molecular or both of the two interactions between EDTA anion and aluminate ion, which alters the structure of sodium aluminate solution and enhances the seeded precipitation. The seeded precipitation process of sodium aluminate solutions was accelerated by H+ with neutralization reaction. The seeded precipitation process of sodium aluminate solutions was accelerated by Na+, which could possibly result from the formation of Na(H2O)4+·Al(OH)4-. The effects of Na4EDTA on the tendency of the change of the agglomeration of Al(OH)3 with the concentration of the crystallization additive and the agglomeration period of Al(OH)3 were different from that of EDTA, which was related with the existence of Na+and H+.
     3. Effects of monosubstituted aromatic carboxylic acid on the seeded precipitation process of sodium aluminate solutions were investigated systematically. It was found that the inhibitory effect on the seeded precipitation of sodium aluminate solution was originated from the occupied active sites on the surface of Al(OH)3 caused by monosubstituted aromatic carboxylic acid, the inhibitory order was corresponding with the net charges of oxygen atoms in monosubstituted aromatic carboxylic acid. The inhibitory effect of monosubstituted aromatic carboxylic acid on the agglomeration of Al(OH)3 was possibly related with the dipole moment and the additional dipole moment of the crystallization additive. The growth style of Al(OH)3 affected by monosubstituted aromatic carboxylic acid was connected with alkyl in benzene ring and the concentration of crystallization additive. Monosubstituted aromatic carboxylic acid could change the electron structure of (001) and (100) surface of Al(OH)3 change and was shown as "electron donor".
     4. The QSPR model between the change of the median particle size of Al(OH)3 and the molecule descriptors of twenty one kinds of L-amino acids was established. The best QSPR model was established as follows:△d50=0.4188(R3p)+2.1181(C-006)-0.8283(Mor04v)+2.4709(Mor07u) +1.0809(Mor10e)-1.3492 (n=21, RMSECV=1.6558, q2=0.6908, R2=0.7654, F=9.8402)
     5. The general rules of the molecular design of the crystallization additive were summarized as follows:
     (1) Aliphatic crystallization additive containing amino group and carboxyl group which has short distance and long distance could enhance the seeded precipitation of sodium aluminate solutions and the agglomeration of Al(OH)3, respectively.
     (2) Aliphatic crystallization additive simultaneously containing multiple carboxyl groups and amino groups could enhance the agglomeration of Al(OH)3.
     (3) Aromatic carboxylic additive crystallization aid containing single carboxyl group could not enhance the seeded precipitation of sodium aluminate solutions and the agglomeration of Al(OH)3.
     (4) L-amino acid where the distance of atoms is smaller and there has multiple methylenes simultaneously connected with alkyl and heteroatom could enhance the agglomeration of Al(OH)3.
引文
[1]尹建国.过饱和铝酸钠溶液种分附聚过程及其强化.[博士学位论文],长沙:中南大学,2007.
    [2]谢雁丽,毕诗文,任文才.添加剂在拜耳法铝酸钠溶液分解中的应用.轻金属,2000,1:25~26,49.
    [3]Printer. Improvement of efficiency of decomposition of aluminate liquors by using aluminium sulfate. Janos Kohasz. Lapork. Kohasz,1985,92:26-32.
    [4]Zambo J. Light Metals,1986,199-215.
    [5]张斌,陈国辉,陈启元.表面活性剂加强氧化铝种分分解粒度分布研究.有色金属(冶炼部分),2005,5:28~31.
    [6]杨毅宏,毕诗文,谢雁丽.表面活性剂对铝酸钠溶液种子搅拌分解的影响.东北大学学报(自然科学版),2002,23(11):1076~1078.
    [7]陈锋,张宝砚,毕诗文.非离子型油溶性添加剂对铝酸钠溶液晶种分解的影响.东北大学学报(自然科学版),2006,27(3):300~303.
    [8]赵苏,毕诗文,杨毅宏等.阴离子表面活性剂对铝酸钠溶液种分过程的影响.东北大学学报(自然科学版),2004,25(2):139~141.
    [9]Peter A D, Anhony E G. Compositions and method for foam control and crystal modification in bayer process. US5275628,1994-01-04.
    [10]ZENG Jishu, YIN Zhoulan, CHEN Qiyuan. Effect of tetracarbon additives on gibbsite precipitation from seeded sodiumaluminate liquor. J.Cent.South Univ. Techno.2008,15:622-626.
    [11]懂楠娅.五元杂环类添加剂对铝酸钠溶液种分过程的影响.[硕士学位论文],长沙:中南大学,2008.
    [12]Roe W J, Perisho J L. Use of polymers in alumina precipitation inthe Bayer process of bauxite benefication. USE Patent, US4608237,1986-08-26.
    [13]Yin Jianguo, Li Jie, Zhang Yanli, et al. Effect of monohydroxy-alcohol additives on the seeded agglomeration of sodium aluminate liquors. Light Metals, 2006:153-157.
    [14]Keeney R L. Simple reagent techniques to improve alumina processing. Light Metals,2006:153-157.
    [15]Moody, Gillian Mary. Production of Alumina. EP4608237,1986-08-26.
    [16]Owen D O, Davis D C. Use of surfactants in alumina precipitation in the Bayer process. US Patent, US4737352,1988-10-12.
    [17]陈峰,毕诗文,张宝砚等.阴离子油性添加剂对铝酸钠溶液晶种分解的影响.东北大学学报(自然科学版),2004,25(6):606~609.
    [18]Roe, William J, Roswell Ga.. Alumina crystal growth additive. US5106599, 1992-04-21.
    [19]Johannes H, Reinhard B, Juergen F. Using polyglycerines in the Bayer process to increase crystal size of the product. US Patent, US5312603, 1994-05-17.
    [20]李海普,陈启元,钟宏,等聚丙烯酸钠在铝酸钠溶液种分过程中的作用.中南大学学报(自然科学版),2004,35:138~142.
    [21]Welton R, Mccoll P. Production of alumina. US Patent, US6168767, 2001-01-02.
    [22]Carreira L A, Maroni V A. Raman and infrared spectra and structures of the aluminate ions. J. Chemical Phy..1996,45:2216-2220.
    [23]Mironov V E, Pavlov L V. On the structure of aluminate ions. Tsvetnye Metally,1969,42(7):56-57.
    [24]Pavlov L N, Eremin N I. Raman spectra of aqueous solutions of lithium, sodium and potassium aluminates. Tsventnye Metally,8:56-58.
    [25]Plumb R C, Swaine J W. Oxide-coated electrodes. Ⅱ aluminium in alkaline solutions and the aluminate ion. J. Phy. Chem.1964,68:2057-2064.
    [26]Maltsev M, Malinin G V. Thermodynamic properties and H1 and Na23 NMR spectra of sodium hydroxide solutions. Russian J. Structural Chemistry,1965,6: 353-358.
    [27]Maltsev M, Malinin G V. The structure of aluminate solutions. Russian J. Structural Chemistry,1965,6:359-362.
    [28]Lippincol E R, Psellos J E. The Raman spectra and structures of aluminate and zincate ions. J. Chemical Physics,1952,20:536.
    [29]Moolenaar R J, Evans. The structure of the aluminate ion in solutions at high PH. J. Phys. Chemistry,1970,74:3629-3636.
    [30]刘洪霜,曹益林,陈念贻等.铝酸钠溶液的紫外吸收峰.物理化学学报,1992,8(4):441~444.
    [31]Chen Nianyi, Liu Miaoxiu. Activity of NaOH in sodium aluminate solutions. Chin.J. Met.Sci.Technol.,1992,8:376.
    [32]Chen Nianyi, Liu Miaoxiu. Influence of preparative history on structure and properities of sodium aluminate solution. Trans. Nonferrous Met. Soc. China, 1992,2 (2):28.
    [33]Chen Nianyi, Liu Miaoxiu. Influence of preparative history on physico-chemical properties of sodium aluminate solutions. Chin. J. Met.Sci. Technol.,1992,8:135.
    [34]洪梅,曹益林,柳妙修等.铝酸钠溶液的27A1核磁共振普研究.轻金属,1994,5:26~27.
    [35]Radnai T, May P M, Hefter G T, et al. Structure of aqueous sodium aluminate solutions:A solution X-ray Diffraction study. J. Phys. Chem. A 1998, 102:7814-7850.
    [36]Sipos P, Hefter G T, May P M. Aust. J. Chem.,1998,51:445.
    [37]Pascal M L, Anderson G M. Speciation of Al, Si and K in supercritical solutions:Experimental study and interpretation; Geochimica et Cosmochimica Acta,1989,53:1843-1855.
    [38]Abderson G M, Castet S et al. Reaction of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressure: American J. of Science,1967,265:12-27.
    [39]Anderson G M, Castet S et al. Feldspar solubility and the transport of aluminum under metamorphic condition:American J. of Science,1983,238A: 283-297.
    [40]李洁.过饱和铝酸钠溶液结构及分解机理的研究:[博士学位论文].长沙:中南大学,2002.
    [41]Gale J D, Rohl A L, Watling H R et al. Theoretical investigation of the nature of aluminum-Containing Species Present in alkaline solution. J. Phys. Chem. B,1998,102:10372-10382.
    [42]Martin R B. J. Inorg. Biochem,1991,44:141.
    [43]Martin R B. Met. Ions Biol. Syst,1988,24:1.
    [44]Swaddle T W, Rosenqvist J, Yu P, et al. Science J,2005,308:1450-1453.
    [45]Watling H R, Fleming S D, van Bronswijk W et al. Ionic structure in caustic aluminate solutions and the precipitation of gibbsite. J. Chem. Soc., Dalton Trans., 1998,3911-3917.
    [46]Barcza L, Palfalvi-Rozsahegyi M. The aluminate lye as a system of equilibria. Materials Chemistry and Physical,1989,21:345-356.
    [47]孙素琴,陈念贻.铝酸钠溶液碳酸化过程的Raman光谱研究.光谱学与光谱分析,1994,14(5):35~37.
    [48]Zambo J. Structure of sodium aluminate liquors:molecular model of the mechanism of their decomposition. Light Metals,1986,199-215.
    [49]Ray L F, Kloprogge J T, et al. Vibrational spectroscopy and dehydroxylation of aluminium (OXO) hydroxides:Gibbiste. Applied Spectroscopy,1999,53(4): 423-434.
    [50]库兹涅佐夫.对铝酸钠溶液的新看法.国外轻金属,1964,5:7-12.
    [51]杨重愚.氧化铝生产工艺学(第二版).北京:冶金工业出版社,1999.16~17.43~44.
    [52]Bradley S M, Hanna J V.27A1 and 23Na MAS-NMR and Powder X-ray Diffraction Studies of Sodium Aluminate Speciation and the Mechanistics of Aluminum Hydroxide Precipitation upon Acid Hydrolysis. J. Am. Chem. SOC, 1994,116:7771-7783.
    [53]Gerson A R, Ralston J, Smart R S C. An investigation of the mechanism of gibbsite nucleation using molecular modelling. Colloid and surfaces A: Physicochemical and Engineering Aspects,1996,199-215.
    [54]郭阳.γ-A1(OH)3对有机物小分子顶位吸附行为的理论研究.[硕士学位论文].长沙:中南大学,2007.
    [55]曾纪术.过饱和铝酸钠溶液种分强化及添加剂分子设计.[博士学位论文].长沙:中南大学,2008.
    [56]Der-Jiang Liaw, Kun-Li Wang, Sidharam Pundlik Pujari, et al. A novel, conjugated polymer containing fluorene, pyridine and unsymmetric carbazole moieties:Synthesis, protonation and electrochemical properties. Dyes and Pigments,2009,82(2):109-117
    [57]Namrata Dixit, Lallan Mishra, Sourajit M, et al. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand:Characteri-zation, spectroscopic and isothermal titration calorimetry measurements of M bingding and sensing(M2+=Ca2+, Mg2+). Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(1):29-34.
    [58]Li-Li Du, Qi Wu, Chun-Xiu Chen, et al. A two-step, one-pot enzymatic synthesis of ampicillin from penicillin G potassium salt. Journal of Molecular Catalysis B:Enzymatic,2009,58(1-4):208-211.
    [59]Ya-Yao Huang, Wen-Sheng Huang, Tieh-Chi Chu, et al. An improved synthesis of 4-[18F]-ADAM, a potent serotonin transporter imaging agent. Applied Radiation and Isotopes,2009,67(6):1063-1067.
    [60]Gema Pereira-Caro, Andres Madrona, et al. Antioxidant activity evaluation of alkyl hydroxytyrosyl ethers, a new class of hydroxytyrosol derivatives. Food Chemistry,2009,115(1):86-91.
    [61]Parvathy K S, Negi P S, Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chemistry,2009,115(1): 265-271.
    [62]Ahmed Kamal., M.Shaheer Malik, Ahmad Ali Shaik, et al. Lipase mediated resolution of γ-azidoalcohols in aqueous and organic media:Synthesis of (R)-and-(S)-fluoxetine and duloxetine. Journal of Molecular Catalysis B: Enzymatic,2009,58(1-4):132-137.
    [63]Irshad—ul-Haq Bhat, Sartaj Tabassum. Synthesis of new piperazine derived Cu(Ⅱ)/Zn(Ⅱ) metal complexes, theie DNA binding studies, electrochemistry and anti-microbial activity:Validation for specific recognition of Zn(Ⅱ) complex to DNA helix by interation. Spectrochimica Acta Part A:Molecular and Bio-molecular Spectroscopy,2009,72(5):1026-1033.
    [64]Ali Mohammad, Charu Varshney, Shahab A.A. Nami. Synthesis, characterization and antifungal activities of 3d-transition metal complexes of 1-acetylpiperazinyl-dithiocarbamate, M(acpdtc)2. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy,2009,73(1):20-24.
    [65]Nursen Altuntas Oztas., Gulgun Yenisenirli, Nilgun Ancm et al. Synthesis, characterization biological activities of dimethyltin (IV) complexes of Schiff bases with ONO-type donors. Spectrochimica Acta Part A:Molecular and Bio-molecular Spectroscopy,2009,72(5):929-935.
    [66]Hamidah Burham, Raizatul Ainaa Gafoor Abdul Rasheed, Noorullhamezon Md.Noor, et al. Enzymatic synthesis of palm-based ascorbyl esters. Journal of Molecular Catalysis B:Enzymatic,2009,58(1-4):153-157.
    [67]Facundo Mattea, Angel Martin, Maria Jose Cocero. Carotenoid processing with supercritical fluids. Journal of Foof Engineering,2009,93(3):255-265.
    [68]Pourreza N, Parham H, Kiasat A R, et al. Solid phase extraction of mercury on sulfur loaded with N-(2-chlorobenzoyl)-N'-phenylthiourea as a new adsorbent and determination by cold vapor aromatic absorption spectrometry. Talanta,2009, 78(4-5):1293-1297.
    [69]Sven Krugener, Carmen Schaper, Ulrich Krings, et al. Pleurotus species convert monoterpenes to furanoterpenoids through 1,4-endoperoxides. Bioresource Technology,2009,100(11):2855-2860.
    [70]姚慧玲.微乳液法合成核壳结构纳米聚苯胺和QSPR预测表面活性剂的浊点的研究.[硕士学位论文].济南:山东大学,2008.
    [71]Ghasemi J B., Abdolmaleki A, Mandoumi N. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media. Journal of Hazardous Materials, 2009,161(1):74-80.
    [72]Yong Pan, Juncheng Jiang, Rui Wang, et al. Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and intelligent Laboratory Systems,2008,92(2): 169-178.
    [73]Khan A, Shamsi M H, Choi Tae-sun. Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites. Computational Materials Science,2009,45(2):257-265.
    [74]Bertinetto C, Duce C, Micheli A, et al. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks. Journal of Molecular Graphics and Modelling,2009,27(7): 797-802.
    [75]Fatemi M H, Haghdadi M. Quantitative structure-property relationship prediction of permeability coefficients for some organic compounds through polyethylene membrane. Journal of molecular structure,2008,886(1-3):43-50.
    [76]Xu Jie, Liang Hao, Chen Biao, et al. Linear and nonlinear QSPR models to refracrive indices of polymers from cyclic dimmer structures. Chemmetrics and intelligent Laboratory Systems,2008,92(2):152-156.
    [77]Toropov A A, Rasulev B F, Leszczynska D et al. Multiplicative SMILES-based optimal descriptors:QSPR modeling of fullerene C60 solubility in organic solvents. Chemical Physics Letters,2008,457(4-6):332-336.
    [78]Toropov A A, Rasulev B F, Leszczynska D et al. Additive Smiles based optimal descriptors:QSPR modeling of fullerene C60 solubility in organic solvents. Chem Phys.Lett.,2007,444(1-3):209-214.
    [79]Duchowicz P R, Talevi A, Bruno-Blanch L E, et al. New QSPR study for the prediction of aqueous solubility of drug-like compounds. Bioorganic & Medicinal Chemistry,2008,16(17):7944-7955.
    [80]Fayet G, Joubert L, Rotureau P, et al. On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility. Chemical Physics Letters,2009,467(4-6):407-411.
    [81]Li Baoxin, Ma Limei, Xu Chunli. Prediction of direct chemiluminescence behavior of organic compounds in liquid phase based on QSPR method. Journal of Luminescence,2008,128(9):1484-1490.
    [82]Sattari M, Gharagheizi. Prediction of molecular diffusivity of pure components into air:A QSPR approach. Chemosphere,2008,72(9):1298-1302.
    [83]Cao H Y, Jiang J C, Pan Y, et al. Prediction of the net heat of combustion of organic compounds based on atom-type electrotopologiacal state indices. Journal of Loss Prevention in the Process Industries,2009,22(2):222-227
    [84]Luan F, Liu H T, Ma W P, et al. QSPR analysis of air-to blood distribution of volatile organic compounds. Ecotoxicology and Environmental Safety,2008, 71(3):731-739.
    [85]Toropov A A, Toropova A P, Raska Jr. I. QSPR modeling of octanol/water partition coefficient for vitamines by optimal descriptors calculated with SMILES. European Journal of Medicinal Chemistry,2008,43(4):714-740.
    [86]Katritzky A R, Pacureanu L M, Slavov S H, et al. QSPR study of the first and second critical micelle concentrations of cationic surfactants. Computers and Chemical Engineering,2009,33(1):321-332.
    [87]Duchowicz P R, Garro J C M, Castro E A. QSPR study of the Henry's Law constant for hydrocarbons. Chemometrics and Intelligent Laboratory Systems, 2008,91(2):133-140.
    [88]Golla S, Madihally S, Robinson Jr. R L, et al. Quantitative structure-property relationship modeling of skin sensitization:A quantitative prediction. Toxicology in Vitro,2009,23(3):454-465.
    [89]谢雁丽,李尚明,毕诗文等.强化铝酸钠溶液晶种分解过程的研究.轻金属,2000,7:18~19,24.
    [90]Li Dianfeng, Bi Shiwen, Yang Hongyi, et al. A kind of activity seed used for the precipitation of the sodium aluminate liquor. Light Metals,1997:97-100.
    [91]Paramzin S M, Turkov V M, Turkov V M. Study of the nature of product of mechnochemical activation of hydragillite. Izv Sib Otd Akad Nauk SSSR, Ser khim Nauk,1988,2:47-51.
    [92]谢雁丽,毕诗文,杨毅宏等.氢氧化铝晶种表面酸性及其对铝酸钠溶液分解过程的影响.中国有色金属学报,2000,10(6):896~808.
    [93]上官正.高活性氢氧化铝晶种的制备.轻金属,1995,8:12-14.
    [94]Qiyuan Chen, Jiangguo Yin, Zhoulan Yin. Effect of mechanically activated seeds on the seeded agglomeration process of sodium aluminate liquors. Light Metals,2007:157-161.
    [95]薛红,毕诗文,谢雁丽等.晶种对拜耳法铝酸钠溶液分解的影响.有色金属(冶炼部分),1998,(2):26~28.
    [96]陈国辉,陈启元,尹周澜等.铝酸钠溶液种分过程强化研究进展.湖南冶金,2003,31(1):3-6.
    [97]赵继华.超声场强化铝酸钠种分过程的研究:[博士学位论文].长沙:中南大学,2001.
    [98]CHEN Guohui, CHEN Qiyuan, YIN Zhoulan. Nucleation during gibbsites precipitation with seeds from sodium aluminate solution processed under ultrasound. Trans. Nonferrous Met. Soc. China,2004,14(2):401-405.
    [99]刘吉波.超声波强化铝酸钠溶液分解过程机理的研究.[博士学位论文].长沙,中南大学,2004.
    [100]刘吉波,陈启元,张牧群等.铝酸钠溶液声致自由基的测定.中国有色金属学报,2004,14(12):2120~2124.
    [101]韩彦卿,姚静武,张学英.磁场对铝酸钠溶液种分分解的影响.矿产保护与利用,1999,2:26~28.
    [102]周辉放,杨重愚,陈启元.铝酸钠溶液附聚过程中的粒度信息分析.中国稀土学报,2004,22:227~230.
    [103]谢雁丽,吕子剑,毕诗文等.铝酸钠溶液晶种分解.北京:冶金工业出版社,2003:36~57.
    [104]Seyssieq I, Veesler S, Boistelle R, et al. Agglomeration of gibbsite Al(OH)3 crystals in Bayer liquors:Influence of the pricess parameters. Chemical Engineering Science,1998,53(12):2177-2185.
    [105]张樵青.对拜耳法高浓度铝酸钠溶液两段分解细晶种附聚的研究.轻金属,1994,4:5-9,16.
    [106]Eduardo L J, Quintero I.Evaluation of agglomeration stage conditions to control alumina and hydrate particle breakage. Light Metals,1992,199-202.
    [107]Wu Y et al, "Effects of additives on agglomeration and secondary nucleation in seed precipitation in sodium aluminate solution," Journal of chemical Industry and Engineering (China),56 (12) (2005),2434-2439.
    [108]Zhao Su, Bi Shiwen, Ding Xiangqun, Tong Zhifang. Influence of novel surfactants on the physicochemical properties of sodium aluminate solution relevant to the aluminium hydroxide precipitation process," Mineral Processing and Extractive Metallurgy (Trans. Inst. Min.Metall. C),2005,114:53-56.
    [109]尹周澜,敬叶灵,陈启元,张艾民.聚合物对铝酸钠溶液种分过程的影响.中国有色金属学报,2007,17(6):1002~1007.
    [110]Mahoney R P, Jr Schnieders W B. Trihydrate crystal modifier for the bayer process, US patent,0159936,2002.
    [111]Mahoney R P, Jr Schnieders W B.Aluminum trihydrate crystals and improved method for the production thereof, US patent,6599489,2003.
    [112]Zeng Jishu, Yin Zhoulan, Zhang Aiming, Qi Gongwei, Chen Qiyuan. Unusual effect of 1,2-octanediol on sodium aluminate solutions leading to inhibition of gibbsite crystallization[J]. Hydrometallurgy,2008,90(2-4):154-160.
    [113]Watling H R, Fleming S D, Van bronswijk W, Rohl A L Ionic structure in caustic aluminate solutions and the precipitation of gibbsite[J]. Journal of the Chemical Society Dalton Transactions,1998,28:3911-3917.
    [114]Moolenaar R J, Evans J C, Mckeever L D.The structure of the aluminate ion in solutions at high pH[J]. Journal of Physical Chemistry,1969,74(20): 3629-3636.
    [115]Ma Shuhua, Zheng Shili, Xu Hongbin, Zhang Yi. Spectra of sodium aluminate solutions [J]. Transactions of Nonferrous Metals Society of China,2007, 17:853-857.
    [116]Sipos P, HefterG, May P M. "27AlNMR and Raman spectroscopic studies of alkaline aluminate solutions with extremely high caustic content-does the octahedral species Al(OH)63- exist in solution?," Talanta,2006,70 (4):761-765.
    [117]Irangu J K, Jordan P B, "Copper-63 NMR line width study of the copper (I)-acetonitrile system. Iorganic chemistry," 42 (12) (2003),3934-3942.
    [118]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249
    [119]Zeng Jishu, Yin Zhoulan, Chen Qiyuan. Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether. Hydrometallurgy,2007,89:107-116.
    [120]WATLING H. Gibbsite crystallization inhibition 2. Comparative effects of selected alditols and hydroxycarboxylic acids [J]. Hydrometallurgy,2000,55(3): 289-309.
    [121]朱明华.仪器分析.北京:高等教育出版社,1993,361~365.
    [122]曾贵平,殷绍唐,于锡玲.钛宝石晶体中的红外残余吸收与点缺陷的关系.2002,19(1):25~30.
    [123]Li Ruihua, Jiang Zhanpeng, Chen Fengen, et al. Hydrogen bonded structure of water and aqueous solutions of sodium halides:a Raman spectroscopic study. Journal of Molecular Structure,2004,707(1-3):83-88.
    [124]李睿华,蒋展鹏.阴离子对水的羟基伸缩振动拉曼光谱的影响.物理化学学报,2007,23(1):103~106.
    [125]Nikolic I, Blecic D, Blagojevic N, Radmilovic V, Kovacevic K. Influence of oxalic acid on the kinetics of A1(OH)3 growth from caustic soda solutions. Hydrometallurgy,2004,74(1-2):1-9.
    [126]Paulaime AM, Seyssiecq I, Veesler S. The influence of organic additives on the crystallization and agglomeration on gibbsite. Powder Technology,2003, 130(1-3):345-351.
    [127]Watling H. Gibbsite crystallization inhibitiona 2. Compatative effects of selected alditols and hydroxycarboxylic acids. Hydrometallurgy,2000,55(3): 289-309.
    [128]Paulaime A M, Seyssiecq I, and Veesler S, "The influence of organic additives on crystallization and agglomeration of gibbsite," Powder Technology,130 (1-3) (2003),345-351.
    [129]赵书,毕诗文,杨毅宏.种分过程添加剂对氢氧化铝粒度强度的影响[J].东北大学学报(自然科学版),2003,24(10):939-941.
    [130]Seyssieq I, Veesler S, Boistelle R, et al. Modelling gibbsite agglomeration in a constant supersaturation crystallizer. Chemical Engineering Science,2000,55: 5565-5578.
    [131]Ilievski D, Livk I. An agglomeration efficiency model for gibbsite precipitation in a turbulently stirred vessel [J].Chemical Engineering Science, 2006,61(6):2010-2022.
    [132]David R, Paulaimea A M, Espitalier F.Rouleau L. Modeling of multiple mechanism agglomeration in a crystallization process [J]. Powder Technology, 2003,130(1-3):338-344.
    [133]Blagojevic I, Blecic D, Vasiljevic R. Influence of decomposition parameters on agglomeration process and total soda content in precipitated Al(OH)3[J]. Journal of Crystal Growth,1999,200(3-4):558-564.
    [134]Ilievski D. Development and application of a constant supersaturation, semi-batch crystalliser for investigating gibbsite agglomeration [J]. Journal of Crystal Growth,2001,2339(4):846-862.
    [135]Ilievski D, Rudman M, Metcalfe G. The separate roles of shear rate and mixing on gibbsite precipitation [J]. Chemical Engineering Science,2001,56(7): 2521-2530.
    [136]Sakamoto K, Kanehara M. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Chem. Engng. Soc. Japan, 1971,35:481-487.
    [137]Halfon A. Alumina Trihydrate Crystallization Part I. Secondary Nucleation and Growth Rate Kinetics [J]. The Canadian Journal of Chemical Engineering. 1976,54(6):160-167.
    [138]Brown N. A quantitative study of new crystal formation in seeded caustic aluminate solution. Journal of Crystal Growth,1975,29(3):309-315.
    [139]Brown N. Crystal growth and nucleation of aluminum trihydroxide from seeded caustic aluminate solution. Journals of Crystal Growth,1972,12(1): 39-45.
    [140]Brown N. Effect of calcinumions on agglomeration of Bayer alumina trihydroxide. Journals of Crystal Growth,1988,92(1):26-32.
    [141]Scott J, Extractive metallurgy f alumina. Interscience,1963,1:203-218.
    [142]Misa C. The precipitation of Bayer aluminum trihydroxide:[Ph. D. thesis], Australi:University of Queensland,1970.
    [143]Misa C, White E T. Kinetics of crystallization of aluminium trihydroxide from seeds caustic aluminate solution. Chem. Eng. Progr. Sympos. Ser.,1970,110: 53-65.
    [144]Misa C, White E T.Crystallization of Bayer aluminium trihydroxide. J. Crystal Growth,1971,8:172-178.
    [145]Low G C. Agglomeration effects in aluminium trihydroxide precipitation: [Ph.D. thesis], Australia:University of Queensland,1975.
    [146]Halfon A, Kaliaguine S. Aluminina trihydrate crystallization. Part Ⅱ:a model of agglomeration Can. J. Chem. Engng,1976,54:168-172.
    [147]Remillard M, Cloutier L and Methot J C. Crystallisation du trihydrate d'aluminate:effect des conditions d'agitation. Can. J. Chem. Engng,1980,58: 348-356.
    [148]Harvey R L, Keeney M E. Simple reagent techniques to improve alumina processing. Light metals,1990,141-145.
    [149]Todeschini R, Viviana C. Handbook of molecular descriptors. Weinheim: Wiley-VCH,2000.
    [150]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法.北京:国防工业出版社,2006,10~11,28~32,112~115
    [151]夏天昌.系统辨识-最小二乘法.国防工业出版社,1984,15~17.
    [152]秦蓓蕾,王文圣,丁晶.偏最小二乘回归模型在水文相关分析中的应用.四川大学学报(工程科学版),2003,35(4):11 5~118.
    [153]Efron B, Hastie T, Johnstone I, et al. Least angle regression. Annals of statistics,2004,32(2):407-499.
    [154]Allen D M. Technometrics,1974,16:125-127.
    [155]Stone M, J.R.Stat.Soc.B,1974,36:111-147.
    [156]Wahba G, Wold S. Commum. Stat.1975,4:1-17.
    [157]Wold S. Technometrics 1978,20:397-405.
    [158]Martens H A, Dardenne P. Chemom. Intell. Lab. Syst.1998,44:91-121.
    [159]罗汉,李晓沛,刘先霞.线性代数·概率论与数理统计.长沙:湖南大学出版社,2001,174~177,242~243.
    [160]Schuurmann G, Ebert R U, Chen J W. External Validation and Prediction Employing the Predictive Squared Correlation Coefficient-Test Set Activity Mean vs Training Set Activity Mean. J. Chem. Inf. Model,2008,48(11):2140-2145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700